
Dynamic Risk-based Design and Explicit Model Predictive Control via
Multi-Parametric Programming

Moustafa Ali a, Xiaoqing Cai a, Faisal Khan b, Yuhe Tian c 1

a Texas A&M Energy Institute, Texas A&M University, College Station, TX

b Mary Kay O’Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A&M
University, College Station, TX

c Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV

Abstract
We have introduced an integrated approach to synergize design optimization, explicit model predictive control (MPC),
and dynamic risk assessment for real-time process safety management. It follows a step-wise procedure which features:
(i) High fidelity modeling of the process and safety system, (ii) Dynamic risk modeling as a function of process vari-
able(s), (iii) Computation of design-dependent, risk-aware control policies via multi-parametric programming, and (iv)
Dynamic optimization to close the loop with optimal design, operating, and risk control decisions. Multi-faceted process
systems and safety factors can thus be systematically addressed via the resulting single mixed-integer dynamic program-
ming problem: (a) Explicit incorporation of safety-critical variable bounds as path constraints in MPC formulation, (b)
Optimal control of risk accounting for the impact of multi-variate interactions and uncertainties on fault probability and
severity, and (c) Control-aware fault prognosis and proactive risk mitigation to moderate fault severity and raise alarm
ahead of a sufficiently long time when necessary. A real-world case study on a continuous stirred tank reactor at the T2
Laboratories will be presented to demonstrate the proposed strategy.
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1. Introduction
Process safety management (PSM) is unequivocally a key

priority for chemical and energy manufacturing industries.
Accidents in chemical plants to date have caused severe hu-
man and cost losses with pressing societal and environmen-
tal issues (Jarvis and Goddard, 2017; Amyotte et al., 2016).
The ongoing trend towards digital supply networks and real-
time decision making also poses new challenges to PSM with
more complex, dynamic, integrative, and automated process
plants (Junior et al., 2018). Thus, there is an imperative need
to bridge the link between safety-critical decision making
with systems-based real-time operation to maximally reduce
process safety losses in a dynamic manner, as a step change
from the current practices relying on passive protection lay-
ers (Lee et al., 2019; Leveson and Stephanopoulos, 2013).

Quantitative risk assessment has been the subject of ex-
tensive research which adapts analytic methodologies to es-
timate the probability of failure occurrence and severity of
consequences, however at a given time of the process facility

life cycle (Witter, 1992). Burgeoning research efforts have
been made on dynamic risk assessment to achieve timely-
updated and process-specific risk estimation using Bayesian
Network approaches integrated with bow-tie diagram, event
tree analysis, etc. (Meel and Seider, 2008; Villa et al., 2016;
Kanes et al., 2017) Dynamic safety management has also
been addressed from a control-oriented perspective as to
maintaining safety-critical process variables (e.g., tempera-
ture, pressure) within the pre-specified safe operating region
(or bounds). Model predictive control (MPC) is typically
leveraged due to the ability to explicitly consider path con-
straints and forecast future trajectory via the moving horizon
policy (Ahooyi et al., 2016; Bhadriraju et al., 2021). Theoret-
ical approaches have also been proposed to reversely identify
a maximal set of process states within which safe and stable
operation is guaranteed despite disturbances (Albalawi et al.,
2018; Venkidasalapathy and Kravaris, 2020). However, there
exists a missing link to quantify the impact of physics-based
multivariate interactions and dynamic variations on process
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risk. A holistic risk-based control optimization approach is
also lacking which can integrate the multiple decision mak-
ing time scales of design, control, and risk to identify the
economically optimal design and operational solutions with
proactive process safety management.

To address these challenges, in this work, we present a
systematic approach for dynamic risk-based process design
and control optimization on the basis of the PAROC (PARa-
metric Optimization and Control) framework (Pistikopoulos
et al., 2015). The rest of the paper is organized as follows:
Section 2 states the proposed framework for simultaneous de-
sign and control with dynamic risk considerations, Section 3
showcases the methodology step-by-step on an exothermic
continuous stirred tank reactor at the T2 Laboratories.

2. The Framework for Dynamic Risk-based Design and
Control Optimization

The proposed framework is presented in Fig. 1 for the in-
tegration of dynamic risk assessment with design and control
decision making, thus optimizing the operational trajectory
with the ability of proactive risk management and fault prog-
nosis through multiple time scales. The step-wise procedure
is detailed in what follows.

Figure 1: The proposed framework.

Step 1: High fidelity dynamic modeling
This steps aims to develop a first principles dynamic model
which can rigorously describe the typically highly nonlin-
ear process system dynamics using a system of (Partial)
Differential-Algebraic Equations (Eq. 1). Design variables,
in the form of continuous or binary variables, can be for-
mulated as degrees of freedom to be optimally determined
through the framework. To the interest of this work, the dy-
namics for the safety system can also be accounted for with
continuous and discrete decision variables (e.g., operating
mode switch, open or close of pressure relief valve).
d
dt

x(t) = f (x(t),u(t),Y (t),d(t),De)

y = g(x(t),u(t),Y (t),d(t),De)
(1)

where x is the vector of states, u defines input variables, y rep-
resents output variables, Y gives binary variables, d denotes
disturbances, and De defines design variables.

Step 2: Model approximation
As shown in Eq. 2, a linear state space model is derived from
the above high fidelity model via model reduction, systems
identification, or data-driven approaches (Rivotti et al., 2012;
Katz et al., 2020). The approximated model preserves suffi-
cient modeling accuracy with reduced numerical complexity,
thus enabling the implementation of optimal control strate-
gies in the next steps.

xk+1 = Axk +Buk +C[dk;De]

yk = Dxk
(2)

where A,B,C,D are constant matrices, subscript k denotes
the current time step, x is the vector of identified states,
which can have physical meanings or not based on the se-
lected model reduction techniques, De is explicitly retained
for design-dependent controller design.

Step 3: Dynamic risk modeling
In this work, we adapt the dynamic risk model proposed
by Bao et al. (2011), in which risk is defined as a function
of time-dependent safety-critical process variable(s) allow-
ing for real-time safety monitoring and model-based fore-
casting. Prior to the risk assessment, abnormality identifi-
cation is first conducted to survey historical cases and per-
form open loop/near miss simulations to the specific process
system to locate any potential faults and the corresponding
safety-critical process variables (which can be directly mea-
surable or implicitly inferential). Herein, the occurrence of
a fault is defined by the risk exceeding a certain threshold
value, whereas risk (RI) is calculated via Eq. 3:

RI = P(x)×S(x) (3)

• Fault probability P(x) – which is determined as the
statistical probability of the safety-critical variable(s)
x(t) to exceed the upper/lower control limit (UCL,
LCL) using normal distribution. The UCL and LCL
are respectively defined as 3 standard deviations (σ)
away from the nominal operating point (µ), since sta-
tistically 99.7% of the values lie in the region of µ±3σ

(i.e., the three-sigma rule). Thus, the fault probability
is calculated as below (taking the example of x > µ):

P(x) = φ[
x− (µ+3σ)

σ
] (4)

• Fault severity S(x) – which quantifies the severity of
potential hazard as an exponential function of the de-
viation of the safety-critical variable(s) (when x > µ):

S(x) = 100
x−(µ+3σ)

x−µ (5)

The following advantageous features are offered by the above
quantitative risk model: (i) Instantaneous updates of the fault
probability and severity as a function of the deviation of safe-
critical variable(s); (ii) At µ ± 3σ, P(x) is mathematically
standardized at 0.5 and S(x) at 1 which provide a consistent
benchmark between different processes, design, or operating
conditions; (iii) Risk RI follows a pseudo-exponential growth
function with increasingly faster propagation as approaching
the risk threshold (as illustrated in Fig. 2).



Figure 2: Risk modeling and the piecewise linearization.

The resulting dynamic risk model is linearized using piece-
wise affine functions which enable to design linear MPC.
More importantly, the RI piecewise linearization character-
izes different regions of risk with distinct propagation speeds,
based on which the risk control objective can be automatedly
adjusted. For example, to sustain stable operation when RI
lies in region 1, to prioritize risk control in region 2, or to
adapt aggressive risk control in regions 3 and 4.

Step 4: Integrated process and risk modeling
An integrated linear state space model is formulated which
describes the process system dynamics and the risk dynamics
(Eqs. 6b-c). Mixed-integer variables (Eqs. 6d-e) are intro-
duced to provide a unified mathematical expression for the
piecewise risk model.

Step 5: Design-dependent risk-based multi-parametric MPC
The design-dependent risk-based model predictive control
problem is presented in Eq. 6, which offers dual layers
of proactive process safety management: (i) Model-based
risk assessment as an overarching metric, (ii) Bounded safe
region for states via MPC path constraints. Though approxi-
mated linear model is used for controller design, closed-loop
validation is performed in Step 6 which tests the controller
on the original nonlinear process and risk model to ensure
the actual risk control performance.

minu J = xT
NPxN +

OH−1

∑
k=1

(
(yk − yR

k )
T QRk

(
yk − yR

k
))

+
CH−1

∑
k=0

(
∆uk −∆uR

k
)T

R1k
(
∆uk −∆uR

k
) (6a)

s.t. xk+1 = Axk +Buk +C[dk;De] (6b)[ yk
RIk −b

]
=
[

D
M

]
xk +

[
E
0

]
uk (6c)

∑
i

miyi = M ∑
i

biyi = b ∑
i

xiyi = x (6d)

∑
i

yi = 1 yi ∈ {0,1} xi,loyi ≤ xi ≤ xi,upyi (6e)

x ≤ x ≤ x u ≤ u ≤ u (6f)
y ≤ y ≤ y RI ≤ RI ≤ RI (6g)

where yi is binary variable for RI discretization, P is termi-
nal weight, QR and R are controller weights, CH and OH are
control and output horizons, superscript R is setpoint, other
nomenclature follow the previous steps.

The MPC problem will be reformulated and solved via
multi-parametric mixed-integer quadratic programming (mp-
MIQP). Multi-parametric model predictive control (mp-
MPC) generates explicit control law, expressed as affine
functions of the defined parametric set (e.g., disturbance,
state variables, design variables, and extended to include risk
in this study). In this way, MPC online optimization can be
replaced with mp-MPC optimal look-up maps which are gen-
erated in priori via offline optimization, leading to improved
online computational efficiency (Pistikopoulos et al., 2020).

Step 6: Fault-prognostic design and control optimization
A single mixed-integer dynamic optimization problem is for-
mulated at this step to identify the optimal design and con-
trol decisions with dynamic risk considerations (as shown in
Eq. 7). The key features include: (i) an objective function
with process safety, product quality, and/or economic con-
siderations (Eq. 7a), (ii) closed-loop optimization based on
the high-fidelity form of the process and risk model (Eqs.
3b-d), (iii) multi-parametric risk-based controller designed
as per Step 5 (Eqs. 7e-f), (iv) bounds for risk and safety-
critical variables explicitly considered (Eqs. 7g-i), and (v)
design variables to be optimized while directly accounting
for their impacts on control and dynamic risk (i.e., uT as a
function of De). Additionally, the dynamic optimizer intro-
duces a middle-term decision making layer empowering the
flexible selection for the fault prognosis horizon (τ), which is
fully connected but independent with the short-term control
and long-term design decisions. This would open up the ap-
plication of this methodology in many fast, slow, or hybrid
process systems.

min F =
∫

τ

0
P(x,y,u,Y,d,De,RI)dt (7a)

s.t. dx/dt = f (x,y,u,Y,d,De) (7b)

y = g(x,u,Y,d,De) (7c)

RI = s(x,u,Y,d,De) (7d)

uT = KiθT + ri θT ∈CRi = {CRA
i θ ≤CRb

i } (7e)

θT = [xT ,yT ,yR
T ,Y,dT ,De,RI] (7f)

x ≤ x ≤ x u ≤ u ≤ u (7g)

y ≤ y ≤ y De ≤ De ≤ De (7h)

RI ≤ RI ≤ RI Y ∈ {0,1}q (7i)

3. Case Study: Exothermic CSTR at T2 Laboratory
3.1. Process description
In December 2007, an accident occurred at the T2 Labora-
tory in Florida, USA, which unfortunately killed 4 people
and injured 28 others (Chemical Safety Board, 2009). Due to
the inadequate cooling system, runaway reaction took place
at the involved exothermic reactor which eventually led to
the explosion of hydrogen and other flammable products. In
this work, we will apply the proposed framework for safety-
critical control and fault prognosis of this process. A con-
tinuous stirred tank reactor (CSTR) will be studied at similar
conditions to the original batch reactor at T2 Laboratories.

The T2 process is conceptualized as shown in Fig. 3. The
CSTR has two feed streams, comprising A (methylcyclopen-
tadiene) in solution S (diglyme) and B (molten sodium). To



initiate the reactions, the feeds should be preheated to a given
temperature before entering the CSTR. The reaction schemes
and kinetic parameters are adapted from Venkidasalapathy
and Kravaris (2020). Reactor temperature T is the safety-
critical variable, which should be regulated at a setpoint (e.g.,
460 K) despite possible fluctuations in the feed tempera-
ture T0. Cooling is performed through an evaporating water
jacket, where the heat transfer coefficient U can be manipu-
lated by adjusting the cooling water flow rate. The high risk
region is defined according to T ≥ 480K, entering which un-
controllable reactor temperature surge is at higher probability
to occur due to the rapidly increasing side reaction rates. The
real-time PSM objectives for this case study are to:

• Control the risk at a desired level with optimal design
and operating decisions under disturbances,

• If reactor runaway cannot be avoided, attenuate the
risk propagation speed and consequence severity while
raising the alarm 10 minutes ahead of fault occurrence
time for operator response.

Figure 3: The T2 CSTR process.

3.2. Dynamic risk-based design and control optimization
In what follows, we present the step-by-step application of
the proposed framework to this T2 CSTR process.

3.2.1. CSTR dynamic modeling and model approximation
We assume the use of an ideal CSTR with constant reactor
volume. Dynamic mass and energy balances are utilized to
construct the high fidelity model for this T2 CSTR process as
listed in Eq. 8. The major process variables and parameters
are summarized in Table 1.
dCA

dt
=

FA,in

V
− qout

V
CA − k1(T )CACB (8a)

dCB

dt
=

FB,in

V
− qout

V
CB − k1(T )CACB (8b)

dCS

dt
=

FS,in

V
− qout

V
CS − k2(T )CS (8c)

dT
dt

=
qout

V
(Tin −T )+

∑(−∆Hk)rk

ρcp
− UAx(T −Tc)

ρcpV
(8d)

Table 1: List of major process variables.
State variables CA,CB,CS: Concentrations, T : Temperature
Input variable U : Heat transfer coefficient
Disturbance T0: Feed temperature
Design variable Umax: Maximum heat transfer coefficient

Parameters

FA0,FS0,FB0: Feed flowrates (1050, 525, 1250 mol/h)
V : Volume (4000 L), ρ: Mixture density (36 mol/L)
cp: Specific heat (430.91 J/mol·K)
Ax: Heat transfer area (5.3 m2), Tc: Coolant (373 K)

The resulting dynamic model is linearized around its steady
state to obtain an approximated state space model as shown
in Eq. 9. Note that in this case study, the design variable
Umax is addressed in the MPC path constraints instead of ex-
plicitly appearing in the state equations. A control time step
of 1 minute is selected.CA

CB
CS
T


k+1

= A

CA
CB
CS
T


k

+BUk +CT in,k (9)

A =

 0.9506 −0.0047 0 −0.0003
−0.0484 0.9943 0 −0.0003

0 0 0.9990 −1.5740×10−6

0.6970 0.0678 0.0002 1.0030


B =

 0
0
0

−0.0007

 C =

 0
0
0

0.0010


where the deviation variables are defined as X = X −Xss.

3.2.2. Dynamic risk modeling and piecewise linearization
Next, to model the dynamic risk as a function of reactor tem-
perature (i.e. the safety-critical variable), we adapt µ as the
normal reactor operating temperature at 460 K and σ as a
deviation of 5 K to define UCL at 475 K. RI can thus be
quantified as per Eqs. 3-5, with the high risk region defined
as RI ≥ 2.82 in accordance with T ≥ 480K. The pseudo-
exponential function of RI is approximated using piecewise
linearizations. Four affine functions are identified to de-
scribe the risk propagation trajectory ranging from the nor-
mal operating point to the high risk region (Fig. 2). In sum,
Eq. 10 shows the output equation of deviation variable RI
(RI = RI −b) against the CSTR state variable T . Note that k
is a variable determined from Eq. 11, instead of a parameter
with a constant value.

RIk =
[
0,0,0,k

]
CA
CB
CS
T


k

(10)

k =


0.0078, T ∈ [460,472]
0.2147, T ∈ [472,477]
0.5496, T ∈ [477,481]
0.7629, T ∈ [481,495]

(11)

3.2.3. Risk-based multi-parametric controller design
Built on the integrated process and risk model comprising
Eqs. 9-10, a mp-MPC problem is formulated to achieve opti-
mal dynamic risk management. The controller tuning param-
eters are presented in Table 2. Since the T2 CSTR dynamics
is relatively slow with the controller time step as 1 min, we
first select OH = 10 which enables a 10-min fault-prognostic
period just relying on MPC moving horizon estimation. In
a later step, we will showcase the decoupling of controller
output horizon with the desired fault prognosis period.

Table 2: mp-MPC tuning parameters.
OH CH QR R1
10 1 104 10−6



Figure 4: mp-MIQP solution as a superset of mp-QPs.

The mp-MPC problem is further converted to a mp-MIQP
problem, in which the binary variables are introduced by
RI piecewise linearization. Due to the small combinatorial
space with the involved binary variables being mutually ex-
clusive, we solve the mp-MIQP by enumerating all the four
possible integer solutions and generating a superset of mp-
QP solution maps as depicted in Fig. 4. The actual solution
of mp-MIQP is therefore determined by mapping through
the mp-QP maps on their respective valid piecewise regions.
Using the tuning parameters in Table 2, each mp-QP prob-
lem is solved to have 59 critical regions with 8 parameters
(i.e., 4 state variables, RI as output variable, RI setpoint,
disturbance, and design variable Umax as in path constraint
Umin ≤ U ≤ Umax). This approach can be readily applied
to large-scale process systems with extended combinatorial
space by using decomposition-based mp-MIQP algorithms
(Oberdieck and Pistikopoulos, 2015).

To verify the controller performance, we perform closed-
loop validation against the original nonlinear CSTR and risk
model. The CSTR initial state is at 460 K and a step change
of the disturbance is introduced at t = 0 with ∆Tin = 25K. As
shown in Fig. 5, without controller on, the open-loop process
will reach the high risk region after around 9 hours followed
by risk surge. However, with the derived risk-based multi-
parametric controller, the risk can be well controlled at a low
level of RI ≈ 0 for the entire operating time. The controller
is also tested to stabilize reactor operation at a medium risk
level, which may offer a higher productivity with higher re-
actor temperature. In this regard, we select the dynamic risk
setpoint at 0.74 which lies between the upper control limit
and the high risk limit. As presented in Fig. 6, the risk-based
mp-MPC is able to effectively track the desired dynamic risk
setpoint as well as control it from escalation.

Under certain conditions, the process risk cannot be saved
from eventually evolving into the high risk region. An
indicative scenario is illustrated in Fig. 7 due to notably
larger disturbances, less coolant availability (Umax), and/or
more stringent high risk limit. In this case, an alarm is
raised at t = 11.13h when mp-MPC predicts the risk to en-
ter high risk region over the next 10-min output horizon,
and the risk actually reaches the limit at t = 11.35h. A
fault prognosis horizon of 13.2 min is thus enabled which
allows the operators to plan for abnormality response pru-
dently. It is also worth pointing out that, while waiting
for operator intervention, the risk-based mp-MPC continues
working to substantially mitigate the risk propagation speed
and consequence severity compared to open-loop operation.

Figure 5: Closed-loop control at low level of risk.

Figure 6: Closed-loop control at medium level of risk.

Figure 7: Fault prognosis and alarm raising leveraging MPC
moving horizon estimation.

t = 11.13h: alarm is raised for predicted high risk operation
t = 11.35h: dynamic risk reaches high risk region

3.2.4. Integrated design and control with fault prognosis
We further investigate fault-prognostic design and opera-
tional optimization following Eq. 7. The objective func-
tion is set as Eq. 12. τ is the fault prognosis time horizon
via the online dynamic optimizer, which decouples the pro-



cess safety forecasting from mp-MPC moving horizon es-
timation. A fault prognosis horizon of 10 minutes is se-
lected in consistence with section 3.2.3, while can be flex-
ibly shortened or prolonged based on need. Moreover, we
can reduce the multi-parametric control output horizon (OH)
from 10 to 2 which helps to relax the controller decision mak-
ing complexity. Under the scenario of low level risk control
optimization (RI ≤ 0.002), the optimal design is identified
as Umax = 48.2 kJ/(K · h ·m2) versus the original value of
Umax = 55.0 kJ/(K ·h ·m2) adapted from open literature. The
average operating cost is Umax = 41.5 kJ/(K ·h ·m2).

min F =
τ

∑
0

U/τ+WUmax (12)

where ∑
τ
0 U/τ accounts for the operating cost with U as a

near-linear function of utility cooling water flowrate, WUmax
is an indicator for design cost with W as a weight factor.

Conclusion
We have introduced an integrated design and multi-
parametric model predictive control framework for opera-
tional optimization and dynamic risk-based process safety
management. Ongoing work focuses on the extension to an
error-tolerant risk-based control and optimization approach
accounting for model approximation mismatch in process
safety-critical system applications.
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