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Abstract
Datasets are mathematical objects (e.g., point clouds, matrices, graphs, images, fields/functions) that have shape.
This shape captures intrinsic characteristics of the data that are independent of the environment and methods used to
obtain the data. These representations (e.g., graphs, manifolds, point clouds) also provide means for integrating domain
knowledge that can aid in the development of efficient, interpretable models for data analysis. Topology and geometry
are fields of mathematics that provide tools for the characterization and quantification of these data representations
(shapes). In this work, we apply topological and geometrical methods in the areas of industrial process monitoring and
fault detection. We discuss how data taken from industrial processes (e.g., time series, images) can be represented as a
shape and how that shape can be analyzed through topological and geometrical tools such as the Euler characteristic (EC)
and Riemannian geometry. We provide a brief overview of these methods and illustrate how exploiting the topology and
geometry of data can provide improvements in data-centric tasks such as dimensionality reduction and classification in
the context of process monitoring and image analysis.

Keywords
Topology, Geometry, Data Science, Process Systems

Datasets are mathematical objects and characterizing the
shape (geometrical and topological features) of these objects
reduces the dimensionality and complexity of the data while
minimizing information loss, but is not always straightfor-
ward (Smith et al., 2021). Popular tools from statistics, lin-
ear algebra, and signal processing (e.g., moments, correla-
tion functions, singular value decomposition, convolutions,
Fourier analysis) do not directly characterize the shape of
data objects; instead, such tools are used to characterize other
types of features (e.g., variance and frequency content).

Topology is a branch of mathematics that provides power-
ful tools to characterize the shape of data objects. One such
tool is the so-called Euler characteristic (EC). The EC is a
descriptor that characterizes geometrical features of a topo-
logical space defined by a data object (Smith and Zavala,
2021). This characterization is accomplished by performing
a decomposition of the space into a set of independent topo-
logical bases. This decomposition is similar in spirit to an
eigen-decomposition of a matrix; here, the matrix object is
decomposed into a set of independent basis vectors. The EC
is a scalar integer quantity that is defined as the alternating
sum of the rank of the topological bases. The EC is often
combined with a transformation technique known as filtra-
tion to characterize the geometry of different objects such
as matrices, images, fields/functions, and weighted graphs.
This characterization is summarized in the form of what is
called an EC curve which provides a direct approach to quan-
tify the topology of data. Topological descriptors such as the
EC offer advantages over statistical descriptors. Descriptors

such as Moran’s I, which measures spatial structure via spa-
tial autocorrelation, or correlation matrices do not directly
capture the global structure of the data (thus limiting the abil-
ity to characterize geometrical features) (Mantz et al., 2008).
Higher-order statistical descriptors such as 2-point correla-
tion functions, which have been employed in characterizing
the structure of heterogeneous materials, are also limited at
capturing spatial and morphological features of the data (es-
pecially if the data object is irregular) (Mantz et al., 2008).

Topology and geometry also allow us to study data that is
governed by non-Euclidean geometry. The assumption that
data lies in a Euclidean space is pervasive throughout sci-
ence and engineering and is the basis of diverse data analy-
sis techniques used in these domains. Making this blanket
assumption, however, is not always appropriate and can af-
fect the accuracy/interpretability of such techniques or even
break fundamental physical laws. An important example in
which assuming Euclidean geometry can lead to spurious re-
sults is in the analysis of symmetric positive definite (SPD)
matrices (e.g., covariance/correlation matrices) (Smith et al.,
2022; Moakher and Batchelor, 2006). SPD matrices lie on
a high-dimensional space which is governed by Riemannian
geometry (known as a Riemannian manifold). Standard tech-
niques for the analysis of SPD matrices (e.g., PCA or ba-
sic matrix norms) do not take this property into considera-
tion and can lead to misleading results. Specifically, the so-
called swelling effect can occur when applying operations
in Euclidean geometry to SPD matrices. This effect intro-
duces spurious results by inflating the determinants of SPD



matrices and can also distort the results of commonly used
methods (Smith et al., 2022; Moakher and Batchelor, 2006;
Pennec, 2006). Computing interpolations and averages of
SPD matrices, which is key in understanding physical sys-
tems (e.g. Brownian motion), can also break physical conser-
vation laws if performed under Euclidean geometry (Smith
et al., 2022; Moakher and Batchelor, 2006; Pennec, 2006).

In this work, we provide a brief overview of the EC and
Riemannian geometry and their applications in the context
of process monitoring and fault detection. Our applications
are focuses on the Tennessee Eastman Process (TEP) and the
MVTEC-AD dataset. The TEP is a chemical process where
anomalies/faults are systematically introduced which shifts
the relationships between the measured variables (Downs
and Vogel, 1993). Covariance matrices encode these chang-
ing relationships and are then used to predict what type of
anomaly the process is experiencing. The second applica-
tion is in defect/anomaly detection of textiles taken from the
MVTEC AD dataset (Bergmann et al., 2019). Here, the
topology of textile images are analyzed for the presence of
anomalies/defects (e.g., a cut or discoloration of the textile).

Graphs and Manifolds

We begin by defining a couple of fundamental topologi-
cal/geometrical data representations: graphs and manifolds.
A graph is a 2D topological object that consists of an or-
dered pair G(V,E), where V represents a set of vertices and
E represents a set of paired vertices known as edges. Edges
represent relationships (connectivity) between vertices. We
can characterize a graph by quantifying specific topological
features such as the number of cycles and connected com-
ponents. A cycle represents a path that traverses edges on
a graph starting at a particular vertex v j and ending at that
same vertex v j. A connected component is a subset of a graph
C(VC,EC)⊆ G(V,E) in which any vertex vi ∈VC of the sub-
graph can reach any other vertex v j ∈VC by traversing edges
of the subgraph {vi,v j} ∈ EC, and is disconnected from all
other subsets of the graph. In other words, the number of
connected components is the number of connected partitions
of a graph. Data can also be encoded in a graph object (in
nodes and edges) using functions f : V → R and f : E → R.
Values attached to nodes or edges are typically called weights
or features; as such, graphs that encode data are also known
as weighted graphs.

Manifolds are also versatile topological data representa-
tions that can capture continuous forms of information in
high-dimensional spaces. This contrasts with graph repre-
sentations, which capture discrete characteristics of a data
object (e.g., number of edges, nodes). A manifold M is a
topological space that locally resembles a Euclidean space;
this means that the neighborhood of a point x ∈ U in an n-
dimensional manifold (with U ⊆ M ) can be mapped to n-
dimensional Euclidean space through a continuous, bijective
function. These neighborhoods and associated mappings are
also known as charts. For example, the surface of the Earth
is a 2D manifold and we can map the curved surface of the
Earth to a flat Euclidean plane (i.e., a 2D Euclidean space)

using a chart in order to measure properties such as distances
or areas. The general nature of manifolds allows them to
represent a broad range of structures, shapes, and complex
geometric objects. Manifolds can also have encoded data on
them (e.g., Earth surface temperature), which is captured us-
ing a continuous function f : M →R. In Figure 1, we present
a manifold representation for a textile image. Here, the im-
age is a 2D manifold and we define a continuous function
that captures the pixel intensity at each point in the image.

The Euler Characteristic

Graph and manifold representations are able to capture
both discrete and continuous information within a dataset and
the data’s topology can be directly quantified/summarized us-
ing a descriptor known as the Euler characteristic (Smith and
Zavala, 2021). The EC is denoted as χ ∈ Z and is mathemat-
ically defined as the alternating sum of the rank of topologi-
cal bases for a given space known as Betti numbers βi ∈ Z+,
where i∈Z+ represents the dimensionality of the topological
basis:

χ :=
n

∑
i=0

(−1)i
βi (1)

Importantly, the topological bases of a space (e.g., con-
nected components, holes, voids) are preserved under de-
formations such as stretching, twisting, and bending (are
topological invariants). For any topological space of n-
dimensions, there can only exist topological bases up to that
given dimension.

Filtrations

Analysis of data represented as manifolds (or weighted
graphs) requires an added processing step known as a filtra-
tion. A filtration quantifies the topology of sublevel sets of
the manifold. Given an n-dimensional manifold M and a
continuous function f : M → R, a sublevel set of the mani-
fold is defined as Mki that contains points {x ∈ M : f (x) ≤
ki}, where ki ∈ R represents our filtration threshold. Hence,
we can construct nested sublevel sets at increasing filtration
thresholds for the manifold (or graph):

Mk1 ⊆ Mk2 ⊆ ...⊆ Mkn ⊆ M (2)

where k1 < k2 < ... < kn represent our filtration thresholds,
and M represents the original manifold. We can mea-
sure/quantify the topology of these nested sublevel sets with
the EC at each filtration threshold {χ1,χ2, ...,χn}. We ulti-
mately obtain an ordered pair of values {ki,χi}, which char-
acterize the topology of the manifold and its associated func-
tion. The filtration of a weighted graph is conducted in an
analogous manner (by eliminating nodes or edges in which
the data is below a certain threshold value). We note that fil-
tration operations are easy to conduct and are thus scalable.
An example filtration of a textile image is found in Figure 1.
Here, the textile image is treated as a manifold M ∈R2 with



Figure 1: (a) Non-defective textile image. (b) Manifold rep-
resentation of a textile image M , here the 3rd dimension (z-
axis) represents the value of the function f : M →R. (c) EC
curve constructed from the filtration of the manifold/function
shown in (b), with sublevel sets M0.1,M0.6,M0.95. The EC
is computed at sublevel sets Mki with increasing thresholds
ki ∈ R.

a function f : M →R representing the pixel intensity at each
point in the image. The graph represents the ordered pairs
{ki,χi} computed during the filtration.

Riemannian Geometry

We now shift our focus to a brief review of geometric
methods of data analysis from the field of Riemannian ge-
ometry. In particular, we are focused on the applications of
Riemannian geometry with respect to symmetric, postive def-
inite (SPD) matrices. SPD matrices are widely used in the
analysis of process data, and most commonly appear in the
form of covariance/correlation matrices. The main message
of this brief review is that SPD matrices lie on a Rieman-
nian manifold and that important computations (e.g., matrix
operations, summarizing statistics, classification, regression,
and dimensionality reduction) can be performed by incorpo-
rating the geometry of this manifold. Respecting such prop-
erties can lead to important improvements in efficiency and
interpretability.

We denote the set of all n × n symmetric matrices as
S(n) := {S ∈ M (n),ST = S} where M (n) represents the
space of all square n× n matrices. We then define the set
of all n×n symmetric, positive definite matrices as P (n) :=
{P ∈ S(n),uT Pu > 0,∀u ∈ Rn}. The set P (n) represents our
Riemannian manifold of covariance matrices. An illustra-
tive representation of the P (n) manifold is found in Figure
2. The manifold P (n) is a curved, conic surface embed-
ded in Euclidean space. We also illustrate several points
P1,P2,P3 ∈ P (n), where each Pi represents an SPD covari-
ance matrix.

Figure 2: An illustration of a Riemannian manifold formed
by SPD matrices P (n), with a set of points (matrices)
P1,P2,P3 ∈ P (n). A comparison of geodesic (red, solid line)
and Euclidean distances (dashed, black line) are shown be-
tween P1,P2 and P1,P3.

Figure 2 also demonstrates a simple distance analysis of
these covariance matrices through two different methods:
Euclidean and Geodesic. The Euclidean method assumes
the matrices do not form a Riemannian manifold, and that
they are governed by Euclidean geometry. We define the Eu-
clidean distance between two matrices Pi,P j ∈ P (n) as:

dE(Pi,P j) := ||Pi −P j||F (3)

where || · ||F is the Frobenius norm. The geodesic method
computes a geodesic distance. The geodesic distance is the
shortest distance between two points on a manifold that ac-
counts for the curvature and shape of the manifold P (n) . For
SPD covariance matrices the geodesic distance is defined as:

dG(Pi,P j) := ||log(Pi)− log(P j)||F (4)

where log(·) represents the matrix logarithm. In an anal-
ysis of our matrices P1,P2,P3 ∈ P (n) through the Euclidean
distance we obtain the following result (illustrated in Figure
2):

dE(P1,P2)> dE(P1,P3) (5)

Whereas if we perform the analysis using the geodesic dis-
tance we obtain the opposite result (illustrated in Figure 2):

dG(P1,P3)> dG(P1,P2) (6)

Thus, accounting for the correct (non-Euclidean) geome-
try of the manifold provides a different answer than if Eu-
clidean geometry is assumed. The impact of incorrectly as-
suming Euclidean geometry in the analysis of matrices is
demonstrated in the TEP case study.



Figure 3: Illustration of the tangent space TP1 P formed at
the point P1 ∈ P (n). The tangent space represents a (lin-
ear) vector space that is of the same dimension as the man-
ifold P (n) and intersects the manifold at P1. The logarith-
mic map logP1

(P2)→ TP2 takes point P2 ∈ P (n) to the point
TP2 ∈ TP1 P . The exponential map expP1

(TP2)→P2 does the
inverse. The exponential and logarithmic mappings allow us
to map our covariance matrix data from the curved manifold
space P (n) to a vector space TP1 P . This mapped data can
then be used directly in common data analysis methods such
as principal component analysis.

Tangent Spaces

The analysis of SPD matrices through Riemannian mani-
folds provides numerous benefits, however many multivari-
ate methods for tasks such as dimensionality reduction (e.g.,
principal component analysis) require data that lies in a (lin-
ear) vector space. The non-linear (curved) nature of the Rie-
mannian manifold of SPD matrices requires that we map
the structure of the manifold to a linear space. Fortunately,
Riemannian manifolds are differentiable manifolds (Bhatia,
2009; Smith et al., 2022). This means that every point on
the Riemannian manifold P ∈ P (n) has an associated tangent
space denoted as TPP ∈ S(n), constructed from the tangent
vectors of all possible curves passing through the point on the
manifold P ∈ P (n) (Smith et al., 2022). We define a curve
as a continuous function φ : [0,1]→ P (n). The tangent space
at any point P ∈ P (n) represents a (linear) vector space that
is of the same dimension as the Riemannian manifold (Bha-
tia, 2009). The tangent space encodes the geometry of the
Riemannian manifold and can be used directly in common
multivariate analysis methods.

An illustration of the tangent space TP1 P constructed at a
point P1 ∈ P (n) is found in Figure 3. Figure 3 also illus-
trates two functions that connect the tangent space TP1 P to
the Riemannian manifold. These functions are known as the
logarithmic map and the exponential map. The logarithmic
map takes a point (P2 in Figure 3) on the manifold and maps
it to a point in the tangent space (TP2 ∈ TP1 P in Figure 3).
For two points Pi,P j ∈ P (n) we define the logarithmic map
as:

logPi
(P j) := P1/2

i log
(

P−1/2
i P jP

−1/2
i

)
P1/2

i (7)

The exponential map is the inverse of the logarithmic map.
It maps points from a tangent space (TP2 in Figure 3) back

Figure 4: (a) Set of non-defective textile images. (b) Set of
defective textile images. (c) The average EC curve computed
for the group of defective and non-defective textiles. There is
a distinct, quantifiable difference between the EC curves of
the two groups. This leads to highly accurate classification
of the textile images as either defective or non-defective.

to the Riemannian manifold (P2 in Figure 3). For points Pi ∈
P (n) and TP j ∈ TPi P , we define the exponential map as:

expPi
(TP j) := P1/2

i exp
(

P−1/2
i TP j P

−1/2
i

)
P1/2

i (8)

The exponential and logarithmic map allow for the curved
Riemannian manifold of SPD covariance matrices to be
mapped directly to a (linear) vector space (i.e., the tangent
space). This transformation allows us to incorporate the ge-
ometry of the Riemannian manifold in multivariate data anal-
ysis methods that assume data lies in a vector space, such as
PCA, classification, and regression.

Application: Textile Manufacturing

We now explore an application of the Euler characteristic
in the analysis of manufacturing images taken from the pro-
duction of textiles. The goal in this analysis is to identify
whether or not a given textile image represents a defective
(faulty) or non-defective textile. Example images of defec-
tive and non-defective textiles can be found in Figure 4.

To characterize the topology of the textile images, we first
represent the images as manifolds M with an associated
function f : M → R representing the pixel intensity at each
point of a given image. We can now perform a filtration and
quantify the EC at each point of the filtration, constructing
an EC curve. This process is illustrated in Figure 1 for a
non-defective textile image. Figure 4 also shows the average
EC curves for the set of defective and non-defective textiles.
There is an obvious difference between the mean EC curves
of these two groups, allowing us to distinguish defective and
non-defective textiles with high accuracy (98% testing set ac-
curacy) using a simple linear classifier. We trained the linear
classifier using 70 % of the dataset and tested the model on
the remaining 30 %. These same results are not achievable
when the images are not pre-processed with the EC. Figure
5 compares an application of Principal Component Analysis
(PCA) to data that has been pre-processed with the EC and
filtration against PCA applied directly to the images. PCA



Figure 5: (a) PCA analysis of the EC curves derived from the
set of defective and non-defective textiles. (b) PCA analy-
sis of the images without pre-processing. PCA on the EC
captures clustering of the data into two groups (defective,
non-defective), whereas PCA applied to the images shows
complete overlap of the two groups.

performed on the pre-processed data shows a distinct sepa-
ration and clustering of the data into groups representing the
defective and non-defective textile images. PCA performed
directly on the images shows no separation in the data, and
when a linear classifier is applied to the images the result-
ing classification accuracy is very low (54% testing set ac-
curacy). This dramatic improvement in performance is most
likely due to the invariance of the EC to various transforma-
tions of the data (e.g., translation, rotation), making it robust
to the different rotations and placements of the textiles within
the images.

Application: Tennessee Eastman Process

We focus on data obtained from a simulated industrial pro-
cess known as the Tennessee Eastman Process (TEP) (Downs
and Vogel, 1993). This dataset is a widely used benchmark
dataset for testing and comparing various anomaly (i.e. fault)
detection methods (Chiang et al., 2000). Figure 6 provides a
high-level illustration of the process along with the multivari-
ate time series data that is produced by the sensors monitor-
ing the process. The process has a total of 52 measurements,
41 are process variables, 11 are manipulated variables. There
are 20 different potential faults that can occur in the TEP; for
further details see Appendix A in (Downs and Vogel, 1993).

To begin our analysis of the TEP, we must first pre-process
the TEP data into multiple covariance matrices. To accom-
plish this, we represent each of the 52 measured variables as
a univariate random variable xi where i = 1,2, ...,52 and we
denote the collection of signals as a multivariate random vec-
tor X= (x1, ...,xn) where n= 52. We denote the observations
of each signal at time t = 1,2, ..,m as xi(t) ∈Rm. We use this
representation to construct the sample covariance matrix for
the process data P ∈ P (n) as:

P :=
1

m−1
XXT (9)

The TEP dataset consists of multiple separate simulations
of the process, both with and without faults. Thus, for each
simulation we construct a sample covariance matrix Pi. Our
goal is to pair each simulation sample covariance matrix with
the fault occurring in the simulation. We note that there are
no obvious differences between the covariance matrices that
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Figure 6: (a) Illustration of the Tennesee Eastman Process
(TEP). (b) Representation of the multivariate time series de-
rived from the TEP as covariance matrices.

would identify a given fault (Figure 6). These covariance
matrices lie on the SPD manifold, and can be integrated into
our geometric framework. In the analysis of a set of SPD
matrices, we often need to identify a center point on the SPD
manifold that will minimize the distortion of all geometric re-
lationships between the matrices of the dataset when mapped
to the tangent space. This matrix is the (Riemannian) ge-
ometric mean of the matrices. For a set of SPD matrices,
the geometric mean is the matrix that minimizes the sum of
squared geodesic distances to all other matrices in the set.
We compute the geometric mean P̄ for our set of covariance
matrices Pi ∈P (n), the matrices are then projected to the tan-
gent space TP̄P centered at the geometric mean via the loga-
rithmic mapping TPi = logP̄(Pi). The data is now projected
into a vector space that retains the geometric characteristics
of the SPD matrices with minimal distortion, and can be in-
tegrated in dimensionality reduction and classification algo-
rithms to perform analysis.

Mapping the process data covariance matrices to the tan-
gent space provides an avenue for the application of common
dimensionality reduction techniques. Here, we apply PCA to
the matrices mapped to the tangent (vector) space. PCA ap-
plied on the tangent space of the SPD manifold is commonly
known as Principal Geodesic Analysis (PGA), as it identi-
fies the geodesics that capture the most variance in the data
(Smith et al., 2022). An example comparison of PGA ver-
sus PCA (directly on the covariance matrices) is presented
in Figure 7. The simulations with no faults are colored in
red and the faulty simulations are represented by different
grayscale values. We can see that using only the first two
components in PGA, we are able to perfectly separate the
faulty and non-faulty simulations; on the other hand, when
applying PCA directly on the covariance matrices we can
see that there is significant overlap between the faulty and
non-faulty simulations. The comparison of these projections
demonstrates that capturing the geometry of the Riemannian
manifold in the analysis of covariance matrices can improve
the performance with minimal added complexity.

PGA analysis of the covariance matrices also reveals that
there is definite clustering of the data with respect to the dif-
ferent fault types within the TEP dataset. This suggests that
classification of the different fault types can be done directly
using the tangent space of the SPD manifold. To investigate
this we use a simple linear (ridge) classifier. We compare
the prediction accuracy of the linear classifier using coeffi-
cients of the tangent space projected matrices versus the co-



Figure 7: (a) PCA analysis of the covariance matrices
mapped to the tangent space (non-Euclidean assumption).
(b) PCA analysis applied directly to the covariance matrices
(Euclidean assumption). (c) Confusion matrix for the classi-
fication of faults using the covariance matrices mapped to the
tangent space. (d) Confusion matrix for the classification of
faults using the covariance matrices directly.

efficients of the non-transformed covariance matrices as in-
put. In the analysis, we perform a simple train-test split of the
data, where 30% of the data is used for testing and 70% of
the data is use for training. Figure 7 illustrates the dramatic
increase in accuracy when the model incorporates geometric
information, which is reflected in the normalized confusion
matrices. Here, a value x ∈ [0,1] on the diagonal indicates an
accuracy of x∗100% when classifying a particular fault. All
values in the off diagonal (e.g., row i, column j, where i ̸= j)
represent the percentage of covariance matrices associated
with fault i that have been incorrectly labeled as experienc-
ing fault j. When the SPD manifold is accounted for via the
tangent space projection, there is perfect classification of the
data (with the exception of faults 3,4,9 and 15). When the
manifold geometry is ignored, there are few instances where
high classification accuracy is achieved. The faults 3,4,9 and
15 have been shown in prior work to be difficult to classify
(Smith et al., 2022). We also note that these faults are only
misclassified within their group (are never classified as hav-
ing no fault), which suggests that there is limited quantifiable
difference in the covariance matrices for these faults. The
inclusion of more information around these particular faults
may correct this issue and further increase accuracy.

Conclusion

Process systems data (e.g., images, time series) have com-
plex topology and geometry which encodes information that
is missed by common data analysis methods. Extraction
and quantification of the information encoded in the shape
of data can lead to improvements in data-centric tasks that
are applied to the data (e.g., PCA, classification, regression).
Correctly characterizing the topology and geometry of data

can also provide robustness to various transformations of
data (e.g., translations, rotations) and can greatly simplify
the models needed to analyze data effectively. We demon-
strated these benefits through applications in textile manufac-
turing (image analysis) and in the fault detection for chem-
ical processes (Tennessee Eastman Process). This work has
focused on topology and geometry in fault detection and pro-
cess monitoring, but we note that relevance of these mathe-
matical frameworks extends beyond this area of application.
For example, in future work we aim to incorporate geom-
etry in optimization and control to relax certain constraints
that are already enforced by the underlying system geome-
try (e.g., optimization on the SPD manifold ensures that all
solutions are SPD).
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