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Abstract
This paper addresses how to combine the two main engineering design tools, optimization and feedback, to obtain
high performance process control or process operation systems. We discuss the historical development of process con-
trol, where feedback dominated the early practical designs, and optimization was then incorporated much later through
technologies like model predictive control. In chemical production scheduling, on the other hand, optimization had a
strong early influence on the problem formulation, and feedback has only recently made an appearance. The recent
developments in both process control and scheduling are illustrated with specific examples emerging from this series
of FOCAPO/CPC meetings. The paper next presents recent theoretical developments in nominal and stochastic model
predictive control. The closed-loop properties that arise from these different open-loop optimal control problems are then
compared. The paper closes with some discussion of when the improvements of the closed-loop properties are worth the
added complexity of the stochastic optimal control problem.
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1 Introduction

Creating systems to ensure reliable and high performance
process control or process operations requires smart use of
our two main engineering design2 tools: optimization and
feedback. The purpose of optimization is to ensure high per-
formance, especially in the nominal case, and the purpose of
feedback is to ensure reliability of this performance in the
face of the inevitable unknown disturbances. The holy grail
would be to perform an optimal feedback design; we call it
the holy grail because that problem remains intractable for
anything but the simplest situations: processes modeled by
unconstrained linear dynamical systems and quadratic per-
formance objectives.3

If the optimal feedback design is out of reach for most
processes, then, unfortunately, we have to be smart. The
problem of how to best combine optimization and feedback is
now complex and many alternatives can be envisaged, each

with particular strengths and weaknesses. And we cannot
let every system design become its own special case. The
development cost is too high, and the maintenance cost of
many, one-off, complex designs is overwhelming. So we
still require invention of general design approaches that han-
dle large classes of processes. Creating that kind of general
design requires ingenuity combined with careful analysis of
performance and reliability tradeoffs. So one objective of this
paper is to summarize our field’s current level of ingenuity.

You can learn a lot about a civilization’s mathematical
development by observing how general is their concept of a
function. Similarly you can learn a lot about a civilization’s
process systems engineering development by observing what
combinations of optimization and feedback have they been
able to reduce to practice. We shall attempt such an assess-
ment of our field in this paper.

1 Corresponding author. Email: jbraw@ucsb.edu. This work was supported by the National Science Foundation under Grant 2027091.

2 Note that throughout this paper, design refers to the design of an algorithm or method used for control or scheduling. This meaning should not be
confused with the field of process design, which we do not discuss here.

3 See, for example, (Rawlings et al., 2020, pp. 90–93) for a brief statement of the difficulties of solving the optimal feedback problem using dynamic
programming for nonlinear models of reasonable state dimension.



2 Historical context

History provides valuable context for any assessment of a
current status and an outlook for the future. In the process
control side of process systems engineering, the considera-
tions of practical application mainly drove the field forward
in its early history. Bequette (2019) provides an excellent
summary of this period and describes the industrial develop-
ments for controlling temperature, pressure, and level during
the period 1910–1930s. The opportunity to improve process
operation through automation led to the development of feed-
back control analog hardware that implemented simple PID
(proportional-integral-derivative) algorithms that responded
to measurement signals, and made automatic adjustments to
the available actuators to maintain process operations despite
the unknown process disturbances taking place. Automa-
tion was essential because the hardware needed to respond
in real-time in a continuous processing environment, and hu-
man operators were expensive and unreliable to handle large
numbers of routine and low-level processes and units. In this
early era of process control, there is clearly a large contri-
bution from feedback and little or no contribution from op-
timization. There is also a human, cultural impact of this
history: process and control engineers that lived through this
period could not help but develop a high appreciation for the
power of feedback. There was little regard for optimization
as it was hardly even used in any practical, industrial process
control application.

Optimization was not absent from the entire field of con-
trol, it was just not (yet) having much impact on practice.
Control theory was under steady development, however, and
optimization was mainstream to the development of control
theory. The late 1950s and early 1960s were an explosive
period of rapid development of optimal control, in particular.
Tremendous progress was made on both the open-loop op-
timal control problem, summarized in results like Pontrya-
gin’s maximum principle (Pontryagin et al., 1961), as well
as the feedback form of the optimal control problem, sum-
marized under the names of dynamic programming and the
Hamilton-Jacobi-Bellman equation (Bellman and Dreyfus,
1962; Bryson and Ho, 1975). But even the developers of op-
timal open-loop control during this period had a strong sense
for the requirements to deploy a feedback version of the con-
troller in applications. For example, the following passage
from a leading optimal control textbook of the 1960s has an
almost modern outlook (Lee and Markus, 1967, p. 24).

“In each optimal control problem our ultimate goal is
to synthesize the optimal controller by an appropriately de-
signed closed or feedback loop. The advantage of such a
closed-loop control, as against an open-loop control, is that
the process then becomes self-adjusting and self-correcting.
A feedback control can often correct for unpredictable vari-
ations in the environment of the plant or for repeated pertur-
bations or irregularities in the process.”

A note on model predictive control (MPC). Many ac-
counts have been written about the history of MPC, and there
is little need to revisit those accounts here. A standard story

line is that MPC emerged from industrial practice in the pro-
cess industries in the 1970s with implementations such as ID-
COM and DMC. While no one doubts that successful indus-
trial implementation was a critical event—perhaps the criti-
cal event—leading to widespread interest in MPC, it does not
address the development of the ideas and concepts underpin-
ning MPC.

The critical intellectual idea to combine feedback and op-
timal control with a moving horizon certainly did not first
emerge from 1970s industrial implementations in the pro-
cess industries. It is difficult to pin down a single source for
this idea. For example, consider the following passage, taken
again from Lee and Markus’s 1967 graduate level textbook,
“Foundations of Optimal Control” (Lee and Markus, 1967,
p. 423).

“One technique for obtaining a feedback controller syn-
thesis from knowledge of open-loop controllers is to mea-
sure the current control process state and then compute very
rapidly for the open-loop control function. The first portion
of this function is then used during a short time interval, after
which a new measurement of the process state is made and
a new open-loop optimal control function is computed for
this new measurement. The procedure is then repeated. In
this way external disturbances and other unknowns are taken
into account in much the same way as is done by a feedback
controller.”

So the authors first offer a succinct summary of model
predictive control, and then go on to make an explicit con-
nection to optimal feedback control.

“If no disturbance or other unknowns are encountered,
the recomputed control function should agree with the ap-
propriate portion of the previously computed controller. This
is essentially the principle of optimality [Bellman] in the the-
ory of dynamic programming, a feedback principle.”

Here is a clearly articulated proposal to combine opti-
mization and feedback, and the reader cannot help but be
struck by the casual and offhand manner in which the idea
is presented. The authors are not announcing a breakthrough
research idea, but offering a simple reminder of some com-
mon lore of the control community, and stressing the impor-
tance of feedback in addition to open-loop optimal control.
The least we can conclude is that the notion of combining
open-loop optimal control with a moving horizon to obtain a
feedback implementation was mainstream in the early 1960s
control theory community. It seems pointless at best and
misleading at worst to attempt to assign that critical idea to
any individual or group of practitioners. It likely occurred to
all of the 1950–1960 era control theory researchers who had
been exposed in their education to both feedback controller
design and optimal control theory.

What was missing in the 1960s was essentially a tech-
nology to make the phrase “compute very rapidly for the
open-loop control function” deployable in applications. For-
tunately for all of us working today in process systems engi-
neering, the computing technology necessary for implement-
ing open-loop optimal control as a feedback controller, en-
tered a period of extremely rapid development shortly there-
after. The timing could not have been better. The combina-



tion of optimal control theory and inexpensive online com-
puting technology enabled a revolution in what control the-
ory could be applied in process control applications. The
aftershocks of this rapid development in optimal control and
fast and inexpensive online computing are still being felt to-
day. The successful deployment of these ideas in process
control applications led to successful deployments in many
other industries such as flight control, robotics and mecha-
tronics applications, HVAC systems, power systems, etc. It is
not an exaggeration to say that the process control practition-
ers led the way to a revolution in advanced control technol-
ogy that was deployed widely across many industrial sectors
of the world economy.

Another illustrative example of the importance of judi-
ciously combining feedback and optimal control arises when
we consider accounting for uncertainty in the MPC design.
One natural robust control formulation is the so-called min-
max approach where we minimize over the manipulated vari-
ables, as in standard MPC, but maximize over the uncertainty
in the inner problem. That approach was applied to the “Shell
Standard Control Problem” by the Shell research team at the
second Shell Workshop held in Houston in 1988 (Cuthrell
et al., 1990). And what was the outcome? The bottom line
was that there was no improvement in the closed-loop robust-
ness compared to a nominal MPC design. All of us attend-
ing the workshop were scratching our heads over that out-
come. David Mayne, an eminent control theorist from elec-
trical engineering, pointed out the reason a few years later.
One cannot achieve robustness by optimizing over an open-
loop optimal control as a sequence of control actions. One
must optimize over control policies. As David summarizes it
(Rawlings et al., 2020, p. 199)

“The obvious and well-known conclusion is that feedback
control is superior to open-loop control when uncertainty is
present. Feedback control requires determination of a con-
trol policy, however, which is a difficult task if nonlinearity
and/or constraints are features of the optimal control prob-
lem.”

And David shows how to design a (robust) min-max MPC
that does guarantee robustness (Rawlings et al., 2020, pp.
220-223). The trick is to finitely parameterize the policy
to maintain a tractable online optimization problem. We il-
lustrate this point also later in this paper when we define
stochastic MPC, another form of MPC that addresses model
uncertainty. David’s contribution to MPC theory were es-
pecially noteworthy because he brought his vast expertise
in optimal control and nonlinear control theory to bear on
the MPC problem; he also brought the MPC problem to the
attention of the broader control theory community, which
sparked many different contributions to MPC from a much
wider group of outstanding control theorists.

In summary, the interaction of these two communities,
the practitioners in the process industries, and the control
theory researchers, was indeed a special one. And that in-
teraction took place largely at this series of meetings over the
last thirty years. There was a lot of passion displayed by both
groups, and there were many good ideas contributed by both
groups as well. There was some heat, but there was also a

lot of light. A common mythology discussed at these meet-
ings centered around the existence of a supposed “gap” be-
tween academics doing control theory for theory’s sake, and
practitioners requiring reliable technologies to address their
current control operational difficulties. That characterization
does not do justice to the interactions that I (JBR) witnessed
at these meetings. When you see one set of respected prac-
titioners arguing to deploy large-scale model predictive con-
trol, and another set of respected practitioners resisting that
notion and calling instead for better tuning guidelines to han-
dle multi-loop PID controllers, that is hardly an academic-
industrial gap between theory and practice. That is basically
a conflict over what the future of industrial practice is going
to become. And everyone had a stake in that outcome, and
no one could predict whether either of these technologies or
something else entirely was going to emerge as a clear win-
ner. I (JBR) recall traveling home after several of the CPC
meetings and thinking, “Wow, what just happened; where are
we going next?” I could not wait to get back home to start
working on the new ideas. For me, that is the legacy of the
CPC side of these meetings.

A note on FOCAPO/CPC collaborations. The authors
know much less about the historical development of process
operations outside of process control. Consider chemical
production scheduling, for example. The history of process
scheduling is quite different than process control where the
early practice was dominated by feedback solutions with lit-
tle optimization. General scheduling (e.g., for discrete man-
ufacturing) was studied in the 1950s. Chemical production
scheduling is younger still—it appeared as a subdiscipline in
the 1970s. Chemical production scheduling felt a stronger
early influence from academic research focusing on opti-
mization, i.e., solving for an optimal schedule. Feedback was
not much considered until around the time of the merging of
FOCAPO and CPC in 2012. The first joint FOCAPO/CPC
meeting took place in Savannah, GA in January 2012. Chris-
tos Maravelias and I (JBR) were collaborating then on using
feedback in optimal scheduling to add performance guaran-
tees to the closed-loop schedule. We thought that collabora-
tion would illustrate overcoming challenges in bringing these
two communities into closer contact. The key for us turned
out to be developing a common language for expressing the
process models. That development took place over a few
months in this way: Christos and I shared a PhD student,
Kaushik Subramanian. Kaushik would meet with me, and I
would say, “Those scheduling models do not make any sense;
here’s how we would express a dynamical system model.”
Kaushik would meet with Christos, and Christos would say,
“Wait, the control people do what? That can’t represent a
scheduling model.” Finally, after a few months of this treat-
ment Kaushik said, “Here’s how you translate a scheduling
model into a dynamic state-space model, and here’s how you
then solve it.”

What I (JBR) learned from this experience is that to bring
two research communities together, you require. . . one really
smart graduate student. The graduate student has conversa-
tions with both professors. Over a few months the graduate



student becomes bilingual. Neither professor ever learns the
other’s language.4 After a few months the graduate student
can suddenly speak a new language to both professors, and
you write down that new language. The beauty is that all
three can now speak the new language. The language that
Kaushik developed is summarized in (Subramanian et al.,
2012). The translation provided enables the control com-
munity to design a feedback solution to the scheduling prob-
lem by formulating an MPC control problem for the dynamic
model equivalent of the scheduling model.

Fruitful collaborations often impact everyone participat-
ing. Collaborators do not merely import ideas from other
fields, they cross-pollinate. Control people expect that con-
trol theory might have something to contribute to chemical
production scheduling because control exploits feedback to
obtain robustness to disturbances and modeling errors, and
feedback was largely missing in early optimal scheduling.
But did scheduling have any impact on control theory? The
answer is yes. By its nature, scheduling focuses attention on
the discrete decision variables as an essential part of any ap-
plication. Integers abound: which products should be made,
in what sequence, in which pieces of equipment? Of course,
discrete decisions appear in many process control problems,
but traditionally they were handled with heuristics and su-
pervisory logic, and not solved on-line as part of the optimal
control problem. In MPC, for example, discrete decisions
had been introduced in (Slupphaug et al., 1998; Bemporad
and Morari, 1999), but the theory for the closed-loop proper-
ties for these systems was fragmentary and developed largely
as special cases. Motivated by their importance in scheduling
applications (and HVAC energy optimization), these integer
decisions were fully integrated into mainstream MPC the-
ory in (Rawlings and Risbeck, 2017). This development was
the thesis topic of another smart graduate student, Michael
Risbeck, who also did joint research with Christos. Michael
took Kaushik’s starting point to its logical conclusion and
formulated the fully integrated scheduling and control prob-
lem, also expressed in state-space form. When tractable, that
formulation can also be optimized directly in an economic
MPC framework, and when a feasible reference trajectory is
used as a terminal constraint, the closed-loop economic per-
formance of the nominal system is shown to be at least as
good as the reference trajectory (Risbeck et al., 2019). So
we have a performance bound on the (nominal) closed-loop
system that is better than the best available feasible, open-
loop reference trajectory. From a theory perspective, that’s
a good starting point for integrating scheduling and control,
but much work remains to reduce such an approach to prac-
tice.

The second author of this paper also participated as a
PhD student in a (third) research collaboration with Chris-
tos. This one was a somewhat different but similar story to
Kaushik’s. In this collaboration we were trying to charac-
terize and analyze the robustness of the feedback scheduling
solution to unknown disturbances, such as equipment break-
downs, canceled orders, task delays, etc. But we already had

a common modeling language, so conversations were easier
at first. The ones with me then went like this, “Wait, what?
Those disturbances are not small, like process and measure-
ment noise, those disturbances are large; no controller can
handle those. Koty, tell Christos that’s hopeless.” Koty would
come back later and tell me, “Well, Christos says, ‘Hopeless
or not, those are the relevant disturbances. What can a feed-
back solution do about them?’ ” And that seemed like an
impasse. But then Koty had a good idea. Robustness first
had to be redefined from a stochastic perspective. The fo-
cus then changes from bounds on worst performance over
all disturbances to bounds on average performance over all
disturbances. And those large disturbances required a differ-
ent probability distribution. And then we could say some-
thing about the stochastic robustness to those large (but rare)
disturbances (McAllister et al., 2022; McAllister and Rawl-
ings, 2021). What I learned from this collaboration was basi-
cally the same lesson. The graduate student talks to two dif-
ferent experts. The graduate student eventually internalizes
what those experts know. The graduate student then has a
new idea. Why couldn’t Christos and I just generate the new
idea directly without the third party? I have no explanation.
Maybe psychologists have studied this issue and know the
answer. Interestingly, we also never required a meeting with
all three of us. Of course we had some of those meetings as
well, but they were not the ones where the magic happened.

So in 2023, at the time of this third joint FOCAPO/CPC
meeting, have the fields of optimal operation, production
scheduling in this case, and feedback control been success-
fully integrated? A fair answer seems to be: No, not yet, but
the situation remains fluid. Certainly such an integration has
not been reduced to standard industrial practice as it has in
process control. After a plenary lecture on process schedul-
ing at the second joint meeting in Tucson (2017), I (JBR)
asked the presenter if there was a reason one would not want
to reschedule every time new information became available.
The speaker’s reaction was basically, “Mon dieux, we would
never consider something crazy like that. Practitioners do not
like changes to the schedule!” I remember thinking, “Well,
at least the control practitioners were not telling to us to keep
our hands off the valves in control applications.”

But consider as well the recent and first textbook on
chemical production scheduling(Maravelias, 2021, p. 365).

“In general, decisions obtained from a finite horizon plan-
ning model are implemented in a setting where the system
operates indefinitely and under uncertainty, hence, what the
model returns as optimal predicted solution may not be op-
timal for the long-term operation of the actual system.. . . As
time passes by, more information becomes available, and this
information should be accounted for as soon as possible to
determine new decisions. Thus, real-time scheduling is a
generalization of rescheduling, since it is based on a recom-
putation that is carried out not only upon the realization of
trigger events but also periodically to consider new informa-
tion.”

So time will tell. Perhaps Maravelias (2021) will become

4 Professors are notoriously stubborn and slow learners.



the Lee and Markus of the scheduling community and be
quoted at some FOCAPO/CPC meeting 50 years from now
as proof that the notion of combining feedback with optimal
scheduling was a mainstream idea in the scheduling commu-
nity as early as the 2020s.

3 Nominal and Stochastic Model Predictive Control

So after these admittedly subjective and selected historical
comments, we would like to return to the main question
posed in the title of the paper: how do we best combine or
harmonize feedback and optimization to obtain high perfor-
mance that is also robust to either unknown or imperfectly
modeled disturbances affecting a system. And now we would
like to be precise about what is known and what is not known
about this issue. Grand generalizations may pass muster
when summarizing some developments of the distant past,
but such generalizations are dangerous and misleading when
summarizing a complex, current state of the art. Also, given
the limits on the authors’ expertise, we have to restrict this
discussion to the state of affairs in model predictive control
and optimal stochastic control.

Wonham (1969) starts his optimal stochastic control pa-
per with the sentence, “STOCHASTIC CONTROL is a conve-
nient misnomer for the control of systems subject to stochas-
tic disturbances.” Similarly, stochastic MPC is applying
MPC to systems where the model of the system includes
stochastic disturbances, i.e., the process model is (1) rather
than (2). But certainly we cannot expect the plant’s true dis-
turbances to be captured by the disturbance model chosen in
stochastic MPC. That case reflects an unrealistic belief that
sure, nature is random, but we somehow get to know the ran-
domness exactly. If only life were that simple.

But simulation and case studies can tell us a lot about
what might happen when we apply MPC to a plant with some
unknown randomness. In simulation, the designer can test
the performance of the control system in many different sce-
narios. For example, we can evaluate nominal MPC’s per-
formance using the disturbances as modeled in the stochastic
MPC controller (is nominal MPC robust to disturbances?)
We can evaluate stochastic MPC’s performance when there
are no disturbances (does stochastic MPC sacrifice nominal
performance in search of robustness to disturbances?). Case
studies of this sort are quite informative. But case studies can
take us only so far. It is unlikely that we can draw general
conclusions without theory and analysis of the control sys-
tems. We next present some recent theoretical developments
on the question of whether stochastic MPC has obtained any
closed-loop properties that are different than those achieved
by nominal MPC.

Notation

Let I and R denote the integers and reals. Let superscripts
on these sets denote dimensions and subscripts on these sets
denote restrictions (e.g., Rn for real vectors of dimension n
and I0:N for integers from 0 up to and including N ≥ 0.) Let
| · | denote Euclidean norm. The function α : R≥0 → R≥0 is
in class K , denoted α(·) ∈ K , if α(·) is continuous, strictly

increasing, and α(0) = 0. The function α : R≥0 → R≥0 is in
class K∞ if α(·) ∈ K is unbounded, i.e., lims→∞ α(s) = ∞. A
function β : R≥0×I≥0 →R≥0 is in class K L if, for fixed k ∈
I≥0, the function β(·,k) is in class K and, for fixed s ∈ R≥0,
the function β(s, ·) is nonincreasing and limk→∞ β(s,k) = 0.
Let E[·] denote expected value of a random variable.

3.1 System Model

We consider discrete time, stochastic systems of the follow-
ing form.

x+ = f (x,u,w) (1)

in which x ∈ Rn is the state, u ∈ U ⊆ Rm is the input,
w ∈ W ⊆ Rq is the disturbance, and x+ denotes the succes-
sor state. We treat the origin (x = u = 0) as the steady-state
target (setpoint) of interest. Moreover, we assume that the
disturbances w ∈ W are random variables that are indepen-
dent and identically distributed in time (i.i.d.) with zero mean
(E[w] = 0). Let µ denote the probability distribution for w and
let µ ∈ M (W) denote the collection of all probability distri-
butions on the support W that are zero mean. Let Σ denote
the covariance matrix for w, i.e.,

Σ := E[ww′]

for all µ ∈ M (W). To control this stochastic system, we con-
sider two variations of MPC.

3.2 Nominal MPC

In nominal MPC, we use only a nominal model of the system,
i.e.,

x+ = f (x,u,0) (2)

to design the controller. For the horizon N ∈ I≥1, we use
φ̂(k;x,u) to denote the state trajectory of (2) at time k ∈ I0:N ,
given the initial state x ∈ Rn and input trajectory u ∈ UN .
We allow input constraints u ∈ U, but do not enforce state
constraint in the optimization problem. For a perturbed sys-
tem, there is no guarantee that these state constraints can
be satisfied. Instead, we convert these state constraints to
penalty functions in the stage cost (Zheng and Morari, 1995;
Scokaert and Rawlings, 1999). Thus, the optimizer avoids
violating these constraints if possible, but does not produce
an infeasible optimization problem otherwise. We do, how-
ever, require a terminal state constraint denoted by the set
X f ⊆ Rn. To characterize the performance objective for the
controller, we define a stage cost ℓ(x,u). We also define a
corresponding terminal cost Vf (x) that is chosen to guaran-
tee stability and robustness.

We define the set of admissible input trajectories, feasible
initial states, and objective function, respectively, as

U(x) := {u ∈ UN : x(N) ∈ X f }
X := {x ∈ Rn : U(x) ̸= /0}

V (x,u) :=
N−1

∑
k=0

ℓ(x(k),u(k))+Vf (x(N))



in which x(k) = φ̂(k;x,u). The nominal MPC optimization
problem for any x ∈ X is defined as

P(x) : V 0(x) := min
u∈U(x)

V (x,u)

and the optimal solution is denoted u0(x). We implement,
however, only the first input in this optimal solution and the
control law for nominal MPC is therefore

κ(x) := u0(0;x)

The resulting closed-loop system is then

x+ = f (x,κ(x),w) (3)

and we use φ(k;x,wk) to denote the state of (3) at time
k ∈ I≥0, given the initial state x ∈ X and disturbance trajec-
tory

wk = (w(0),w(1), . . . ,w(k−1)) ∈Wk

Thus, nominal MPC does not account for disturbances in the
problem formulation directly, but does address disturbances
through state feedback.

The following assumptions ensure that nominal MPC is
inherently robust.

Assumption 3.1. The system f (·), stage cost ℓ(·), and ter-
minal cost Vf (·) are continuous and satisfy f (0,0,0) = 0,
ℓ(0,0) = 0, Vf (0) = 0.

Assumption 3.2. The set U is compact and contains the ori-
gin. The set X f is defined by X f := {x ∈ Rn : Vf (x)≤ τ} for
some τ > 0.

Assumption 3.3. There exists a terminal control law κ f :
X f → U such that

f (x,κ f (x),0) ∈ X f

Vf ( f (x,κ f (x),0))≤Vf (x)− ℓ(x,κ f (x))

for all x ∈ X f .

Assumption 3.4. There exists αℓ(·)∈K∞ such that αℓ(|x|)≤
ℓ(x,u) for all (x,u) ∈ Rn ×U.

3.3 Stochastic MPC

In stochastic MPC, we use a stochastic model of the system.
For now, we assume this model is equivalent to the underly-
ing plant in (1). Since we are considering all possible real-
izations of the disturbance in the optimization problem, we
want to optimize over a trajectory of control policies for this
system to account for all possible realizations of the state tra-
jectory. To avoid the difficulties of dynamic programming
and ensure that the optimization problem is tractable, how-
ever, we parameterize this control policy as π(x,v) in which
v ∈ V is the vector of parameters for the control policy, e.g.,
π(x,v) = Kx+ v in which K is a fixed feedback gain matrix.
Thus, the system of interest is

x+ = f (x,π(x,v),w) (4)

We use φ̂s(k;x,v,w) to denote the state of (4) at time k ∈ I0:N ,
given the initial condition x ∈ Rn, trajectory of control poli-
cies defined by v ∈ VN , and disturbance trajectory w ∈WN .

Since we are considering the disturbance directly in the
optimization problem, we can consider hard state as well as
input constraints, i.e.,

(x,u) ∈ Z⊆ Rn ×U

We define the admissible control parameter trajectories,
feasible initial states, and cost function, respectively, as

V (x) := {v ∈ VN :

(x,π(x(k),v(k))) ∈ Z ∀w ∈WN , k ∈ I0:N−1

and x(N) ∈ X f ∀w ∈WN}
X s := {x ∈ Rn : V (x) ̸= /0}

V s
µ (x,v) := E

[
N−1

∑
k=0

ℓ(x(k),π(x(k),v(k)))+Vf (x(N))

]

in which x(k) = φ̂s(k;x,v,w). Note that the cost function de-
pends on the probability distribution for w, i.e., µ. The SMPC
optimization problem for any x ∈ X s is defined as

Ps
µ(x) : V s0

µ (x) := min
v∈V (x)

V s
µ (x,v)

and the optimal solution is denoted vs0
µ (x). We again imple-

ment only the first control policy in this optimal solution and
the control law for SMPC is therefore

κ
s
µ(x) := π(x,vs0

µ (0;x))

The resulting closed-loop system is then

x+ = f (x,κs
µ(x),w) (5)

and we use φs
µ(k;x,wk) to denote the state of (5) at time

k ∈ I≥0, given the initial condition x ∈ X s, disturbance se-
quence wk ∈ Wk, and probability distribution µ ∈ M (W).
Note that the control law and therefore closed-loop system
depend on the probability distribution µ used in the SMPC
problem formulation.

For SMPC, we require modified versions of Assump-
tion 3.2 and Assumption 3.3.

Assumption 3.5. The set Z is closed and contains the ori-
gin. The sets U and X f are compact and contain the origin.
The set X f contains the origin in its interior. The set X s is
bounded.

Assumption 3.6. There exists a continuous terminal control
law κ f : X f → U such that

f (x,κ f (x),w) ∈ X f ∀w ∈W
Vf ( f (x,κ f (x),0))≤Vf (x)− ℓ(x,κ f (x))

for all x ∈ X f . Furthermore, (x,κ f (x)) ∈ Z and π(x,0) =
κ f (x) for all x ∈ X f .



Note that Assumption 3.6 implicitly restricts the size of
W that may be considered for a specific system. Sufficiently
large disturbances may render the construction of a suitable
terminal control and a terminal set either difficult or impossi-
ble for nonlinear systems and open-loop unstable linear sys-
tems with input constraints. We also require the following
assumption for the control law parameterization.

Assumption 3.7. The set V is compact and contains the ori-
gin. The function π(·) is continuous.

3.4 Properties

We introduce three potential definitions of robustness that in-
clude both deterministic and stochastic representations of the
disturbance trajectory. Since the SMPC control law varies
with µ, we use the generic control law κµ(·) and correspond-
ing closed-loop system φµ(·) in the following definitions to
indicate this potential dependence. Since both MPC and
SMPC rely on optimization to define the control law, we must
first ensure that these optimization problems remain feasi-
ble for the closed-loop system. We characterize this property
through robust positive invariance.

Definition 3.8 (RPI). A set X is robustly positive invariant
(RPI) for the system x+ = f (x,κµ(x),w), w ∈ W if x+ ∈ X
for all x ∈ X , w ∈W, µ ∈ M (W).

If the feasible set of the MPC or SMPC optimization
problem is RPI, then the optimization problem is robustly
recursively feasible, i.e., the control law and closed-loop sys-
tem are well defined. For this closed-loop system, we de-
fine deterministic robustness as follows in which ||wk|| :=
maxi∈I0:k−1 |w(i)|.

Definition 3.9 (RAS). The origin is robustly asymptotically
stable (RAS) for a system x+ = f (x,κµ(x),w), w ∈ W in an
RPI set X if there exist β(·) ∈ K L and γ(·) ∈ K such that

|φµ(k;x,wk)| ≤ β(|x|,k)+ γ(||wk||) (6)

for all x ∈ X , wk ∈Wk, and k ∈ I≥0.

Thus, RAS ensures that the closed-loop state of the sys-
tem converges to a neighborhood of the origin defined by a
K -function of the largest disturbance experienced up to time
k, i.e., γ(||wk||). Note that this bound must hold for any spe-
cific realization of the disturbance trajectory. As we intend
to consider a stochastic representation of the disturbance, we
are also interested in a similar bound based on the stochas-
tic properties of the underlying system. We define stochastic
robustness as follows.

Definition 3.10 (RASiE). The origin is robustly asymp-
totically stable in expectation (RASiE) for a system x+ =
f (x,κµ(x),w), w∈W in an RPI set X if there exist β(·)∈K L
and γ(·) ∈ K such that

E[|φµ(k;x,wk)|]≤ β(|x|,k)+ γ(tr(Σ)) (7)

for all x ∈ X , µ ∈ M (W), and k ∈ I≥0.

Similar to RAS, RASiE requires that the effect of the
initial condition vanishes as k → ∞ with a persistent term
based on the disturbance w. In RASiE, however, (7) bounds
a stochastic property of the closed-loop system (E[·]) based
on a stochastic property of the disturbances (tr(Σ)). Note that
Σ depends on µ and (7) must hold for all µ ∈ M (W).

These two definitions of robustness, one deterministic
and one stochastic, consider the usual metric of performance
in process control: distance to the origin (setpoint). In MPC,
however, we define the control law by optimizing a perfor-
mance metric for the system defined by the stage cost ℓ(·).
By requiring Assumption 3.4, we ensure that if ℓ(x,u)→ 0,
then |x| → 0 as well. We nonetheless allow for significant
flexibility in selecting ℓ(·) that allows us to tune the stage cost
to reflect the relative importance of the different elements of
the state and input, or even include specific economic metrics
of performance in the problem formulation. Given this flex-
ibility and the benefits obtained from this more general defi-
nition of performance, we propose a definition of robustness
with respect to the stage cost, i.e., the performance metric as-
signed to the MPC and SMPC problem formulation. We call
this property robust asymptotic stability in expectation with
respect to the stage cost, abbreviated as ℓ-RASiE.

Definition 3.11 (ℓ-RASiE). The origin is ℓ-RASiE with re-
spect to the stage cost ℓ(·) for a system x+ = f (x,κµ(x),w),
w ∈W in the RPI set X if there exist β(·)∈ K L and γ(·)∈ K
such that

E[ℓ(x(k),κµ(x(k)))]≤ β(|x|,k)+ γ(tr(Σ)) (8)

in which x(k) := φµ(k;x,wk) for all x ∈ X , µ ∈ M (W), and
k ∈ I≥0.

Nominal MPC is known to be RAS for sufficiently small
disturbances (Grimm et al., 2004; Pannocchia et al., 2011;
Yu et al., 2014; Allan et al., 2017). Moreover, we can es-
tablish that nominal MPC also satisfies the two definitions of
stochastic robustness introduced in this section, as detailed in
the following theorem (McAllister and Rawlings, 2022d).

Theorem 3.12 (Nominal MPC). Let Assumptions 3.1 to 3.4
hold. For every ρ > 0 there exists δ > 0 such that for all
W ⊆ {w ∈ Rq : |w| ≤ δ} and the system x+ = f (x,κ(x),w),
w ∈W, and the set S := {x ∈ Rn : V 0(x) ≤ ρ}∩X we have
that

(i) The set S is RPI.

(ii) The origin is RAS in the set S .

(iii) The origin is RASiE in the set S .

(iv) The origin is ℓ-RASiE in the set S .

For sufficiently small disturbances (|w| ≤ δ), nominal
MPC satisfies all of the definitions of deterministic and
stochastic robustness introduced in this section. This robust-
ness is inherent to nominal MPC through feedback, despite
the fact that nominal MPC does not consider the disturbance
directly in the problem formulation. By contrast, SMPC
does consider a stochastic description of the disturbance and



optimizes a stochastic objective function, thereby afford-
ing stochastic robustness to the closed-loop system (Cannon
et al., 2009; Kouvaritakis et al., 2010; Lorenzen et al., 2016;
Chatterjee and Lygeros, 2014; Mayne and Falugi, 2019). In
particular, we can establish the following result (McAllister
and Rawlings, 2022a,d).

Theorem 3.13 (SMPC). Let Assumptions 3.1 and 3.4 to 3.7
hold with µ and W known exactly. Then for the system
x+ = f (x,κs

µ(x),w), w ∈W, we have that

(i) The set X s is RPI.

(ii) The origin is RASiE in the set X s.

(iii) The origin is ℓ-RASiE in the set X s.

Thus, nominal MPC and SMPC satisfy the same defini-
tions of stochastic robustness, in terms of both distance to the
origin and stage cost. In other words, SMPC is not providing
some unique form of stochastic robustness not available to
nominal MPC. On the contrary, SMPC is instead sacrificing
deterministic robustness (RAS) for the possibility of improv-
ing the stochastic robustness of the closed-loop system.

Moreover, SMPC optimization problems are significantly
more difficult to solve than nominal MPC optimization prob-
lems. These problems require evaluation of an expectation,
which is often computed by sampling the random variable
w and constructing all possible trajectories for these realiza-
tions of the disturbance, i.e., a scenario tree. Thus, the num-
ber of variables and therefore SMPC problem size is sN times
larger than the nominal MPC problem, in which s is the num-
ber of samples of w at each time step and N is the horizon
length of the SMPC problem.

3.5 A loss of nominal asymptotic stability

We consider a small example of level control in two tanks,
adapted from McAllister and Rawlings (2022d), as shown
in Figure 1. The goal is to control the height of liquid in
each tank (x1,x2) via the inlet flow rate to tank 1 and out-
let flow rate from tank 2 (u1,u2). Tank 1 drains into tank
2 by gravity at a rate proportional to the height of tank 1.
This proportionality constant is subject to uncertainty with
w ∈W := {−0.3,0,0.3}. We consider the probability distri-
bution Pr(w =−0.3) = Pr(w = 0.3) = 0.35 and Pr(w = 0) =
0.3. The differential equations (in deviation variables) are

dx1

dt
=−(1+w)x1 +u1 −w

dx2

dt
= (1+w)x1 −u2 +w

Since the support for the disturbance is finite, we can dis-
cretize this differential equation (assuming a zero-order hold
on the input and disturbance with a time step ∆ = 1) and
solve the SMPC problem exactly by considering all possible
disturbance trajectories.

u1

(1 + w)x1 + w

u2

1

0

−1

x1

1

0

−1

x2

Figure 1: Taken from McAllister and Rawlings (2022d). Two
tanks with gravity driven flow between tank 1 and tank 2.

We consider the input constraints u1,u2 ∈ [−1,1] and
stage cost ℓ(x,u) = x′Qx+u′Ru with Q = diag([0.1,20]) and
R = diag([0.1,0.1]). Note that these penalties strongly dis-
courage any deviations in x2, but nonetheless satisfy all the
usual requirements for nominal MPC and SMPC. We use
the LQR cost P and gain K for the nominal (w = 0) uncon-
strained system to define the terminal cost Vf (x) = x′Px and
control law parameterization π(x,v) := Kx+v. We define the
terminal constraint as X f := {x : |x1| ≤ 0.4, |x2| ≤ 0.4} and
verify that this formulation satisfies Assumptions 3.1 and 3.4
to 3.7 for SMPC with the terminal control law κ f (x) = Kx.

For nominal MPC, we can establish that these same
choices of stage cost, terminal cost, and terminal con-
straint render the origin asymptotically stable for the nominal
closed-loop system and RAS for small disturbances, such as
the disturbance w ∈ W considered in this example (Grimm
et al., 2004). SMPC, however, does not render the origin
asymptotically stable for the nominal closed-loop system. In
Figure 2, we plot the closed-loop trajectory for SMPC sub-
ject to a nominal realization of the disturbance, i.e., wk = 0.
Despite the fact that no disturbance occurs and the system
is initialized at the setpoint x(0) = 0, the SMPC controller
drives x1 away from this setpoint. The value of x1 converges
to a different steady state at x1 ≈−0.6 that is not even within
the terminal set X f defined for the SMPC controller. Thus,
the SMPC controller does not render the origin (or the termi-
nal set) RAS or nominally asymptotically stable.

0 1 2 3 4

k

−1.0

−0.5

0.0

xi

x1

x2

Figure 2: Taken from McAllister and Rawlings (2022d). The
closed-loop trajectory for SMPC subject to a nominal real-
ization of the disturbances, i.e., wk = 0.

The benefit of SMPC for this example is that the expected
value of the stage cost evaluated for closed-loop state and in-
put trajectory, i.e., E[ℓ(x(k),u(k))], is lower for SMPC than
nominal MPC. By lowering the value of x1, SMPC reduces
the effect of the disturbance on x2. Since we have assigned
a larger cost to deviations in x2 than x1, this approach re-



duces the expected stage cost for the system subject to this
disturbance distribution. If this stage cost is closely related to
the economic performance of the process and the disturbance
distribution is well characterized, then SMPC may be pre-
ferred to nominal MPC despite the lack of nominal asymp-
totic stability.

3.6 Distributional robustness

We would like to briefly summarize some recent results on
how robust stochastic MPC is to errors in the assumed prob-
ability distribution of the disturbances.

To investigate distributional robustness of the closed-loop
system, we allow the distribution of the disturbance in the
MPC model to be different from the distribution of the dis-
turbance in the plant. To distinguish the model and the plant,
we use ŵ ∈ Ŵ with probability distribution µ̂ as the model
disturbance, and w ∈W with probability distribution µ as the
plant disturbance. To measure the distance between these
two disturbance models, we use the Hausdorff set distance
dH(W,Ŵ) to measure the difference between the support
sets W and Ŵ, and we use the Wasserstein metric to measure
the distance between the probability distributions, denoted
W (µ, µ̂). McAllister and Rawlings (2022b,c) provide the pre-
cise definition of this metric and describe how it is computed
given the two probability distributions. Note that the Wasser-
stein metric satisfies all the axioms of a distance on the set
M (W), i.e., the metric W (µ, µ̂) is symmetric, nonnegative,
satisfies the triangle inequality, and W (µ, µ̂) = 0 if and only
if µ = µ̂ for all µ, µ̂ ∈ M (W). Similarly, we have that the
Hausdorff set distance satisfies all the axioms of a distance
for nonempty, compact subsets of Rq.

Definition 3.14 (DRASiE). The origin of the system x+ =
f (x,κµ̂(x),w), w ∈W is distributionally robustly asymptoti-
cally stable in expectation (DRASiE) in the RPI set X if there
exist β(·) ∈ K L and γ1(·),γ2(·) ∈ K such that

E [|φµ̂(k;x,wk)|]≤ β(|x|,k)+ γ1(Ê[|ŵ|])+ γ2(W (µ, µ̂)) (9)

for all x ∈ X , µ̂ ∈ M (Ŵ), µ ∈ M (W), and k ∈ I≥0.

The first part of the upper bound in (9) is a K L function that
ensures the effect of the initial condition x ∈ X (asymptot-
ically) vanishes as k → ∞. The second function γ1(Ê[|ŵ|])
accounts for the persistent effect of the modeled disturbance
(ŵ) in the control law design and the ideal system with µ = µ̂.
Note that if Ê[ŵ] = 0, we can replace Ê[|ŵ|] with the upper
bound tr(Σ̂)1/2. The third function γ2(W (µ, µ̂)) accounts for
the discrepancy between the disturbance distribution model
µ̂, used in the SMPC optimization problem, and the true dis-
turbance distribution µ. If µ= µ̂, then γ2(W (µ, µ̂)) = 0 and we
recover the usual bound for idealized SMPC analysis. The
most significant consequence of this result is that the effect
of arbitrarily small errors between µ̂ and µ produce similarly
small deviations from the closed-loop bound derived for ide-
alized SMPC analysis.

Under suitable assumptions, SMPC is distribituionally
robust (McAllister and Rawlings, 2022b,c). Specifically, we

can establish that for sufficiently small errors in the distur-
bance support (dH(W,Ŵ) ≤ δ for some δ > 0), SMPC ren-
ders the closed-loop stochastic system DRASiE. Note that
these errors include disturbances that are incorrectly mod-
eled, unmodeled, or intentionally mismodeled via sampling-
based approximations of the stochastic optimization prob-
lem. Thus, feedback is a crucial component of SMPC al-
gorithms for essentially the same reason as for nominal MPC
algorithms: To address the inevitable discrepancy between
the stochastic or deterministic model used in the optimiza-
tion problem and the plant.

4 Conclusion

We summarize the expectations and outcomes in comparing
nominal MPC to stochastic MPC.

1. We expect nominal MPC to bring the system to set-
point from different initial conditions, because the op-
timal control problem is designed for that.

This expectation is met.

2. We expect nominal MPC to be robust to small deter-
ministic disturbances, although we did not design for
that.

This expectation is met.

3. We expect nominal MPC to be robust to small stochas-
tic disturbances, although we did not design for that
either.

This expectation is met.

4. We expect stochastic MPC to handle small stochastic
disturbances, because we did design for that.

This expectation is met.

5. But did we expect stochastic MPC to lose nominal de-
terministic stability? Probably not, until we see the
simulation example that demonstrates this loss (McAl-
lister and Rawlings, 2022d).

This is a surprise.

6. We expect stochastic MPC to be robust to small errors
in the stochastic model that we are using although we
did not design for that. This is the distributional ro-
bustness question.

This expectation is met.

7. But since nominal MPC is a stochastic MPC with an
unusual/trivial choice of stochastic model (zero), this
distributional robustness also applies to nominal MPC.

This is a surprise.

8. Open question. How robust are either of these MPC
designs (nominal/stochastic) to deterministic model er-
ror, i.e., errors in f (·) in (1).

We summarize these conclusions in the following table.



MPC SMPC SMPC always
outperforms MPC?

RPI set Yes Yes No
RAS Yes No No
RASiE Yes Yes No
ℓ-RASiE Yes Yes Yes5

DRASiE Yes Yes Unknown

Wonham (1969) concludes his paper on optimal stochas-
tic control from 50 years ago with the following remarks.

“Since the mathematical model is usually greatly com-
plicated by explicitly including stochastic features, it is al-
ways to be asked whether the extra effort is worthwhile, i.e.,
whether it leads to a control markedly superior in perfor-
mance to one designed on the assumption that stochastic dis-
turbances are absent. In the case of feedback controls the
general conclusion is that only marginal improvements can
be obtained unless the disturbance level is very high, in which
case the fractional improvement from stochastic optimization
may be large, but the system is useless anyway. That is, ef-
forts to counter disturbances by simply warping the velocity
field in state space are generally misplaced. For this reason
I do not think there is much point in trying to develop low
noise perturbation formalism for feedback controls.”

So how well does this rather pessimistic conclusion hold
up when applied to stochastic MPC? We think that today
this conclusion warrants reconsideration. The control field
is addressing more general classes of control problems today
compared to fifty years ago, and the usefulness of stochastic
control depends on the type of control problem that one is
addressing. If one is interested primarily in tracking perfor-
mance, Wonhanm’s pessimism remains entirely justified. In
fact, a recent surprise is that stochastic MPC does not pro-
vide robust asymptotic stability of the steady-state target in
the absence of disturbances.

If one is interested primarily in economic performance,
however, an accurate model of the randomness can pay sig-
nificant dividends (Kumar et al., 2018). In these economic
control problems, the stability of the steady state is not a goal
of the control system design and therefore not a major con-
cern.
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