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Abstract
This paper discusses recent developments in the data-based modeling and control of nonlinear chemical pro-
cess systems using sparse identification of nonlinear dynamics (SINDy). SINDy is a recent nonlinear system
identification technique that uses only measurement data to identify the physical laws governing the system
in the form of first-order nonlinear differential equations. In this work, the challenges of handling time-scale
multiplicities and noisy sensor data when using SINDy are addressed. When applied to two-time-scale systems,
to overcome model stiffness, which leads to ill-conditioned controllers, a reduced-order modeling approach is
proposed where SINDy is used to model the slow dynamics, and nonlinear principal component analysis is
used to algebraically “slave” the fast states to the slow states. The resulting model can then be used in a
Lyapunov-based model predictive controller with guaranteed closed-loop stability provided the separation of
fast and slow dynamics is sufficiently large. To handle high levels of sensor noise, SINDy is combined with
subsampling and co-teaching to improve modeling accuracy. Finally, the challenges of modeling and controlling
large-scale systems using noisy industrial data are addressed by using ensemble learning with SINDy.
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Introduction

A central objective of scientific and engineering research
is the derivation of the laws governing physical systems
in the form of equations. With the explosion in data and
computational power over the last two decades, the con-
struction of these equations empirically from data has
become more tractable than deriving physics-based first-
principles models, especially for highly complex systems,
and is gaining momentum in the literature. For many
physical systems, the laws governing their dynamics take
the form of ordinary differential equations (ODE) or
partial differential equations (PDE) with time and/or
space as independent variables. Common examples in-
clude the Boltzmann equation in thermodynamics and
the Navier–Stokes equations in fluid dynamics [1]. The
development of such time-series predictive models is of-
ten a prerequisite for other objectives in a plant/system
engineering context, such as predictive maintenance in
operations engineering and advanced control system de-
sign in any closed-loop system with strict product re-
quirements. In chemical process systems, model predic-

tive control (MPC) is an advanced control system that
has been implemented and accepted widely in indus-
try [2]. As the name suggests, MPC uses a dynamical
model such as an ODE to predict the process states
and outputs over a user-defined prediction horizon to
be able to take the optimal control action based on an-
ticipated possible future trajectories. A large body of
literature on data-driven modeling in MPC can be found
in [3]. Two of the most common, classical system iden-
tification algorithms include singular value decomposi-
tion [4] and Numerical algorithms for Subspace State
Space System Identification (N4SID) [5]. However, ma-
chine learning methods, a type of data-driven modeling
with numerous tunable hyperparameters, have demon-
strated highly accurate results when applied to complex
systems with multiple interacting nonlinearities due to
their high degree of freedom. Some examples of machine
learning methods include support vector regressors, ar-
tificial neural networks, and sparse identification [6], the
last of which is the highlight of this article.

In this manuscript, we apply SINDy to model and
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control three types of process systems: 1) processes with
time-scale multiplicities, 2) simulated processes with
high levels of sensor noise, and 3) large-scale processes
corrupted with high levels of industrial noise. Each cat-
egory of systems has associated challenges and are ad-
dressed using different improvements upon the original
SINDy algorithm, the details of which will be discussed
in the respective section.

Class of Nonlinear Process Systems

We consider the class of nonlinear process systems
described by the following first-order ODE:

ẋ(t) = f(x) + g(x)u+ w, x(t0) = x0 (1)

where x ∈ Rn is the state vector, u ∈ Rr is the manipu-
lated input vector, and w ∈ Rn is the noise vector. The
unknown vector and matrix functions f ∈ Rn and g ∈
Rn×r, respectively, constitute the process model repre-
senting the inherent physical laws constraining the sys-
tem and are assumed to be locally Lipschitz vector and
matrix functions of their arguments with f(0) = 0. The
manipulated input is constricted to be in r nonempty
convex sets defined as Ui ⊆ R, i = 1, . . . , r. The sen-
sor noise w is assumed to be bounded within the set
W := w ∈ Rn : ∥w∥2 ≤ θ, θ > 0. The class of systems
of the form of eq. (1) is further restricted to the family
of stabilizable nonlinear systems, i.e., there exist a suf-
ficiently smooth control Lyapunov function V (x) and a
control law Φ(x) = [Φ1(x) · · ·Φr(x)]

⊤ that renders the
nominal (w ≡ 0) closed-loop system of eq. (1) asymptot-
ically stable under u = Φ(x). The stability region Ωρ is

defined as the largest level set of V where V̇ is negative.
Without loss of generality, the initial time t0 is taken to
be 0 throughout the article.

Overview of sparse identification of nonlinear dy-
namics (SINDy)

Based on sparse regression and compressive sensing,
sparse identification of nonlinear dynamics (SINDy) is a
novel method in the field of system identification and has
been applied to a diverse array of engineering problems
[7, 8]. The aim of SINDy is to use only input/output
data from a system to represent the dynamics in the
form of the nominal system of eq. (1),

˙̂x(t) = f̂(x̂) + ĝ(x̂)u (2)

where x̂ ∈ Rn is the state vector of the sparse-identified
model, and f̂ and ĝ are the model parameters that cap-
ture the physical laws governing the system.

Since most physical systems contain only a few terms
in the right-hand side of eq. (2), if a large number of non-
linear basis functions are considered as possible terms in
f̂ and ĝ, the space of all candidate functions considered
is rendered sparse. Hence, SINDy aims to identify the
small number of active functions in f̂ and ĝ using algo-
rithms that leverage sparsity. We first sample a discrete
set of full-state measurements from open-loop simula-
tions or experiments and concatenate them into a data

matrix X and input matrix U ,

X =


x1 (t1) x2 (t1) · · · xn (t1)
x1 (t2) x2 (t2) · · · xn (t2)

...
...

. . .
...

x1 (tm) x2 (tm) · · · xn (tm)

 (3a)

U =


u1 (t1) u2 (t1) · · · ur (t1)
u1 (t2) u2 (t2) · · · ur (t2)

...
...

. . .
...

u1 (tm) u2 (tm) · · · ur (tm)

 (3b)

where xi(tℓ) and uj(tℓ) represent the measurement of
the ith state and jth input at the ℓth sampling time,
respectively, where i = 1, . . . , n, j = 1, . . . , r, and ℓ =
1, . . . ,m. Ẋ, the time-derivative of X, is a required ma-
trix in the sparse identification algorithm and is either
measured if possible (e.g., velocity) or estimated from
X. Subsequently, a function library Θ(X,U) is con-
structed with s nonlinear functions of X and U . These
s functions are the candidate nonlinear functions that
may be zero or nonzero in the right-hand side of eq. (2).
The sparse identification algorithm exploits sparsity to
calculate the coefficients associated with the terms in
the library, Θ. Given the universality of mononomials,
polynomials, and trigonometric functions in engineering
systems [6], they are selected as the initial library in Θ.
An example of an augmented library is

Θ(X,U) =

 1 X sin(X) eX U UX2

 (4)

The goal of sparse identification is to find each of
the s coefficients associated with the s nonlinear func-
tions considered in Θ and the input term for each row of
eq. (2). Each state xi corresponds to a sparse vector of
coefficients, ξi ∈ Rs, that represent the nonzero terms in
f̂i and ĝi in the respective ODE, ˙̂xi = f̂i(x̂i) + ĝi(x̂i)u.
Consequently, there are n such coefficient vectors that
must be calculated. In matrix notation, the unknown
quantity is

Ξ =
[
ξ1 ξ2 · · · ξn

]
(5)

which is found by solving the following equation:

Ẋ = Θ(X,U)Ξ (6)

Equation (6) can be solved using sequential thresholded
least-squares, wherein all coefficients in Ξ smaller than
a threshold λ are zeroed and the resulting equation
with zeroed terms is repeatedly solved until conver-
gence of the non-zero coefficients. The iterations con-
verge rapidly due to the sparse structure of Ξ. An al-
ternate algorithm to solve eq. (6) is known as Sparse
Relaxed Regularized Regression, which is based on the
well-known LASSO operator [9]. After finding Ξ, the
identified model can be formulated as the continuous-
time differential equation,

ẋ = Ξ⊤(Θ(x⊤, u⊤))⊤



where Θ(x⊤, u⊤) is a column vector containing symbolic
functions of x and u from the chosen function library,
and x⊤ represents the transpose of x.

Incorporation of SINDy within MPC

Model predictive control is an advanced control
methodology that utilizes a model of the process to pre-
dict the states/output over a prediction horizon to com-
pute the optimal control actions by solving an online
optimization problem. The formulation of a Lyapunov-
based model predictive controller (LMPC) that uses a
sparse-identified ODE, Fsi(·), as the process model is
presented below:

J = min
u∈S(∆)

∫ tk+N

tk

C(x̃(t), u(t)) dt (7a)

s.t. ˙̃x(t) = Fsi(x̃(t), u(t)) (7b)

u(t) ∈ U, ∀ t ∈ [tk, tk+N ) (7c)

x̃(tk) = x(tk) (7d)

˙̂
V (x(tk), u) ≤ ˙̂

V (x(tk),Φsi(x(tk)),

if x(tk) ∈ Ωρ̂\Ωρsi
(7e)

V̂ (x̃(t)) ≤ ρsi, ∀ t ∈ [tk, tk+N ), if x(tk) ∈ Ωρsi
(7f)

where x̃ is the predicted state trajectory, S(∆) repre-
sents the set of piece-wise constant functions with a pe-
riod of ∆, and N is the number of sampling periods

within each prediction horizon.
˙̂
V (x, u) is the time-

derivative of the Lyapunov function and is equal to
∂V̂ (x)
∂x Fsi(x, u). u = u∗(t), t ∈ [tk, tk+N ) denotes the op-

timal input sequence over the prediction horizon, which
is provided by the optimizer. The LMPC applies only
the first value in u∗(tk) over the next sampling period
t ∈ [tk, tk+1), and solves the optimization again at the
next sampling time tk+1.

In the MPC formulation, eq. (7a) is the objective
function to be minimized and is chosen to be equal
to the integral of C(x̃(t), u(t)) over the prediction hori-
zon. eq. (7b) describes the sparse-identified model that
is used to predict the closed-loop states over the pre-
diction horizon starting from the initial condition of
eq. (7d) while u is varied within the constraints de-
fined by eq. (7c). The last two (Lyapunov) constraints
of eq. (7e) guarantee that the closed-loop state either
moves towards the origin at the next sampling time if
the state is outside Ωρsi

or is contained within Ωρsi
for

the entire prediction horizon once the state enters Ωρsi
.

Reduced-order modeling for two-time-scale sys-
tems

Time-scale separation is a common phenomenon
found in chemical processes such as distillation columns
and catalytic continuous stirred-tank reactors (CSTRs)
[10]. If the time-scale separation is not accounted for in
a standard nonlinear feedback controller, the controller
may be ill-conditioned or even unstable in closed-loop
[11]. Due to the distinct slow and fast dynamics in such

systems, the process will be represented by stiff ODEs
in time when using SINDy without any modification.
Such stiff ODEs, when integrated with an explicit inte-
gration method such as forward Euler, require a very
small integration step size to prevent divergence and
yield sufficiently accurate solutions. Hence, in [12], by
using the mathematical framework of singular pertur-
bations, we proposed the decomposition of the original
two-time-scale system into two lower-order subsystems,
each separately modeling the slow and fast dynamics of
the original multiscale system. Specifically, following a
short transient period, the fast states converge to a slow
manifold and can be algebraically related to the slow
states using nonlinear functional representations. In our
work, we applied nonlinear principal component analysis
(NLPCA) proposed by [13] to capture the nonlinear re-
lationship between the slow and fast states, while using
sparse identification to derive well-conditioned, reduced-
order ODE models for only the slow states that could
then be integrated with much larger integration time
steps due to numerical stability. Once the slow states
are predicted with the ODE model, it is possible to use
NLPCA to algebraically predict the fast states without
any integration.

Nonlinear principal component analysis is a nonlin-
ear extension of principal component analysis (PCA).
PCA is a commonly used dimensionality reduction tech-
nique that finds a linear mapping between a higher-
dimensional space (of the data) and a lower-dimensional
space with minimal loss of information by minimizing
the squared sum of orthogonal distances between the
data points and a straight line. NLPCA attempts to
generalize this to the nonlinear case in two steps: first,
a 1-D curve that passes through the “middle” of the data
points known as the “principal curve” is found; second,
the principal curve is parametrized in terms of distance
of each point along the curve by using a feedforward neu-
ral network (FNN) with two hidden layers and nonlinear
activation functions. Overall, to make a prediction of
the state of the two-time-scale system, the measurement
of the slow states at the current sampling time is passed
to an explicit integrator (such as a Runge-Kutta scheme)
that integrates the sparse-identified model to predict the
slow states over the prediction horizon, which are then
sent to the FNN to yield a prediction of the fast states.

Two-time-scale systems can be written in the form,
ẋs = fs(xs, xf , u, ϵ) (8a)

ϵẋf = ff (xs, xf , u, ϵ) (8b)

where xs ∈ Rns and xf ∈ Rnf denote the slow and fast
states, respectively, with ns + nf = n. ϵ is a small pos-
itive parameter that represents the ratio of slow to fast
dynamics of the original system. By making standard
assumptions from the singular perturbation framework,
the slow subsystem of eq. (8a) can be rewritten in the
form required for sparse identification,

˙̂xs = Fsi(x̂s, u) := f̂(x̂s) + ĝ(x̂s)u, x̂s(t0) = xs0 (9)

where Fsi is the sparse-identified slow subsystem.



An LMPC that uses eq. (9) as the process model of
eq. (7b) may be constructed. Such an LMPC will pre-
dict the slow states of the two-time-scale system and
optimize the cost function based on the predicted slow
states. Due to the coupled nature of the states, it is suffi-
cient to stabilize the slow states to guarantee asymptotic
stability for the entire system. However, if computa-
tional resources are available, the FNN may be used to
predict the fast states, and the LMPC can then account
for the full-state of the system. In [14], only the slow
subsystem was used to ensure the LMPC optimization
can be solved within every sampling period.

Subsampling and co-teaching in the presence of
high sensor noise

A key step in the sparse identification procedure is
the estimation of the time-derivatives of the states when
it cannot be measured directly, as is the case in most
process systems. From a survey of the literature, since
the conceptualization of SINDy in [6], several advance-
ments in the algorithm have been proposed to handle
noisy data. However, most articles that investigate the
effect of noise on SINDy add noise to the pre-computed
derivatives (from clean data) and/or use very low levels
of noise that can be easily smoothened. One example is
the SINDy-PI algorithm proposed by [15] and improved
by [16]. Through case studies, [16] demonstrated that
even the improved algorithm could only handle noise
with a maximum variance of 10−4, which is very small
in the context of process systems. While a detailed dis-
cussion of the comprehensive literature can be found in
[17], in summary, one paper proposed an improvement
upon the SINDy algorithm in the presence of moderate
noise that demonstrated promise and could be devel-
oped further. This method proposed by [18], termed
subsampling-based threshold sparse Bayesian regression
(SubTSBR), involved randomly subsampling a fraction
of the entire data set multiple times and selecting the
best model by using a model-selection criterion. The
issue of noisy data has also been studied in the field
of computer science, where fitting a neural network to
noisy data often leads to the neural network overfitting
the data and capturing the noisy pattern instead. A
recent technique proposed to overcome this challenge is
co-teaching, where a simplified first-principles process
model is used to generate noise-free training data to as-
sist the model training step by reducing overfitting.

Subsampling is a classical statistical technique where
a fraction of the total number of samples in a data set
are randomly extracted and analyzed to estimate statis-
tical parameters [19] or speed up algorithms [20]. How-
ever, subsampling can also be used to instead improve
the modeling accuracy of SINDy when the data set is
highly noisy. This is because common regression meth-
ods such as least squares utilize the complete data set by
assuming that only a small fraction of the data samples
are highly noisy or outliers. As a result, if the entire
data set is used, the higher percentage of “good” data
samples should smooth the large noise present in the

data set. However, this assumption breaks down if the
noise is either very high or uniformly present through-
out the data set. In such a case, there are insufficient
“good” data samples to smooth out the noise from the
very highly corrupted data samples. In the context of
SINDy, subsampling refers to selecting random fractions
of the data set multiple times in order to sample only
the less noisy data points for carrying out the sparse re-
gression. The key requirement for subsampling is that
the number of unknown weights to be estimated in the
SINDy procedure have to be fewer than the number of
total data samples available, which is the case for most
practical data sets. Although as a standalone improve-
ment, subsampling greatly improves the performance of
SINDy under moderate noise levels, it is insufficient at
higher noise levels and co-teaching becomes incumbent.

Co-teaching is a method that has been used in the
field of computer science, primarily in image recognition,
where neural networks are trained to categorize images
into pre-defined classes. However, often, a small pro-
portion of the images in the training data set may be
mislabeled, greatly deteriorating the performance of the
neural network. As manually relabeling vast amounts
of images is not feasible, the method of co-teaching was
proposed wherein newly generated noise-free data is fed
during model training to reduce the impact of the noisy
data. The concept has recently been extended to re-
gression problems, specifically the modeling of dynami-
cal systems using long short-term memory (LSTM) net-
works [21]. The central idea of co-teaching highlighted
and proven in [21] is that neural networks fit simpler pat-
terns in the early iterations of model training, which im-
plies that noise-free data will yield low values of the loss
function, while noisy data will tend to produce high loss
function values. Therefore, the training can be made
more robust to noise and overfitting if the noisy data
is augmented with a nonzero proportion of noise-free
data from simulations of simplified, approximate first-
principle models that can be derived for the complex,
original nonlinear system to be studied.

Improving the sparse identification algorithm with
both subsampling and co-teaching enables it to tackle
consistently noisy data sets where subsampling alone
is insufficient. This is because subsampling only sub-
samples, in the best case scenario, the least noisy data
points, which are still too noisy to yield an adequate
model. In the proposed method, first, a random subset
of the entire data set Xnoisy is sampled, which is then
mixed with noise-free data generated from approximate
first-principles models of the process, XFP. The result-
ing mixed data set is used to solve for the unknown
weights of the various terms in the SINDy function li-
brary. Once a model is identified, a model-selection cri-
terion is used to evaluate the model performance. Three
parameters must be specified in the algorithm: p ∈ (0, 1)
or the subsampling fraction, q ∈ (0, 1) or the noise-free
subsampling fraction, and L ≥ 1, which is the number of
times to independently subsample and identify a SINDy



model. The algorithm randomly subsamples and mixes
p × m data points from the noisy data set with q × m
data points from the noise-free data set to produce the
data submatrix Xi for subsample i with i = 1, 2, . . . , L.
Ui are the corresponding (p+q)×m points from U . The
sparse regression equation to be solved is then

Ẋi = Θ(Xi, Ui)Ξi (10)

where Ξi are the coefficients associated with each li-
brary function that is identified using the data subset
Xi. Once Ξi is determined, and therefore, the ith ODE
model is found, the model selection criterion is used to
extract the optimal model. An example of a model se-
lection criterion that balances the error with the model
sparsity, which is crucial for SINDy, is the Akaike Infor-
mation Criterion given by the expression,

MSE =
1

m

m∑
j=1

(x(tj)− x̂(tj))
2

(11)

AIC = m logMSE+2L0 (12)

where L0 denotes the 0th norm and is equal to the num-
ber of nonzero terms in the sparse-identified model.

The hyperparameters in the algorithm, which require
tuning, are the candidate function library, the method
for estimating the time-derivative of the noisy data, the
optimizer, and the value of λ. Possible choices for the
function library are either only polynomials or polyno-
mials with other nonlinear trigonometric or exponential
functions based on the problem definition. The total
variation regularized derivative (TVRD) as well as the
smoothed finite-difference (SFD) (computing finite dif-
ferences after presmoothing with a Savitzky-Golay fil-
ter) have been demonstrated to produce the best results
[17], making them reasonable choices. Two simple yet
effective optimizers are the sequential thresholded least
squares (STLSQ) and the SR3 optimizer based on the
LASSO [9]. For the value of λ, depending on the sys-
tem, a coarse search in steps of 0.1 from 0 to 1 may be
sufficient; otherwise, a coarse-to-fine search is most ef-
ficient both computationally and in terms of accuracy.
Figure 1 shows the flow of the data throughout the al-
gorithm. The complete algorithm can be found in [17].

+

+

+

=

=

=

Noisy sensor data
First-principles
simulation data Subsample i

Integrate from validation
initial conditions.
Compute AICi

Repeat L times.

Calculate test
set MSE

Start

End

Figure 1: Data flow diagram of subsampling with co-
teaching for noisy data.
Ensembled-based dropout-SINDy to model
highly noisy industrial data sets

While subsampling with co-teaching is a viable op-
tion to overcome the issue of high sensor noise in
the data measurements, the primary drawback of co-
teaching is its requirement for a first-principles process
model that is at least similar to the original system with
respect to the dynamics and the final steady-state val-
ues. However, in the case of industrial data, especially
when corrupted by noise, the dynamics may be far too
complex for any theoretically derived ODE to accurately
capture the system. Therefore, for the case of dealing
with high levels of industrial noise, a new direction and
improvement on SINDy is proposed, known as ensemble
learning or dropout-SINDy.

Ensemble learning refers to the use of multiple mod-
els of either the same type or different types to improve
the predictive performance. While subsampling takes
a fraction of the data set to create multiple models,
dropout-SINDy uses only a fraction of the function li-
brary Θ to identify a model. Hence, multiple models can
be identified, each with a random subset of the library.
Similarly to co-teaching, this can reduce the impact of
noisy data and also improve the stability properties of
the SINDy models because a large number of nonzero
terms (a dense coefficient matrix Ξ) can often lead to in-
stabilities. The sparse regression equation to be solved
for dropout-SINDy is similar to eq. (10) but the state
and input data sets remain as X and U , respectively,
while only the coefficients Ξi are varied between models
in the ensemble:

Ẋi = Θ(X,U)Ξi (13)

When using highly noisy industrial data, it is found that
basic SINDy is unable to model the dynamics and even
the final steady-state of the system, the latter of which
greatly affects the performance of a controller. However,
when dropout-SINDy is used on the industrial data set,
it is able to capture most of the dynamics and correctly
predict the final steady-state values of the states. When
an MPC is designed with the dropout-SINDy model, it
can be demonstrated to achieve closed-loop stability and
converge to the steady-state faster and with less energy
than a corresponding proportional-controller.
Conclusions and future work

In this paper, we have discussed several recent ad-
vancements in sparse identification to overcome the chal-
lenges of modeling and controlling two-time-scale sys-
tems and noisy data. The methods considered include
combining SINDy with nonlinear principal component
analysis, feedforward neural networks, subsampling, co-
teaching, and ensemble learning. An existing challenge
in the SINDy procedure is the choice of the function
library. If the correct basis is not considered, the iden-
tified model can often be dense and/or unstable. How-
ever, once the candidate library is chosen appropriately,



even with minimal hyperparameter tuning, sparse and
accurate models can be easily identified. Hence, possible
future directions in this field include the use of neural
network function approximators in the candidate basis
functions to capture nonlinearities that are not among
the commonly considered basis functions. If possible,
converting these neural network parts of the SINDy
model back to symbolic functions will greatly improve
the model inference time as explicit nonlinearities are
computationally desirable. Such advances have already
been initiated in recent papers on modeling biological
systems [22].
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