

SAFE DEPLOYMENT OF REINFORCEMENT
LEARNING USING DETERMINISTIC

OPTIMIZATION OF TRAINED NEURAL NETWORKS

Radu-Alexandru Burtea and Calvin Tsay*
Department of Computing, Imperial College London

South Kensington SW7 2AZ

Abstract

Enabling reinforcement learning (RL) to explicitly consider constraints is important for safe deployment
in real-world process systems. This work exploits recent developments in deep RL and optimization over
trained neural networks to introduce algorithms for safe training and deployment of RL schemes. We show
how optimization over trained neural-network state-action value functions (i.e., a critic function) can
explicitly incorporate constraints, and we describe two corresponding RL algorithms. The first uses
constrained optimization of the critic to give optimal actions on which an actor is trained, while the second
guarantees constraint satisfaction during deployment by directly implementing actions from optimizing a
trained critic model. The two algorithms are tested on a supply chain case study from OR-Gym and are
compared against state-of-the-art algorithms TRPO, CPO, and RCPO.

Keywords

Constrained reinforcement learning, Optimization of trained neural networks, Supply chain optimization.

Introduction

Reinforcement learning (RL) has been central to many
notable successes in machine learning, such as in self-
driving cars, playing games, and operating data centers
(Shin et al., 2019). However, in comparison to traditional
model-based control strategies, e.g., model predictive
control, RL does not typically consider state constraints
explicitly. For many practical engineering applications,
simply maximizing reward without considering the
appropriateness of actions can lead to highly undesirable
consequences. For instance, in supply chain applications, an
RL algorithm may direct all goods to the cheapest
warehouse, without considering that the warehouse will
eventually reach capacity, creating massive backlogs.

Given the above, it is desirable to impose constraints
on the range of behavior that can be explored in RL. This
has inspired research into so-called safe RL (García &
Fernández, 2015). Several methods for safe RL allow

* To whom all correspondence should be addressed: c.tsay@imperial.ac.uk

implicit consideration of state constraints using stage-wise
reward or penalty functions. Alternatively, some safe RL
techniques use external knowledge, e.g., imitation learning,
and/or risk metrics during exploration.

This work takes advantage of two recent developments
to enable explicit consideration of state constraints during
deployment of RL: (i) incorporation of deep neural
networks into RL schemes (Arulkumaran et al., 2018),
known as deep RL, and (ii) techniques for deterministic
optimization of trained neural networks (Grimstad &
Andersson, 2019; Tsay et al., 2021). We present two
algorithms based on this combination. The first, called
OMLT-DDPG, comprises an actor-critic method, where
optimization over a critic neural network gives optimal
actions on which to train the actor. The second, called
SAFE, is a strategy for deployment, wherein directly

implementing actions from optimizing a trained critic
network guarantees constraint satisfaction.

The two proposed algorithms are applied to a multi-
level supply chain case study from OR-Gym (Hubbs et al.,
2020). Computational results demonstrate that OMLT-
DDPG is significantly more sample-efficient compared to
other RL methods, owing to the use of deterministic
optimization. The results further show the SAFE explicitly
satisfies known constraints during RL deployment.

Safe Reinforcement Learning Background

Markov decision processes, or MDPs, are the
foundation of RL problems. A given MDP is defined by a
state space S, action space A, reward function R, and
transition probability P. The goal of RL is to learn a policy
𝜋 that maximizes a performance metric 𝐽(𝜋), usually
defined as the total expected reward over an infinite time
horizon, subject to a discount factor. Safe RL methods seek
to also enforce constraints, typically by introducing some
cost function(s), analogous to reward. The inclusion of cost
functions results in constrained MDP, or CMDP.

Recent methods for safe RL such as constrained policy
optimization (Achiam et al., 2017) and interior-point policy
optimization (Liu et al., 2020) can provide safety guarantees
for CMDPs, but only in the form of simple constraints on
expected total discounted cost.

Trust-Region Policy Optimization (TRPO)

Although TRPO (Schulman et al., 2015) does not
consider constraints, it serves as the basis for several safe
RL algorithms and is briefly described here. TRPO is a
policy iteration algorithm based on computing the
advantage of one policy over another, i.e., the expected
improvement in the performance metric by switching from
one policy to another. Schulman et al. (2015) provide a
method for approximating this. As these approximate
updates resemble a first-order method when the policy is
differentiable, the step size between policies should be
constrained. This is typically done using a trust region
method, such as constraining the KL divergence to the old
policy when maximizing the advantage function.

Constrained Policy Optimization (CPO)

Achiam et al. (2017) extend TRPO to a constrained
MDP and introduce an algorithm useful for both safe
exploitation and exploration. The extension involves adding
constraints on the auxiliary cost functions on top of the
constraint on the distance metric between two successive
policy updates, resulting in the following optimization
problem to find policy 𝜋!"#:

max
$
𝐽(𝜋) (1) 	

s.t.	𝐽%!(𝜋) ≤ 𝑑& , ∀𝑖	 = 	1, … ,𝑚 (2)	
						𝐷'((𝜋, 𝜋!) ≤ 𝛿 (3)

where 𝐽%&(𝜋) is the total expected cost of the 𝑖)* constraint
over an infinite time horizon and 𝛿 is the step size for policy
iteration. The objective and constraints are replaced with
surrogate functions, for which worst-case bounds are
computed, based on the hyperparameters of the algorithm.
Again, this problem is computationally difficult and is
solved using a primal-dual method after linearizing 𝐽(𝜋)
and 𝐽%&(𝜋), and a second-order expansion for 𝐷'((𝜋, 𝜋!).
This approximation motivates a small step size 𝛿.

Reward Constrained Policy Optimization (RCPO)

Reward Constrained Policy Optimization (Tessler et
al., 2019) is similar to CPO but instead solves an
unconstrained optimization problem with Lagrange
multipliers instead of using a Primal-Dual method with hard
constraints. The optimization objective of the problems then
becomes:

min
+,-

max
$
9𝐽(𝜋) − 𝜆(𝐽%(𝜋) − 𝑑)< (4)

Tessler et al. (2019) consider that this optimization

problem can be viewed on two timescales: a faster one,
where the policy is optimized, and a slower one, which
involves gradually increasing λ until the constraint is
satisfied. This is achieved by selection of different step sizes
for the updates to the Lagrange multipliers and the policy.

Algorithm 1: OMLT-DDPG

Our approach incorporates deterministic optimization
of neural networks using the Optimization and Machine
Learning Toolkit (OMLT) into Deep Deterministic Policy
Gradients (DDPG). This section first summarizes DDPG
and OMLT and then presents our algorithm.

Deep Deterministic Policy Gradients (DDPG)

The Deep Deterministic Policy Gradients algorithm
(Lillicrap et al., 2016) was conceived as a continuous-space
extension to the popular deep Q-learning framework
(DQN). DQN cannot be directly applied to continuous
action spaces, as selecting the action with maximum Q-
value at a given state becomes complex and inefficient for
high-dimensional action spaces. DDPG is an off-policy,
model-free algorithm that instead uses the Q-value function
to estimate the policy gradient.

Specifically, DDPG keeps a parameterized policy
network, known as the actor, which deterministically maps
states to actions. The other component of the algorithm is a
critic network, which behaves as the Q-value function used
in DQN. The actor is then trained using gradients from the
critic, and the critic is trained by minimizing the difference
between the expected discounted rewards if the greedy actor
policy is followed, and the current Q-value assigned by the
critic to the state-action pair.

Most DDPG implementations maintain a replay buffer
to avoid “catastrophic forgetting” of previous transitions.

Optimization and Machine Learning Toolkit (OMLT)

The challenge of selecting the action with maximum Q-
value from a given neural network (NN) can be viewed as
optimization over a trained neural network (the neural
network parameters are fixed during an RL step). We
propose to address this using the Optimization and Machine
Learning Toolkit (OMLT), an open-source package for
optimization over pre-trained machine learning models
(Ceccon et al., 2022).

OMLT enables engineers and optimizers to easily
translate learned machine learning models to optimization
formulations. OMLT 1.0 supports GBTs through an ONNX
(https://github.com/onnx/onnx) interface and NNs through
both ONNX and Keras interfaces. OMLT transforms pre-
trained machine learning models into the Python-based
algebraic modeling language Pyomo (Bynum et al., 2021)
to encode optimization formulations. The literature often
presents different optimization formulations as competitors,
but in OMLT, competing optimization formulations
become alternative choices for users.

DDPG with Deterministic Optimization of NNs

Pseudocode of our proposed OMLT-DDPG algorithm
is presented in Figure 1. OMLT-DDPG preserves properties
of the DDPG algorithm, but is extended for CMDPs and
benefits from deterministic optimization of trained NNs.

Figure 1. OMLT-DDPG Algorithm

The algorithm is initialized with actor and critic neural
networks, as well as target actor and critic networks. For
each episode the agent observes the initial state and

executes the policy defined by the actor network, storing
transitions in the replay buffer. The algorithm then samples
a batch of transitions of length 𝑁 and updates the critic
network against the target network.

Up to this point, our algorithm closely resembles
DDPG. However, the original DDPG uses the negative
value of the critic for a given state-action pair as the loss for
training the actor. DDPG-OMLT instead uses the optimal
actions obtained by optimizing the critic network in OMLT,
subject to the problem constraints. Interestingly, the
algorithm preserves the theoretical properties of the policy
gradients used in DDPG, if the optimal actions are obtained
by optimizing for the gradients of the critic network (this is
the case if a gradient-based optimizer such as ipopt is used).

Note that this comprises solving one constrained
optimization problem for each sample from the replay
buffer. Therefore, we use the predicted action from the actor
as the initial guess to expedite optimization. We
hypothesize that in the initial stages of training the actions
chosen in this manner will be suboptimal, as the critic is not
accurate enough to “critique” state-action pairs accurately.
Nevertheless, this may prove beneficial for exploration.
Given the above, we introduce a warm-up period 𝜎, where
only the actor is fixed and only the critic is updated.

Following the actor and critic updates, the target
networks are also updated using soft updates, i.e., only a
certain portion τ of the weights are updated. Lillicrap et al.
(2016) found this to improve stability.

Algorithm 2: SAFE

The above DDPG-OMLT algorithm promotes safe
exploration and exploitation by always incorporating
environment constraints when optimizing over the critic
network to select optimal actions. However, when used in
deployment, the actor can still give an action that results in
constraint violation. This section describes an algorithm,
SAFE, that explicitly enforces constraints in deployment.

Usually, in an actor-critic setting the actor network
gives the action to take (as suggested by the name). OMLT
enables us to directly use the critic network to choose the
optimal actions at each state, which guarantees constraint
satisfaction and high rewards. The pseudocode that
describes this can be found in Figure 2.

A key different between OMLT-DDPG and SAFE is
that OMLT-DDPG uses the constraint values in the
previous timestep to evaluate the actor (after the action has
been taken), while SAFE uses the constraint values in the
current timestep to only take an action that is feasible. If an
actor network is available, this can be used to provide initial
guesses to the optimization algorithm.

Figure 2. SAFE Algorithm

We note that SAFE is model-agnostic, meaning that it
can use any state-action value neural network, as long as the
activation functions used in the neural network are
supported by OMLT. While we only test SAFE with the
critic models from OMLT-DDPG, any Q-value neural
network that uses a state-action pair as input can
theoretically be used in this framework.

Computational Results

We employ the multilevel supply chain case study from
OR-Gym to test OMLT-DDPG and SAFE. We further
implement TRPO, CPO, and RCPO as baselines for
comparison.

Description of Environment

We select a supply chain inventory management
problem from OR-Gym (Hubbs et al., 2020) as the
environment for our experiments. The model comprises a
supply chain with multiple levels organized in a tree-like
structure from production nodes to distribution and retail.
The agent must place replenishment orders at nodes
throughout multiple levels of a supply chain, subject to lead
times and uncertain customer demand at retail nodes.

Each episode has a predetermined length, and there are
no conditions for early termination. Inventories are subject
to capacity constraints, with excess incurring a penalty cost.
Likewise, penalties are incurred for unmet customer
demand. Given the above, a single interaction between the
agent and the environment comprises the following steps:

1. Each node gives replenishment orders to upstream
nodes (constrained by available inventory).

2. Replenishment orders are shipped with lead times.
3. Demand is generated at retail nodes and is either

met by available inventory or backlogged.
4. A holding cost is charged for surplus inventory.

The reward function at each step is computed as the

sales revenue, less the procurement and operating costs, as
well as costs associated with unfilled demand and holding

inventory. Our constrained formulations enforce the
capacity limits for the inventories at modeled nodes.

A three-level supply chain is selected, and algorithms
are run for 150 episodes, except for RCPO, which required
significantly more episodes to converge. Uncertainty is
introduced by customer demand, which we model using a
Poisson distribution with mean of 20. Each experiment is
repeated with five random starts. Note that we have used a
variant of the environment with backlog instead of lost
sales. The latter would simply incur a penalty whenever
demand is not met in a particular period.

DDPG is typically run with a lower learning rate for the
actor than for the critic, allowing the two to converge on
different “timescales.” However, we found OMLT-DDPG
to benefit from a faster learning rate for the actor, and we
set the actor and critic learning rates to, respectively, 0.005
and 0.001. We used a batch size of 8, sampled from a replay
buffer size of maximum 35000. We found a strong tradeoff
between performance gain and computational time related
to the batch size. We use a batch size of 40000 for CPO and
TRPO.

Safe Reinforcement Learning Results

Figure 3 and Table 1 compare the performance of the
various algorithms through 150 episodes. TRPO, CPO, and
RCPO exhibit more stable behavior, while OMLT-DDPG
seems to fluctuate. This can be attributed to the stability
associated with enforcing constraints on maximal KL
divergence between policy updates. However, OMLT with
warm-up achieves rewards only 6% and 28% lower than
CPO and TRPO, respectively, which is noteworthy as
OMLT-DDPY uses 1334x fewer samples. This may be
attributed to the information gain from the use of
deterministic optimization. Indeed, OMLT-DDPG achieves
a reward of 200 after only four episodes, and this steep
learning curve is consistent in our experiments, suggesting
behavior as a “few-shot” learner.

Figure 3. Training rewards in supply chain case study.

Table 1. Training performance for supply chain
case study

 OMLT
DDPG

OMLT
DDPG
(NW)

CPO TRPO RCPO

Reward
(× 10!"
final 20
ep.)

316.1
±70.0

223.6
±129.1

323.7
±17.7

386.4
±8.6

288.5
±34.5

Penalties
(final 20
ep.)

3052
±2507

212
±301

2727
±216

2023
±676

47±67

CPU
Time

~3h ~3.5h ~1h ~1h ~0.1h

Samples 4500 4500 6 mil 6 mil 45000

In this experiment, the incorporation of the warm-up

period does not seem to help OMLT-DDPG; however, more
experiments documenting when the warm-up period helps
are provided in our presentation. In general, the lack of
warm-up period results in more aggressive behavior by the
agent. Figure 4 compares how close the orders at the first
supply chain node are between the implementations of
OMLT-DDPG with and without a warm-up period. Without
a warm-up period, the actor initially takes more varied
actions, but eventually settles to a more conservative
operating regime. This is partially explained by the Q-value
distributions of the critic: without warm-up, the distribution
is relatively flat, but with warm-up, we found the critic to
(at least initially) overvalue actions with high means.

Figure 4. Distance to constraint for the first node for

OMLT-DDPG with and without a warm-up period.

Safe Deployment Results

To simulate safe deployment in production, we deploy
the models trained after the 150 episodes. For OMLT-
DDPG without warm-up, we use a snapshot of the models
from episode 65, after which the models seem to overfit the
environment. Deployment of the algorithms in production
is simulated by using the learned models subject to new
random episodes without further training. The rewards and

penalties incurred by using these trained models to operate
the supply chain are shown in Figure 4 and Table 1.

Figure 5. Rewards and penalties incurred during safe

deployment in supply chain case study.

Table 2. Deployment performance for supply
chain case study

 OMLT
DDPG

SAFE CPO TRPO RCPO

Reward
(× 10!")

433.9
±23.9

365.0
±35.4

359
±10.1

340.7
±9.3

280.8
±19.3

Penalties
(× 10!")

40.3
±21.8

0±0 48.0
±8.8

19.2
±5.8

36.3
±2.5

Figure 4 and Table 2 show that OMLT-DDPG

outperforms the other algorithms in terms of rewards; it also
obtains smaller penalties. Compared to CPO, OMLT-
DDPG achieves 21% higher rewards and 20% less penalties
in deployment. The SAFE algorithm results in more
unstable rewards, but is the only algorithm to not
accumulate any penalties during deployment. This
demonstrates the value of explicitly enforcing process
constraints during reployment of RL.

Conclusions

This presentation introduces two algorithms, OMLT-
DDPG and SAFE, for safe reinforcement learning and
deployment, based on constrained optimization over trained
critic networks. The first algorithm uses an actor-critic
framework; constrained optimization over the critic
network is used to provide targets on which the actor is
trained. We show that this algorithm is very sample
efficient, resembling behavior of a “few-shot” learner. The
second algorithm uses constrained optimization over a pre-
trained critic network to explicitly enforce process
constraints during deployment.

Acknowledgments

The authors gratefully acknowledge support from the
Engineering & Physical Sciences Research Council
(EPSRC) through fellowship grant EP/T001577/1 and an
Imperial College Research Fellowship to CT.

References
Achiam, J., Held, D., Tamar, A., Abbeel, P. (2017). Constrained

policy optimization. In Proceedings of the 34th
International Conference on Machine Learning (ICML),
PMLR, 70, 22.

Arulkumaran, K., Deisenroth, M. P., Brundage, M., Bharath, A. A.
(2017). Deep reinforcement learning: A brief survey.
IEEE Signal Processing Magazine, 34(6), 26.

Bynum, M. L., Hackebeil, G. A., Hart, W. E., Laird, C. D.,
Nicholson, B. L., Siirola, J. D., Watson, J. P., Woodruff,
D. L. (2021). Pyomo-optimization modeling in Python.
Springer, New York.

Ceccon, F., Jalving, J., Haddad, J., Thebelt, A., Tsay, C., Laird, C.
D., Misener, R. (2022). OMLT: Optimization &
Machine Learning Toolkit. arXiv:2202.02414

García, J., Fernández, F. (2015). A comprehensive survey on safe
reinforcement learning. J. Mach. Learn. Res., 16, 1437.

Grimstad, B., Andersson, H. (2019). ReLU networks as surrogate
models in mixed-integer linear programs. Comput.
Chem. Eng., 131, 106580.

Hubbs, C. D., Perez, H. D., Sarwar, O., Sahinidis, N. V.,
Grossmann, I. E., Wassick, J. M. (2020). OR-Gym: A
reinforcement learning library for operations research
problems. arXiv 2008:063192

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa,
Y., Silver, D., Wierstra, D. (2016). Continuous control
with deep reinforcement learning. In Proceedings of the
International Conference on Learning Representations.

Liu, Y., Ding, J., Liu, X. (2020). IPO: Interior-point policy
optimization under constraints. In Proceedings of the
AAAI Conference on Artificial Intelligence, 34, 4940.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P.
(2015). Trust region policy optimization. In Proceedings
of the 32nd International Conference on Machine
Learning (ICML), PMLR, 37, 1889.

Shin, J., Badgwell, T. A., Liu, K. H., Lee, J. H. (2019).
Reinforcement learning-overview of recent progress and
implications for process control. Comput. Chem. Eng.,
127, 282.

Tessler, C., Mankowitz, D. J., Mannor, S. (2019). Reward
constrained policy optimization. In Proceedings of the
International Conference on Learning Representations.

Tsay, C., Kronqvist, J., Thebelt, A., Misener, R. (2021). Partition-
based formulations for mixed-integer optimization of
trained ReLU neural networks. In Proceedings of the
International Conference on Neural Information
Processing Systems (NeurIPS), 34, 3068.

