
Shared Parameter Network: An efficient process monitoring model

Lucky E. Yerimah a,, Sambit Ghosh a and B. Wayne Bequette a1

a Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY
12180

Abstract
The use of deep learning methods for fault detection and diagnosis (FDD) has continued to gain research atten-
tion due to the continuous availability of data and the need for reliable FDD methods. Recurrent neural network (RNN)
units continue to dominate the neural network of choice in FDD models because of their ability to capture temporal
dependence in time series data. In our previous work, we proposed a probabilistic bidirectional recurrent network
(PBRN) for process prediction and detection of faults. A key limitation of PBRN is the number of model parameters
in the RNN units. In this paper, we reduce the computational requirements and training time of the original PBRN by
introducing a shared parameter network (SPN). SPN uses a shared parameter space to learn relevant features for both
process prediction and fault detection. This shared parameter setting significantly reduces the model size and training
time. Using SPN, we achieved a 76 percent reduction in the number of parameters and a 48 percent reduction in the time
required for training. The validation loss profile during training and the fault detection performances of both models also
demonstrate the superiority of SPN for process prediction and fault detection.

Keywords
Fault detection and diagnosis (FDD), recurrent neural network (RNN), probabilistic bidirectional recurrent network

(PBRN), shared parameter network (SPN).

Introduction

Fault detection and diagnosis have continued to be an ac-
tive research area in the process systems engineering re-
search community. This is due to the continuous demand
for preventive abnormal event handling systems and meth-
ods that promote efficient manufacturing operations (Bi et al.
(2022)). Fault detection and diagnosis methods are mostly
data-driven. These data-driven methods can be grouped into
statistical process control (SPC) methods and Artificial In-
telligence (AI) methods. SPC methods such as Principal
Component Analysis (PCA), Partial Least Squares (PLS),
and Canonical variate analysis (CVA) have been extensively
studied for fault detection and diagnosis using the simu-
lated Tennessee Eastman process (TEP) as a case study (Qin
(2003); Li et al. (2010); Ruiz-Cárcel et al. (2015)). These
methods work by projecting the historical process data into
lower dimensional spaces and using the subspaces to com-
pute metrics that indicate the condition of the process (Chi-
ang et al. (2001); Ghosh et al. (2022)). Limitations of SPC
methods include the assumptions of linear process behaviors
and the inability to handle temporal dependence in the pro-
cess data. Nonlinear and dynamic variants of SPC methods
such as Dynamic PCA, Dynamic PLS, and Kernel PCA have

1 Corresponding author: B. Wayne Bequette (E-mail:
bequette@rpi.edu).

been proposed by researchers, but it is difficult to find the
inverse mappings from the feature space to the input space
using these methods. Also, computing the matrix inverse
for high-dimensional process data is computationally inten-
sive (Cheng et al. (2019)). Recent advances in the use of
deep learning models to approximate nonlinear relationships
in data have provided opportunities for improving the accu-
racies of fault detection and diagnosis methods. Recurrent
neural networks (RNN) are a class of deep learning models
developed for primarily handling time series data like histor-
ical process data. They can account for temporal dependence
in time series data. Deep learning models can be applied to
supervised learning problems when labels are provided along
with the data and unsupervised learning when labels are not
available. Process data are often unlabeled hence unsuper-
vised learning methods such as autoencoders (AE) are used
with RNN units to learn from unlabeled data (Cheng et al.
(2019); Yerimah et al. (2022)). RNN units such as gated re-
current units (GRU) have been proposed for fault detection
and diagnosis using the TEP simulated data (Cheng et al.
(2019)). In our previous study, we proposed a probabilistic
bidirectional recurrent network (PBRN) for process predic-
tion and detection of faults (Yerimah et al. (2022)). PBRN
uses a bidirectional RNN in a probabilistic and deterministic
framework for process prediction and detection of faults. In
this work, we improve the performance of PBRN by intro-
ducing parameter sharing between the two RNN networks.



(a) Basic Structure of RNN

(b) Gated recurrent unit

Figure 1: Recurrent neural networks. Reprinted with permis-
sion (Yerimah et al. (2022))

This significantly reduces the model size, reduces the train-
ing time, and also allows for learning shared features that are
most important to both process prediction and fault detection.

Background

Recurrent Neural Networks

A recurrent neural network (RNN) is a modified neural
network to handle data with temporal dependence. RNN
contains a hidden state which allows it to capture the time
dependence in data. Figure 1a shows the basic structure of
an RNN.

weights Wh,Wx,Wy and bias vectors bh,by represent the
parameters of the unit as shown in Figure 1a. Equations (1)
and (2) show the relationship between the parameters and
hidden units and outputs.

h(t) = σ1

(
Whh(t−1)+Wxx(t)+bh

)
(1)

y(t) = σ2

(
Wyh(t)+by

)
(2)

where y(t) represents the RNN output at time t. σ1 and σ2
are the activation functions for the hidden state and output,
respectively. Activation functions introduce nonlinearity to

the hidden units and outputs.

Given a training dataset = {xi,yi}N
i=1, model parameters

of an RNN are learned using the backpropagation through
time (BPTT) through the minimization of the loss function
between the predicted and actual output as shown in Equation
3 (Werbos (1990)).

L =
1

2N

N

∑
i=1

∥∥∥ŷ(i)−y(i)
∥∥∥2

2
(3)

where L is equivalent to 1/2 of the average squared predic-
tion error between the predicted output ŷ and the actual out-
put y.
Gated recurrent units are a type of RNN for efficiently captur-
ing the time dependence in a time series data [ME]. A GRU
uses a gating method for adaptively deciding what informa-
tion to retain in the unit’s memory. The gates include an up-
date gate z(t) for computing information from the past that
will be passed along to the future. The reset gate r(t) deter-
mines information from the past that will be forgotten. Figure
1b shows the structure of a GRU and including its gates.

Autoencoders

Autoencoders (AE) are deep learning model architectures
that contain encoder and decoder neural networks. When
data is passed through the input of the AE, a reconstructed
version of the data is produced in the output and this makes
AE to be classified as a generative model. Given a data set
{x(i)}N

i=1, where xi ∈ R d is a d dimensional vector of sen-
sor measurements, the encoder fθ produces a latent vector zi
that represents the most salient features of the data. Where
zi ∈ R m, where m < d. The decoder gφ uses the latent space
to reconstruct the original data as x̂ as shown in Figure 2a.

2.2.1 Variational autoencoders

Variational autoencoders (VAE) are probabilistic AE pri-
marily built to handle latent space sensitivity. VAE con-
sists of a probabilistic encoder for outputting the distribution
(µ,σ) of the latent space z, and a decoder for sampling from
the distribution to reconstruct the original data x as shown
in Figure 2b. Training a VAE involves maximizing the evi-
dence lower bound (ELBO) of the log-likelihood of each data
sample pθ(x(i)). The ELBO L

(
θ,φ,x(i)

)
is expressed as:

L
(

θ,φ,x(i)
)
= Eqφ(z|x(i))

[
log pθ(x(i)|z)

]
−DKL

(
qφ(z|x(i))∥pθ(z)

)
(4)

= L(i)
REC +L(i)

KL

where LREC = Eqφ(z|x(i))

[
log pθ(x(i)|z)

]
and LKL =

−DKL

(
qφ(z|x(i))∥pθ(z)

)
Using several assumptions and simplifications for practical

implementation of VAE, Equation 4 is reduced to a closed
form solution as:

L(i)
REC = ∥x(i)− x̂(i)∥2

2 (5)



(a) Deterministic Autoencoder

(b) Variational Autoencoder

Figure 2: Autoencoder neural networks. Reprinted with per-
mission (Yerimah et al. (2022)).

and,

2L(i)
KL = ∥µ(i)∥2

2 +d +
d

∑
j

σ
(i)
j − logσ

(i)
j (6)

For the complete derivation of Equations 5 and 6, the reader
is referred to our previous work (Yerimah et al. (2022)). A
consequence of the simplifying assumptions of VAE means
that the learned latent space does not exactly match the as-
sumed prior.

Probabilistic Bidirectional Recurrent Network (PBRN)

PBRN is a novel AI-based sensor predictor and fault de-
tector model (Yerimah et al. (2022)). PBRN uses two bidi-
rectional RNN models that are arranged to solve the problem
of assumed prior and learned latent space mismatch of VAE.
The first bidirectional RNN works as a deterministic model
and reconstructs the input data directly from the input space.
The second bidirectional RNN takes the reconstructed data
as an input and produces an output distribution that can be
sampled for fault detection. To train the PBRN, the simpli-
fied ELBO expressions in Equations 5 and 6 are used to learn
the parameters of the model. A limitation of the PBRN is the
ability to handle a longer prediction horizon (Yerimah et al.
(2022)). Increasing the model size can help the model to
better handle a longer prediction horizon but this comes at
the expense of requiring more computation power and longer
training times.

Parameter Sharing Neural Networks

Training neural networks require significant computa-
tional resources such as GPU memory. Increasing the num-

Figure 3: Proposed shared parameter network. The model
uses a shared input space to provide features for both recon-
struction and latent space distribution.

ber of weights of a neural network also increases the GPU
memory required to train and save the network weights. This
limits the model sizes that can be trained and also increases
the training time of the networks. One solution to increase
model sizes without increasing the number of parameters is
to introduce parameter sharing across the layers (Savarese
and Maire (2019)). Aside from the reduction in model size,
parameter sharing also provides the advantage of using the
same feature detector in the input data across different lay-
ers of the neural network. It also allows for using the same
features for multi-task learning (Zhuang et al. (2015)).

Method

We propose a shared parameter network (SPN) to improve
the performance of the PBRN model without significantly
increasing the model size and the training time.

Proposed Method

The shared parameter network consists of RNN layers for
representing the shared feature space for both input recon-
struction and latent distribution as shown in Figure 3. The
reconstructed output represents the deterministic side of the
model while the latent distribution represents the probabilis-
tic side of the model. To train the model parameters, a loss
function containing the reconstruction error and the simpli-
fied ELBO error is used. The SPN training algorithm is simi-
lar to that of PBRN except for that shared parameters and the
parameters of each output are learned. The complete training
algorithm is given in Algorithm 1.



Algorithm 1: : SPN Training Algorithm

input : Dataset {xi}N
i=1, Learning rate η, Number of

iterations Epoch, Sequence length τ

output: Model parameters Θ

X = {xi}N−τ

i=1 , Y = {xi}N
i=1+τ

, Split data into train and
validation sets

generate J batches {x j,y j}J
i=1 from the train set

Θ← Initialize parameters
for training time = 1 to Epoch do

for batch {x(i)j ,y(i+τ)
j } in train set do

compute x̂(i+τ)
j

compute (µ,σ) and sample z(i+τ)
j ∼N (µ,σ)

compute L(x̂(i+τ)
j ,y(i+τ)

j ,Θ)

∇ΘL(x̂(i+τ)
j ,y(i+τ)

j ,Θ) =
T

∑
t=1

dL(x̂(i+τ)
j ,y(i)j ,Θ)

d(Θ)

Update parameters using

Θ← ∇θ,φL(x̂(i+τ)
j ,y(i+τ)

j ,Θ)

compute validation loss L time
val

end
if L time

val < L time-1
val then

save (Θ)
end

end

SPN Fault Detection

For online fault detection, the reconstruction error and
ELBO error are used to monitor test data for fault or no-
fault. These errors can be computed using Equations 5 and
6 respectively. Using normal operating condition test data,
thresholds for Equations 5 and 6 can be computed as follows:

LKL,lim =
β

2N

N

∑
i=1

(
∥µ(i)∥2

2 +d +
d

∑
j

σ
(i)
j − logσ

(i)
j

)
(7)

LREC,lim =
λ

N

N

∑
i=1

∥∥∥x(i)− x̂(i)
∥∥∥2

2
(8)

β and λ are tunable parameters between [0,1] which are ad-
justed to control false positive and missed detection rates.

Case Study: Air Separation Unit

Process Description

The air separation unit (ASU) is a manufacturing process
that yields industrial quantities of nitrogen, oxygen, and ar-
gon in high-purity liquids and gases. The ASU uses a triple-
column system and a primary heat exchanger for high de-
grees of thermal and material integration. For a more de-
tailed description of the ASU, the reader is referred to Cao

Figure 4: Validation loss performance of PBRN and SPN.
The SPN achieved a lower validation loss and is therefore
superior for process prediction

et al. (2016) (Cao et al. (2016)). Real manufacturing data
from the ASU is used as the case study for this work. The
data includes 70 selected sensor tags that capture the most
important information for process monitoring.

Model Setup

The model shared parameter space uses two layers of RNN
units. The first layer contains 300 units of GRU while the
second layer contains 60 units of GRU. The input to the re-
construction side of the model contains 70 dense units of
neural networks which is equal to the dimension of the re-
constructed data while the latent distribution uses 60 dense
units of neural networks. The implementation of the model
is carried out in TensorFlow v2.10.0 open source software li-
brary for machine learning development. An adaptive learn-
ing rate optimizer (Adam) is used for optimizing the model
parameters and the hyper-parameters are tuned using a trial
and error method. For training and validation, 2 months of
real manufacturing and normal operating condition data are
used. The test data contains both normal operating conditions
and faulty data.

Training Performance Comparison

The SPN contains a total of 1,272,934 parameters while
the PBRN contains a total of 5,248,390 parameters. Thus the
PBRN is over four times greater than SPN. Also, the training
time for SPN is 139 seconds while PBRN requires 265 sec-
onds to train for the same number of iterations. These values
show a significant reduction in GPU requirements and train-
ing time for SPN when compared to PBRN. Figure 4 shows
a plot of the validation loss during training. Although SPN
contains fewer parameters, it achieves a lower validation loss
than PBRN. This improved performance can be attributed to
the tied relationship between the reconstruction loss and KL
loss. The KL loss acts as a regularizer on the reconstruction
loss and the improved regularization of the SPN model is at-
tributed to the shared feature space which provides a depen-
dence that was absent in the original PBRN model (Yerimah
et al. (2022)).



Table 1: Comparison of PBRN and SPN. Both models meth-
ods are each better than the other for both faults.

PBRN SPN
Faults SPE KL SPE KL

True positives A 99.4 96.9 97.4 87.4
B 95.1 95.7 97.7 97.4

False positives A 0.4 2.9 2.3 0.02
B 4.9 4.0 2.0 0.3

Fault Detection Performance Comparison

Using PBRN as the state-the-art, we compare the fault de-
tection performance of SPN using test data containing two
real faults; Faults A and B. We make use of anonymous tags
A and B to refer to these faults for proprietary reasons. The
architectures of both models were determined using a grid
search as described in Section 3.1. The fault detection met-
rics SPE and KL are calculated using Equations 5 and 6 re-
spectively and the thresholds are determined using Equations
7 and 8. The tuning parameters β and γ are tuned manually
to give the best trade-off between false positives and missed
detection. Table 1 gives the true positive rates and false
alarms for PBRN and SPN. A data point is flagged as faulty
if it exceeds the threshold within the faulty region while data
points that exceed the threshold outside of the faulty region
are flagged as false alarms.

Both methods provide very high true positive rates due to
their ability to capture nonlinear relationships and temporal
dependence in the process data. In terms of true positives,
PBRN outperforms SPN for fault detection of Fault A, but
both methods show similar performance in false alarms. On
the other hand, SPN outperforms PBRN in true positives and
false alarms of Fault B. Figure 5 shows the fault detection
plots of SPN. From Figure 5a, we see that faulty SPE values
are closer to normal operating condition SPE values and this
makes Fault A slightly more difficult to detect than Fault B.
The slightly higher performance of PBRN over SPN in Fault
A can therefore be attributed to the larger model size capac-
ity for discriminating between faulty and normal SPE values.
Since SPN gives superior performance for Fault B and a close
to PBRN performance for Fault A, and SPN also provides a
significant reduction in GPU requirements and training time,
we can hence conclude that SPN overall, outperforms PBRN.

Conclusion

Higher detection accuracy can often be achieved with
larger model sizes at the cost of requiring more computa-
tional resources and training time. We have demonstrated
in this work that higher performances can also be achieved
by introducing novel architectures such as shared parame-
ter layers. The total number of parameters in the SPN and
the original PBRN reveal a 76 percent reduction in model
size. We also achieved a 48 percent reduction in the training
time of the model. The validation profiles of SPN and PBRN
show that SPN still outperforms PBRN in process prediction

(a) Fault A

(b) Fault B

Figure 5: The fault detection performance of SPN. The
shaded region represents the faulty regions. A data point is
counted as true positive if it exceeds the threshold within the
faulty region and a data point is counted as false alarm if it
exceeds the threshold outside of the faulty region.

and the fault detection results also reveal that SPN is similar
to PBRN in terms of performance. These results show that
the shared parameter layers provided more relevant features
for process prediction and fault detection than PBRN layers.
Using RNN models for multi-time-step prediction decreases
the prediction accuracy of the models. Future work in this
research involves investigating larger model sizes using the
SPN architecture to improve on the detection performance of
the current SPN model and to perform long horizon predic-
tions.

Acknowledgements

Part of this work was done with the support of the US De-
partment of Energy through the Clean Energy Smart Manu-
facturing Innovation Institute (CESMII) Chemical Process-
ing – Smart Air Separation Unit project. Award Number:
4550 G WA324 is greatly appreciated. The authors also
acknowledge the Smart Operations, Center of Excellence
(COE), Linde, Tonawanda, New York, USA for access to real



plant data.

Disclaimer

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the
United States government nor any agency thereof, nor any
of its employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness.

References

Bi, X., R. Qin, D. Wu, S. Zheng, and J. Zhao (2022). One
step forward for smart chemical process fault detection
and diagnosis. Computers & Chemical Engineering 164,
107884.

Cao, Y., C. L. E. Swartz, J. Flores-Cerrillo, and J. Ma (2016).
Dynamic modeling and collocation-based model reduction
of cryogenic air separation units. AIChE Journal 62(5),
1602–1615.

Cheng, F., Q. P. He, and J. Zhao (2019). A novel pro-
cess monitoring approach based on variational recurrent
autoencoder. Computers & Chemical Engineering 129,
106515.

Chiang, L., E. Russell, and R. Braatz (2001). Fault Detec-
tion and Diagnosis in Industrial Systems. Springer Verlag,
U.K.

Ghosh, S., L. E. Yerimah, Y. Wang, Y. Cao, J. Flores-Cerrillo,
and B. W. Bequette (2022). A graph signal processing-
based multiple model kalman filter (gsp-mmkf) tool for
predictive analytics–an air separation unit process applica-
tion. Journal of Advanced Manufacturing and Processing,
e10121.

Li, G., S. J. Qin, and D. Zhou (2010). Geometric properties
of partial least squares for process monitoring. Automat-
ica 46(1), 204–210.

Qin, S. J. (2003). Statistical process monitoring: basics and
beyond. J. Chemometrics 17, 480–502.

Ruiz-Cárcel, C., Y. Cao, D. Mba, L. Lao, and R. Samuel
(2015). Statistical process monitoring of a multiphase flow
facility. Control Engineering Practice 42, 74–88.

Savarese, P. and M. Maire (2019). Learning implicitly re-
current cnns through parameter sharing. arXiv preprint
arXiv:1902.09701.

Werbos, P. (1990). Backpropagation through time: what it
does and how to do it. Proceedings of the IEEE 78(10),
1550–1560.

Yerimah, L. E., S. Ghosh, Y. Wang, Y. Cao, J. Flores-Cerrillo,
and B. W. Bequette (2022). Process prediction and de-
tection of faults using probabilistic bidirectional recurrent
neural networks on real plant data. Journal of Advanced
Manufacturing and Processing, e10124.

Zhuang, F., D. Luo, X. Jin, H. Xiong, P. Luo, and Q. He
(2015). Representation learning via semi-supervised au-
toencoder for multi-task learning. In 2015 IEEE Interna-
tional Conference on Data Mining, pp. 1141–1146. IEEE.


	Introduction
	Background
	Recurrent Neural Networks
	Autoencoders
	Variational autoencoders

	Probabilistic Bidirectional Recurrent Network (PBRN)
	Parameter Sharing Neural Networks

	Method
	Proposed Method
	SPN Fault Detection

	Case Study: Air Separation Unit
	Process Description
	Model Setup
	Training Performance Comparison
	Fault Detection Performance Comparison

	Conclusion
	Acknowledgements
	Disclaimer
	References

