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Abstract
Energy storage units offer vital balancing power for energy systems with an increasing amount of variable re-
newable energy sources. The operation of such systems can be optimized by stochastic programming, which anticipates
the uncertainty related to the variable renewable energy sources. However, these optimization problems can only be
formulated for optimization horizons with a finite length (e.g., 24 h), due to the rapidly increasing problem size. Realistic
valuation of the stored energy at the end of a horizon is important for long-term operation of the system. In this work,
we investigate suitable valuation methods for a hybrid energy system, consisting of photovoltaic power generation and
an energy storage unit, which sells electricity to the day-ahead market. The best of the tested approaches is to value the
stored energy based on the predicted maximum electricity price during the next period. On the studied test cases, the
approach increased the profit by 11.7 to 18.7% in comparison to a myopic approach, often used in the literature, where
no value is given for the stored energy at the end of a horizon.

Keywords
energy storage, stochastic programming, day-ahead market

Introduction

The increasing proportion of variable renewable energy
(VRE) sources, such as wind and solar, is a challenge for
stable operation of an electricity grid. The availability of
these energy sources are both variable in time and inher-
ently uncertain. One solution to mitigate the variability of
VRE is to install energy storage systems in the proximity of
VRE plants. Recently, significant research efforts have been
put on the optimal operation of such hybrid energy systems
under uncertainty [Weitzel and Glock, 2018, Zakaria et al.,
2020]. Many of the proposed models are based on stochas-
tic programming, i.e., a framework to formulate optimization
problems under uncertainty such that the expected outcome
is optimized [Birge and Louveaux, 2011].

Stochastic programming is based on scenarios of realized
uncertainty, each of which has dedicated optimization vari-
ables. Thus, stochastic programming problems can only be
formulated for limited horizon lengths, as the optimization
problems quickly become intractable due to the increasing
number of variables. The finiteness of the optimization hori-
zon causes a phenomenon, referred to as the end-effect [Gri-

1 Corresponding author: T. J. Ikonen
(E-mail: teemu.ikonen@aalto.fi).

nold, 1983, Fisher et al., 2001]. In the described energy sys-
tem, the end-effect causes the energy storage system to be
drained empty at the end of the current optimization horizon
when no value is given for the terminal energy level (see, e.g.,
Su et al. [2013] and Singh and Knueven [2021]). Such de-
cisions are sub-optimal over long time horizons. Often used
methods to handle the end-effect are i) to enforce the terminal
inventory (i.e., in our case, the level of stored energy) to be
the same as the starting inventory or ii) to use the rolling hori-
zon method, such that the current optimization horizon spans
beyond the next re-optimization time. Dong and Maravelias
[2021] propose multi-material terminal inventory constraints,
which are applicable to online production scheduling.

Recently, Shin and Lee [2019] and Shin et al. [2017]
propose a multi-timescale operation strategy by integrating
mathematical programming and reinforcement learning. Par-
ticularly, Shin et al. [2017] mitigate the end-effect of the en-
ergy storage system in wind power-based energy grid sys-
tems using the value function. Han and Lee [2021] propose a
method to determine the optimal design and operation strat-
egy of energy grid systems based on stochastic programming
while assuming that the terminal level of stored energy (at the
end of a day) is equal to the starting level (at the beginning).
In the context of process control, Oh et al. [2022] propose
a method, referred to as Q-MPC, which combines reinforce-
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ment learning and model predictive control.
In this work, we investigate the valuation of the

end-of-horizon energy storage level based on predicted
mean/maximum electricity prices during the next optimiza-
tion period (i.e., the day following the day-ahead). The val-
uation is incorporated into a stochastic programming model
of an energy system that consists of photovoltaic power gen-
eration and energy storage and sells energy to the day-ahead
market. We generate the scenarios of photovoltaic electric-
ity generation based on probabilistic predictions obtained by
Solcast [Solcast, 2019]. In addition, we demonstrate the ob-
tained improvement in the long-term profit of the system in
comparison to a myopic approach that does not look beyond
the current optimization horizon.

Methods

Figure 1 illustrates the studied energy system, consisting
of a photovoltaic power station and an energy storage unit,
that sells electricity to the day-ahead market. In this section,
we first describe the used stochastic programming model and
the generation of scenarios. We then describe the evalua-
tion of the method on multi-period optimization and how the
level of stored energy (at the end of a planning horizon) is
valuated.

energy storage 
unit

market

photovoltaic 
power station

qωt pωt

rωtty -

sωt

Figure 1: A hybrid energy system, consisting of a photo-
voltaic power station and an energy storage.

Stochastic programming model

We use here a modified version of the two-stage stochas-
tic programming model by Singh and Knueven [2021], who
use a chance constraint to model the probability of delivering
the promised energy. In the original model, a set of binary
variables (at the second-stage) indicate the small number of
scenarios where the energy balance constraint is relaxed. In
order to avoid the binary variables at the second stage, we
use a soft constraint for delivering the promised energy. The
first stage decision variables are promised power to be deliv-
ered, yt at hour t ∈ T . The second stage decision variables,
for a given scenario ω ∈ Ω, are the amount of stored energy
xω

t , the power of charging the storage system pω
t , the power

of discharging the storage system qω
t , and the reduction of

power rω
t at hour t ∈ T (see Fig. 1). The reduction of power

rω
t at hour t is defined with respect to the promised power yt .

We denote the electricity price by Rt , and the cost of charg-
ing and discharging the storage system by Cc and Cd, respec-
tively. The penalty coefficient of reducing power at hour t is
Cp.

The objective is to maximize the expected sum of i) the
profit during the optimization horizon and ii) the value of

stored energy at the end of the horizon, V xω

|T |+1, where V is
the value of stored energy per kWh. The model is defined as
follows:

max ∑
t∈T

Rtτyt −E[Ccτpω
t +Cdτqω

t +Cpτrω
t ]+E[V xω

|T |+1]

(yt − rω
t )+(pω

t −qω
t )≤ sω

t , t ∈ T,ω ∈Ω (1)

rω
t ≤ yt , t ∈ T,ω ∈Ω (2)

xω
t+1 = xω

t +ηcτpω
t −

1
ηd

τqω
t , t ∈ T,ω ∈Ω (3)

pω
t ≤ P, t ∈ T,ω ∈Ω (4)

qω
t ≤ Q, t ∈ T,ω ∈Ω (5)

X ≤ xω
t ≤ X , t ∈ {1, . . . , |T |+1},ω ∈Ω (6)

xω
1 = x0 ω ∈Ω (7)

yt , pω
t ,q

ω
t ,r

ω
t ≥ 0, t ∈ T,ω ∈Ω

Constraints 1 enforce that (at each hour t ∈ T under scenario
ω ∈Ω) the sum of the actual delivered power yt− rω

t and the
charged or discharged power from the battery, pω

t − qω
t , do

not exceed the available solar power sω
t . Constraints 2 en-

force that the power reduction at hour t cannot exceed the
promised delivery. Constraints 3 track the amount of stored
energy, where ηc,ηd ∈ [0,1) are the efficiencies of charging
and discharging, respectively, and τ= 1 h is the time interval.
Constraints 4 and 5 specify the upper bounds, P and Q, for
charging and discharging the battery, respectively. Accord-
ingly, Constraints 6 specify the lower and upper bounds, X
and X , for the stored energy. Here, it is worth noticing index
t being over set {1, . . . , |T |+1}, instead of T . Variable xω

|T |+1
tracks the terminal stored energy after the last hour of the pe-
riod (appears also in the objective function). Constraints 7
define the amount of stored energy at the start of the opti-
mization horizon.

Terminal state valuation

The focus of this work is on valuation of stored energy at
the end of an optimization horizon. In the above-described
stochastic programming model, the valuation is controlled
via the parameter V , which is the multiplier of the terminal
storage level xω

|T |+1 in different scenarios ω ∈Ω.
We investigate four methods for the terminal storage level

valuation, the determination of parameter V . In the first, no
value is given for the stored energy at the end of an opti-
mization horizon (V = 0). It is worth noticing that, as storing
energy has the cost of Cc ≥ 0, this method only stores the
minimum amount of available solar energy that is sufficient
to the deliver promised power yt , t ∈ T ′ during the remaining
time points T ′ ⊂ T of the period. Our second method is de-
signed to collect all available solar energy by setting V to be
slightly greater than Cc.

The third and fourth method for terminal stored energy
valuation are based on the predicted electricity price dur-
ing the period following the current optimization period. We
generate the predictions by computing the average mean and
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max price for different weekdays from historical data of day-
ahead electricity prices. The parameter V is then set to the
predicted mean (i.e., the third method) or maximum (i.e., the
fourth method) day-ahead electricity price. The four methods
are summarized in Table 1.

Table 1: Descriptions of the methods for the terminal storage
level valuation

method description
no value V = 0
small V is a small value slightly greater
value than the cost of storing energy, Cc
prediction V is equal to the predicted mean
strategy 1 electricity price during the next period
prediction V is equal to the predicted maximum
strategy 2 electricity price during the next period

Scenario creation

The described energy system is highly affected by the un-
certainty in the hourly solar irradiance. Solcast is a state-
of-the-art prediction model for solar irradiance prediction
[Bright, 2019]. Its predictions are based on satellite images
from five geostationary weather satellites, as well as mod-
els for aerosol and vapor concentrations. In addition to the
mean of the prediction, Solcast also yields estimates of the
prediction uncertainty, represented by the 10th and 90th per-
centiles. Figure 2 shows a seven-day probabilisic forecast of
the global horizontal irradiance (GHI) in Bavaria, Germany,
as well as the actual measured GHI.

Based on these probabilistic predictions, we generate the
scenarios of the global solar irradiance (GHI) as follows.
First, we fit a four-parameter beta distribution to the pre-
dicted mean and the 10th and 90th percentiles at each time
point t ∈ T . The probability density function (pdf) of the
four-parameter beta distribution is

f (y;α,β,a,c) =
f (x;α,β)

c−a
, (8)

where f (x;α,β) is the pdf of the two-parameter beta distri-
bution with parameters α and β and variable x = (y−a)/(c−
a)∈ (0,1). a and c are scaling parameters, defining the lower
and upper bound of the distribution, respectively. For the
sake of robustness, we use the following bounds: α,β≥ 1.

Second, we generate the scenarios of the hourly GHI
sω

GHI, t ∈ T by the statistical method by Pinson et al. [2009],
which takes into account the temporal dependency of the re-
alized solar power generation. The dependency is determined
based on historical data of past predictions and realizations.
We further assume that the photovoltaic panels are installed
horizontally. The solar power generation scenarios are then

sω
t = ηsAsω

GHI,t t ∈ T,ω ∈Ω (9)

where sω
GHI,t is the GHI value obtained by the above-

described procedure, A is the total area of the photovoltaic
panels, and ηs is their efficiency. Figure 3 shows two sets
of 100 daily GHI scenarios. Figure 3a is generated based on
the probabilistic prediction shown in Fig. 2 and Fig. 3b on a
similar prediction obtained on the following day.

Multi-period optimization

In order to evaluate the valuation methods for the terminal
storage level valuation, we deploy the two-stage stochastic
programming model in the following multi-period optimiza-
tion procedure:

1. Solve the Stochastic programming model for the current
optimization period with N scenarios, generated using
the methods described in Section Scenario creation.

2. Fix the first stage decision variables yt , t ∈ T .

3. Solve the seconds stage of the Stochastic programming
model for one scenario ω = ω′ that represents the actual
measured GHI.

4. Move to the next period. Set the initial stored energy x0
of the new period to be the terminal stored energy xω′

|T |+1
of the previous period. Return to Step 1.

Examples of the actual measured GHI are shown by dashed
lines in Fig. 3. Finally, we note that our optimization pro-
cedure assumes the realized solar power sω′

t , t ∈ T during the
entire period to be available before making the second-stage
decisions. This simplification is made to avoid a multi-stage
stochastic programming formulation.

Results

We test the methods, described in the previous section, on
a 14-day time window from July 31 to August 13, 2022.
The forecasted and actual GHI are obtained from Solcast
(https://solcast.com/). The dependency in the realized GHI
at the different time points in the prediction horizon (with re-
spect to the predictions) is modeled from the data recorded
from June 20 to July 30, 2022. The day-ahead electricity
price data are from the German Federal Network Agency
(https://www.smard.de/en). We use electricity prices from
February 1 to July 30, 2022, as the training data for the elec-
tricity price prediction models. Figure 4 shows the test data
of electricity prices during the 14-day time window. The re-
sults are generated on a laptop with an Intel i5-8365U pro-
cessing unit. The stochastic programming problems prob-
lems are solved by Gurobi 9.1.0.

The parameters describing the energy storage unit are
listed in Table 2. We investigate the same time window with
electricity storage units that have three different maximum
charge levels X = {1000,2000,3000}, such that the mini-
mum charge level X is always 20% of X . The value for
charge and discharge costs, Cc and Cd, are calculated for a
lithium ion battery, having an estimated acquisition cost of
$132/kWh [Bloomberg, 2021] (we use a currency conversion
rate of $1 = 0.96 EUR), expected lifetime of 3000 cycles, and
operation and maintenance costs of 2.1e-3 EUR/kWh [Zakeri
and Syri, 2015]. We define the number of scenarios N = 100,
the time interval τ = 1 h, and photovoltaic panels to have
an area of A = 4000 m2 and efficiency of ηs = 0.25. Here,
the penalty of not providing the promised power at hour t is
Cp = 10Rt . In the valuation method ‘small value’, we choose
V = 0.03 EUR/kWh, which is slightly greater than Cc (see
Table 1). In the beginning of the first 24h period, the energy
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Figure 2: Probabilistic prediction of global horizontal irradiance (GHI) in Bavaria, Germany (49.158◦N, 11.433◦E), obtained
by Solcast [Solcast, 2019] on July 31, 2022, at noon.

(a) Day 1

(b) Day 2

Figure 3: 100 scenarios of global horizontal irradiance
(GHI), generated based on probabilistic predictions (colorful
lines). The dashed line shows the actual measured GHI.

Figure 4: Electricity price during the tested 14-day time win-
dow. The start of a week is shown by vertical dashed lines.

storage unit is at the minimum charge level, xω
1 = X ,ω ∈ Ω.

For the sake of a fair comparison, the last period is optimized
using the ‘no value’ valuation method.

Table 3 lists the average daily profits, obtained using the

Table 2: Parameter values of the energy storage system.

parameter value
charge efficiency ηc 0.9
discharge efficiency ηd 0.9
charge cost Cc 0.02217 EUR/kWh
discharge cost Cd 0.02217 EUR/kWh
maximum charge power P 500 kW
maximum discharge power Q 500 kW
maximum charge level X {1000,2000,3000} kWh
minimum charge level X {200,400,600} kWh

four terminal state valuation methods, during the 14-day test
time window. The value of the stored energy is not consid-
ered in the profit. Based on the results, the method ‘small
fixed value’ yields 5.1 to 11.5% higher daily profits than the
method ‘no value’, depending on the maximum charge level
of the energy storage unit. The prediction strategy 2 yields
the highest average daily profits, which are 11.7 to 18.7%
higher than those of the method ‘no value’. Valuing the ter-
minal stored energy level based on the predicted maximum
(prediction strategy 2) electricity price during the following
optimization period seems to be a slightly better method than
that based on the corresponding mean (prediction strategy
1). The obtained result is reasonable, as such energy systems
typically have the flexibility of selling the stored energy at
the most profitable time point.

Finally, let us examine the behavior of the energy system
when using different valuation methods. Figure 5 shows the
stored energy xω

t , t ∈ T in each of the 100 scenarios ω ∈ Ω

(shown by colored continuous lines) during the first three
days of the test time window. The dark dashed line shows
the actual realized energy storage level. Notice that the start-
ing level of this line (on Days 2 and 3) is the same as the
the end level on the previous day. Figures 6 and 7 show the
corresponding electricity prices and promised power yt , t ∈ T
(i.e., the first stage decision variable) during the same days.
The daily start and terminal energy levels are at X in all sce-
narios for the valuation method ‘no value’. As the daily sum
of the available solar energy varies between the scenarios,
this means that in some scenarios all solar energy is not uti-
lized. The terminal energy levels with the valuation method
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Table 3: Numerical results of the different valuation methods for the terminal stored energy.

maximum charge average daily relative
level X [kWh] terminal state valuation profit [EUR] difference [%]
1000 no value 1652.93 0.0

small fixed value 1737.82 +5.1
prediction strategy 1 1841.44 +11.4
prediction strategy 2 1846.58 +11.7

2000 no value 1738.33 0.0
small fixed value 1873.02 +7.7
prediction strategy 1 1987.20 +14.3
prediction strategy 2 1995.72 +14.8

3000 no value 1773.32 0.0
small fixed value 1977.29 +11.5
prediction strategy 1 2092.83 +18.0
prediction strategy 2 2104.38 +18.7
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(b) Day 2: no value
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(c) Day 3: no value
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(d) Day 1: small value
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(e) Day 2: small value
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(f) Day 3: small value
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(g) Day 1: prediction strategy 2
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(h) Day 2: prediction strategy 2
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(i) Day 3: prediction strategy 2

Figure 5: Stored energy x(t) during first three days, when using no value (Subfigures a-c), a small fixed value (Subfigures
d-f) or prediction strategy 2 (Subfigures g-i).
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(b) Day 2
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(c) Day 3

Figure 6: Actual electricity price during the first three days.

‘small fixed value’ have variation between the scenarios, as
the residual solar energy is ‘saved’ to the energy storage unit.
Figures 5(g)-(i) show that when using the prediction strategy
2 the energy system stores a large amount of energy on Day
1, some of which is then sold on the following days.

The improved profit of prediction strategies 1 and 2 is due

to at least two reasons. The first is that the methods are far-
sighted in comparison to the valuation method ‘no value’.
The second is that the methods lead, in general, to higher ter-
minal stored energy levels. This improves the robustness of
the system against unexpected reductions in the solar energy,
reducing the risk of paying penalties for undelivered power.
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Figure 7: Promised power during the first three days.

Conclusions

This work investigates valuation methods for stored energy
at end of an optimization period in stochastic programming
of an energy system. The studied energy system consists of
photovoltaic power generation and an energy storage unit and
sells electricity to the day-ahead market. We show that, if no
value is given for the stored energy (i.e., a myopic method),
the stochastic programming model does not necessarily uti-
lize all of the available photovoltaic power in multi-period
optimization. The best of the tested methods is to value the
stored energy based on the predicted maximum electricity
price during the next optimization period. On the studied 14-
day period with three different electricity storage capacities,
the method increases the profit by 11.7 to 18.7% in compari-
son to the myopic method, often used in the literature.

The future work will utilize state-of-the-art electricity
price forecasting methods [Weron, 2014, Lago et al., 2021]
to seek further improvements in the valuation methods. In
addition, future work will investigate the valuation methods
on more complex energy systems, involving also wind power
and buying of electricity from the market.
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