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Abstract
The moving horizon estimator (MHE) is a sliding window approximation of a full information least-squares opti-
mization problem. The MHE is related to the full information problem through the arrival cost function, which functions
as the prior of the estimation problem. Several methods are described in literature to find arrival cost function like the
extended kalman filter method. In this work a new method is proposed to calculate the arrival cost based on parametric
nonlinear programming techniques. We propose to approximate the ideal arrival cost using the sensitivity of the optimal
solution manifold of the ideal arrival cost. The new method was tested on a quad-tank system and was shown to
outperform the EKF approach to update the arrival cost for this case.
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Introduction

Moving Horizon Estimation (MHE) is an optimization
based technique to estimate the states of a system. MHE
is an approximation of the full information Maximum a
Posteriori (MAP) batch estimation problem, where only a
sliding window of measurements is considered (Rao et al.
(2003)). This is to reduce the computational load of solving
the optimization problem. The strengths of the MHE are
its ability to easily incorporate constraints in the estimation
problems as well as its possibility to handle multi-rate
measurements. To account for forgotten measurements from
the full information problem a term known as the Arrival
Cost is introduced to the cost function. From a statistical
point of view the arrival cost can be considered a prior of the
initial state in the estimation horizon, and the performance
of the estimator is dependent on it (Rao et al. (2003)).

Several approaches to calculate the arrival cost for nonlinear
systems have been proposed in literature and they can be
categorized into two schools. The filtering approach where
the prior is based on measurements up to the state in question
and the smoothing approach where the prior is based on all
available measurements (Elsheikh et al. (2021)). Among
the filtering schemes there are the Extended Kalman Filter
(EKF) and the smoothed EKF approaches (Robertson et al.
(1996)) and the QR-factorization approach (Kühl et al.
(2011)). Among the smoothing schemes there are the covari-
ance smoothing scheme (Tenny and Rawlings (2002)), the
nonlinear programming sensitivity approach (López-Negrete
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and Biegler (2012)) and approximate hessian of MHE cost
approach (Fiedler et al. (2020)).

In this work we introduce a novel filtering approach to calcu-
late the arrival cost based on parametric nonlinear program-
ming sensitivities. In particular, we linearize the optimal so-
lution manifold of the ideal arrival cost problem to find a
first order approximation of the ideal arrival cost. This is
done by considering the arrival cost as a parametric NLP, and
to approximate it using fast and efficient sensitivity updates.
Our approach is different from previous applications of NLP-
sensitivity in MHE, e.g. (Zavala et al. (2007), Das and
Jäschke (2017)), who use sensitivity to obtain fast solutions
to the MHE optimization problem. Our method should not
be confused for (López-Negrete and Biegler (2012)) where
the arrival cost is computed using the sensitivity of the op-
timality conditions of the MHE problem. Here we focus on
the arrival cost, and as such, our approach could be combined
with the above mentioned approaches for speeding up the so-
lution of the MHE optimization problem. A unique feature
of our method is that we can take into account inequality con-
straints, provided that the active set does not change.

Background

We consider a system described by the following discrete
model

xk+1 = F(uk,xk,wk) (1)
yk = h(xk)+ vk (2)

where xk∈ Rnx denotes the states, yk∈ Rny the measurements,
uk∈ Rnu the known input actions, wk∈ Rnw the uncertain



process noise and vk∈ Rny the measurement noise at time k.
F : Rnu ×Rnx ×Rnw 7→ Rnx represents the discrete process
model describing the evolution of the states, h : Rnx 7→ Rny

represents the measurement model describing the relation-
ship between the measured quantities yk and the states xk.

Given the system model, the MHE solves the following opti-
mization problem to estimate the states x at time T

min
w,v,x

T−1

∑
k=T−N

wT
k Q−1

k wk +
T

∑
k=T−N

vT
k R−1

k vk +ΓT−N(xT−N)

(3a)

s.t. xk+1 = F(uk,xk,wk), k = T −N, . . . ,T −1 (3b)
yk = h(xk)+ vk, k = T −N, . . . ,T (3c)
xk ∈ Xk, k = T −N, . . . ,T (3d)
wk ∈Wk, k = T −N, . . . ,T −1 (3e)

N is the length of the sliding window. The sets Xk and
Wk denotes inequality constraints on the states and process
noise. The matrices Qk and Rk are tuning matrices for the
estimator and if chosen appropriately relate the Moving
Horizon estimation problem to the Maximum A Posteriori
(MAP) estimation approach. If the process noise in (1) is
additive and the process- and measurement noise wk and vk
are zero mean Gaussian noise, then selecting Qk and Rk as
the covariance matrices of wk and vk makes the MHE the
MAP estimator. In the rest of this report a filtered estimate
for the state at time k will be denoted as x̂k. The smoothed
estimate for the state at time k given l > k measurements
will be denoted as x̃k|l .

Γk : Rnx 7→ R represents the arrival cost and can be thought
of as a prior to the moving horizon estimation problem, as it
represents the prior knowledge about the state xk. The arrival
cost also represents the connection between the full informa-
tion estimation problem and the moving horizon approxima-
tion (Rao et al. (2003)). If the ideal arrival cost is used the
moving horizon approach is identical to the full information
problem. The ideal arrival cost formulation is defined recur-
sively as:

Γk+1(xk+1) = min
wk,vk,xk

wT
k Q−1

k wk + vT
k R−1

k vk +Γk(xk) (4a)

s.t. xk+1 = F(uk,xk,wk) (4b)
yk = h(xk)+ vk (4c)
xk ∈ Xk (4d)
wk ∈Wk (4e)

For k = 0,1 . . .T −N. Γ0(.) is an explicit function represent-
ing the prior knowledge of the states xk at time k = 0. Un-
fortunately this formulation of the arrival cost is not useful
in practice, so an approximation is necessary. If the knowl-
edge of the initial state is sampled from a Gaussian distribu-
tion with a known mean x̌0 and covariance Π0, then the ini-
tial arrival cost becomes Γ0(x0) = (x̌0 − x0)

T Π
−1
0 (x̌0 − x0).

For the subsequent states it is common to approximate the
arrival cost with the following expression Γk(xk) = (x̌k −

xk)
T Π

−1
k (x̌k − xk). Several approaches have been proposed

in literature to update the parameters x̌k and Πk. Exam-
ples include the Extended Kalman Filter (EKF) approach
(Robertson et al. (1996)), the smoothed EKF (Robertson
et al. (1996)) or the QR-factorization approach (Kühl et al.
(2011)). The commonly used EKF update is found by lin-
earizing the dynamic - and measurement models around the
filtered estimate x̂k, and solving (4) with the linearized mod-
els and no inequality constraints. This yields the following
update rule:

Πk+1 =Ak(Πk −ΠkHT
k (HkΠkHT

k +Rk)
−1HkΠk)AT

k

+GkQkGT
k (5)

x̌k+1 = F(uk, x̂k,0) (6)

with

Ak =
∂F
∂x

∣∣∣
uk,x̂k,0

,Hk =
∂h
∂x

∣∣∣
x̂k
,Gk =

∂F
∂w

∣∣∣
uk,x̂k,0

(7)

coming from the linearized models. A drawback of this
method is that the models are linearized around the filtered
estimate x̂k. If the true state xk is far from the filtered
estimate this might lead to a large linearization error and
subsequentially a bad update of the prior at stage k+ 1. To
mitigate this drawback we propose to update the arrival cost
as outlined next.

Arrival cost update by NLP sensitivity

From problem (4) we note that the ideal arrival cost is a para-
metric nonlinear program with respect to xk+1. We propose
to use parametric nonlinear programming (PNLP) sensitiv-
ities to approximate the arrival cost as an alternative to the
EKF.

NLP sensitivity concepts

Equation (4) can be written in a general form as a parametric
NLP

min
χ

J(χ, p)

s.t. c(χ, p) = 0 (λ)

g(χ, p)≤ 0 (µ) (8)

where χ ∈ Rnχ are the decision variables and p∈ Rnp are the
parameters. λ∈ Rnc are the Lagrange multipliers related to
the equality constraints c(.) and µ∈ Rng are the Lagrange
multipliers related to the inequality constraints g(.). We as-
sume f (.), c(.) and g(.) are twice differential in x and p.
Let s∗(p0) = [χ∗T (p0),λ

∗T (p0),µ∗T (p0)]
T denote a optimal

primal-dual solution satisfying the first order KKT condi-
tions for the parameter being p0



∇χJ(χ∗, p0)+∇χc(χ∗, p0)λ
∗+∇χg(χ∗, p0)µ∗ = 0

c(χ∗, p0) = 0
g(χ∗, p0)≤ 0
µ∗ ≥ 0

g(χ∗, p0)
T µ∗ = 0 (9)

For the KKT conditions to be a condition of optimality a
constraint qualification is necessary, e.g. the linear indepen-
dence constraint qualification (LICQ):

Definition: LICQ holds for some χ∗ ∈Rnχ if ∇ci(χ
∗, p0) for

i ∈ {1,2 . . .nc} and ∇gi(χ
∗, p0) for i ∈ {i|gi(χ

∗, p0) = 0} are
linearly independent.

If the second order sufficient Condition (SOSC) holds at a
KKT point s∗(p0), then it is a local minimizer.

Definition: Second-Order Sufficient Condition (SOSC)
holds for s∗(p0) if dT ∇2

χL(z∗(p0))d > 0 for all d ̸= 0
such that ∇χc(χ∗, p0)d = 0 and ∇χgi(χ

∗, p0)d = 0 for
i ∈ { j|g j(x∗, p0) = 0,µ j > 0}.

where L(χ,λ,µ, p) = J(χ, p)+ c(χ, p)T λ+ g(χ, p)T µ is the
Lagrangian of (8).

Definition: Strict Complementarity holds for a primal-dual
solution s∗(p0) if µ∗(p0)−g(χ∗(p0), p0)> 0

With these definitions the following result from (Fiacco
(1983)) can be established

Theorem 1: (NLP sensitivity.) If f(.), c(.) and g(.) are at
least twice differentiable in χ and p in a neighbourhood of
χ∗(p0) and p0, LICQ and SOSC hold for s∗(p0), and strict
complementary holds then,

• s∗(p0) is a unique local solution.

• For a p in a neighborhood of p0 there exist a unique dif-
ferentiable function s(p) = [χ(p)T ,λ(p)T ,µ(p)T ]T cor-
responding to a unique local minima.

• For a p in a neighborhood of p0 the set of active inequal-
ity constraints remains unchanged.

Proof: See (Fiacco (1976)).

With this result the sensitivity of s∗(p0) with respect to p can
be found by solving the following linear system of equations

∇2
χL(s∗(p0)) ∇χc(χ∗, p0) ∇χg+(χ∗, p0)

∇χcT (χ∗, p0) 0 0
∇χgT

+(χ
∗, p0) 0 0

(∇ps∗)T

=−

∇2
pχL(s∗(p0))

∇pc(χ∗, p0)
∇pg+(χ∗, p0)


(10)

where L(s∗(p0)) = J(χ∗(p0), p0)+ cT (χ∗(p0), p0)λ
∗(p0)+

gT (χ∗(p0), p0)µ∗(p0) and g+ = [gi] for i ∈
{i|gi(x∗(p0), p0) = 0,µ∗i (p0)> 0}.

As a result from Theorem 1, for a small ∆p the optimal
primal-dual solution s∗(p0 + ∆p) can be approximated as
s∗(p0)+∇ps∗∆p, using a first order Taylor expansion.

Arrival cost update through NLP sensitivity

The ideal Arrival Cost (4) is a parametric nonlinear
program with the states at time k + 1 as the parameter
p = xk+1, and the process noise, measurement noise and
states at time k as decision variables χ = [wT

k vT
k xT

k ]
T .

If problem (4) is solved for some point p0 = x̄k+1, then
the sensitivity of the optimal primal solution with respect
to the parameter can be found for this point by (10),
S(p0 = x̄k+1) = ∇pχ∗(p0 = x̄k+1)

T = [ST
w ST

v ST
x ]

T . Using
these sensitivities the optimal primal solution can be approx-
imated as an explicit expression of the parameter:

w∗
k(xk+1)≈ w∗

k(x̄k+1)+Sw(xk+1 − x̄k+1)

v∗k(xk+1)≈ v∗k(x̄k+1)+Sv(xk+1 − x̄k+1) (11)
x∗k(xk+1)≈ x∗k(x̄k+1)+Sx(xk+1 − x̄k+1)

We propose to approximate the ideal arrival cost by inserting
(11) into the cost function of the ideal Arrival Cost (4a) and
obtain the following expression:

Γk+1(xk+1) =

[w∗
k(x̄k+1)+Sw(xk+1 − x̄k+1)]

T Q−1
k [w∗

k(x̄k+1)+Sw

(xk+1 − x̄k+1)]+ [v∗k(x̄k+1)+Sv(xk+1 − x̄k+1)]
T R−1

k

[v∗k(x̄k+1)+Sv(xk+1 − x̄k+1)]+ [x̌k − x∗k(x̄k+1)−Sx

(xk+1 − x̄k+1)]
T

Π
−1
k [x̌k − x∗k(x̄k+1)−Sx(xk+1 − x̄k+1)] (12)

This expression can be rearranged, and upon removing all
terms that are not a function of the decision variable xk+1 we
get,

Γk+1(xk+1) = xT
k+1Π

−1
k+1xk+1 −2x̌T

k+1Π
−1
k+1xk+1 (13)

where

Π
−1
k+1 = ST

wQ−1
k Sw +ST

v R−1
k Sv +ST

x Π
−1
k Sx (14)

and

x̌k+1 = x̄k+1 −Πk+1[ST
wQ−1

k w∗
k(x̄k+1)

+ST
v R−1

k v∗k(x̄k+1)+ST
x Π

−1
k (x∗k(x̄k+1)− x̌k)] (15)

These two expressions can be used to update the prior.
Our method differs from the EKF and QR-factorization ap-
proaches in how inequalities are handled in the update. In
the EKF and QR-factorization methods the inequalities are
not considered. In our proposed method the sensitivity of the
solution manifold of the ideal arrival cost with respect to the
states at time k+ 1 is used. This means the strongly active



inequality constraints given by the chosen point x̄k+1 are in-
cluded in the update of the priors. If the the correct set of
active inequality equations is selected, this can be expected
to yield a better approximation of the full information prob-
lem.

Case Study

To test the parametric NLP-sensitivity approach for updating
the arrival cost, a simulation study was conducted. A quad-
tank (Raff et al. (2006)) case is considered. The quad tank
system consists of four interconnected tanks as can be seen
in figure 1. The dynamical model describing the quad tank is
given as

dx1

dt
=− a1

A1

√
2g(x1 +w3)+

a3

A1

√
2g(x3 +w5)+

γ1 +w1

A1
u1

dx2

dt
=− a2

A2

√
2g(x2 +w4)+

a4

A2

√
2g(x4 +w6)+

γ2 +w2

A2
u2

dx3

dt
=− a3

A3

√
2g(x3 +w5)+

1− (γ2 +w2)

A3
u2

dx4

dt
=− a4

A4

√
2g(x4 +w6)+

1− (γ1 +w1)

A4
u1 (16)

The states x = [x1,x2,x3,x4]
T represent the liquid level in the

the tanks. The inputs u = [u1,u2]
T are the pump flow rates.

The process noise w = [w1,w2,w3,w4,w5,w6]
T represents

two types of uncertainty/disturbances to the system. w1 and
w2 represents uncertainty in the flow rate split fractions γ1
and γ2. w3, w4, w5 and w6 represents uncertainty in the
pressure drop over the outlet valves of the tanks.

For this case study it is assumed that the liquid level in the
two bottom tanks are measured, ie.

y1 = x1 + v1

y2 = x2 + v2 (17)

where v = [v1,v2]
T is the measurement noise. For the sim-

ulations the measurement and process noise are randomly
generated. w3, w4, w5, w6, v1 and v2 are all drawn from a
standard normal distribution, while w1 and w2 are uniformly
drawn to be realized as the discrete values {-0.15,0,0.15}.

Moving Horizon Estimator setup

A moving horizon of 30 seconds was used, with a sampling
time of 10 seconds. Orthogonal collocation was used to dis-
cretize the dynamic model, using third order Gauss-Radau
polynomials per finite element. The initial arrival cost was
selected as Π0 = Inx and x̌0 = [10,5,8,8]T . The measure-
ment noise covarient matrix was selected as R = Iny , and
the process noise covariance matrix was selected as Q =
diag[0.015,0.015,1,1,1,1]. The nonlinear programs were
solved using Ipopt (Wächter and Biegler (2006)) and embed-
ded using JuMP (Dunning et al. (2017)). For the Extended
Kalman Filter update of the arrival cost a forward Euler dis-
cretization was used to find the model Jacobians. As it is

Figure 1: A schematic figure of the quad-tank process (Raff
et al. (2006)).

assumed that the uncertain variables w1 and w2 can only take
on values between -0.15 and 0.15 these bounds are imple-
mented as inequality constraints in the MHE.

Simulation setup

For simulating the system 10 sets of random noise are gen-
erated for the process and measurement noise. The system
was simulated for 1500 seconds with a sampling time of 10
seconds, leading to a total of 150 iterations for every simu-
lation run. A tracking multi-stage scenario model predictive
controller (Lucia et al. (2013)) (msMPC), tracking the levels
in tank 1 and 2 to be 10 cm, was used to compute the control
actions u for the simulation. True state feedback was used
for the msMPC so that the state trajectories in the simulation
would not be dependent on the estimates of the MHE esti-
mators. This was done so that the two different arrival cost
methods could be more accurately compared with each other
and the full information estimation problem.

Simulation Results

The result section is divided into two parts. In the first part
the estimation results of the moving horizon estimator with
the parametric NLP sensitivity are presented. In the second
part the parametric NLP sensitivity method is compared with
the EKF approach to see which is better at approximating the
full information problem.

Sensitivity based arrival cost MHE

In Figure 2 the simulation results for the Moving Horizon
Estimator with the proposed Arrival Cost update method is
shown for one set of uncertainty. The estimator is capable of
recreating the true state trajectories of x1 and x2. This can be
seen as the estimates are closer to the true states than both
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Figure 2: Estimation results using the parametric NLP sensi-
tivity method for the arrival cost update. The true state tra-
jectories are given as the solid grey line. The estimated state
trajectories are given as the dashed green line. The blue dot-
ted line is the deterministic state trajectory. The red crosses
are the measured states.

the measured and the open loop state trajectories. The MHE
also estimates the unmeasured states x3 and x4 to a certain
degree, however at some points there is a small off-set.

This is an expected results as perfect information of the noise
characteristics was assumed in tuning the MHE. Especially
considering the noise for v1, v2, w3, w4, w5 and w6 were as-
sumed to be normal distributed. Since it is assumed the un-
certain parameters w1 and w2 can only take on values within
a certain bound it is reasonable to expect the constraints on
them improved the estimation as well. It should be noted that
because the process noise is not additive, selecting its covari-
ance matrix as the tuning matrix Q is not the best strategy
to achieve the MAP estimate due to the nonlinear propaga-
tion of the uncertainty through the process model. Tuning
strategies similar to those found in (Valappil and Georgakis
(2000)) (Elsheikh et al. (2021)) (Tuveri et al. (2021)) could
perhaps be used to improve the performance.

Arrival Cost Comparison

We compare our approach to updating the arrival cost with
the standard approach of using an EKF. 10 simulations were
conducted with different noise realization for both arrival
cost update schemes as well as the full information problem.
To evaluate which scheme is the best at approximating the
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Figure 3: The mean approximation residuals for the esti-
mated states. The EKF approach is shown in green, and the
parametric sensitivity scheme in red. The shaded area repre-
sents the mean ± 2 times the standard deviation.

full information problem, residuals between the full infor-
mation estimates and the MHE estimations are calculated as

xr = x̂Full − x̂MHE (18)

xr denotes the approximation residuals, x̂Full is the vector
of filtered full information estimates [x̂0|0,Full , . . . , x̂N|N,Full ]
and x̂MHE is the vector of filtered MHE estimates
[x̂0|0,MHE , . . . , x̂N|N,MHE ]. The mean and variance of the
approximation residuals were calculated for the 10 simula-
tions and plotted in figure 3.

The desired result is that the mean approximation residual
should be zero, as no estimation bias would be introduced
by the sliding window approximation. However, due to the
small amount of simulations being conducted (10), some
deviation from the zero mean is to be expected. As seen
in figure 3 both arrival cost schemes have a mean close to
zero, however the parametric sensitivity scheme sticks closer
to zero for all 4 states, indicating that the sliding window
approximation does not introduce a bias.

In figure 3 we see that the variance in the approximation
residuals are larger for the EKF method compared to the pro-
posed parametric sensitivity method. This is especially true
for the estimates of the measured states x1 and x2. It should
be noted that the approximation for the measured states
are better for both methods compared to the unmeasured
states x3 and x4. This means that in this case the proposed



parametric sensitivity method seems to be a better approach
to approximate the full information problem, and therefore
also a better estimator. One of the reasons for the improved
performance is likely that the linearization which takes place
in the parametric sensitivity scheme is around a smoothed
estimate and not a filtered estimate. One can assume that the
smoothed MHE estimate is closer to the optimal smoothed
full information estimate than the filtered estimate, meaning
the linearization should be better. This philosophy is what
is the basis for the smoothed EKF scheme (Robertson et al.
(1996)) and the QR-based method (Kühl et al. (2011)),
meaning the proposed parametric sensitivity method should
have similar performance to these methods.

Discussion and Conclusion

One way in which our proposed method differs from
previous methods in literature (see (Elsheikh et al. (2021))
for review) is the treatment of the inequality constraints in
the ideal arrival cost formulation (4). In the other methods
described in literature inequality constraints of the MHE are
not included in the update of the Arrival Cost. Our proposed
method includes the strongly active inequalities in the update
rule. If this improves the estimate has not been investigated
and is to be studied in future work.

In this paper a new method for calculating the arrival cost for
a MHE estimator was presented and applied to a quad-tank
case study. The new method is based on parametric nonlinear
programming concepts and was shown in our case study to
outperform the extended Kalman filter approach at approxi-
mating the full information problem. As future work a more
in depth analysis of how inequality constraints affect the up-
date should be looked into, as well comparing with other ar-
rival cost update schemes.
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