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Abstract 

Advances in sensors, automation, and information technology have significantly changed the way process plants 
operate.  High performance computing and high speed communication technology developments have been the foundation 
for many of these advances and advanced analytical and optimization methods based on this infrastructure can 
simultaneously lower costs, increase profitability and improve customer service across the supply chain.  The collective 
changes are sometimes characterized as constituting “smart” manufacturing.  They allow the plant staff to better analyze 
the past, assess the current state, and predict future behavior under alternative scenarios.   However, the path to progress 
has not been smooth.  There have been many false starts and many technologies with early promises unfulfilled.  In this 
paper, we will survey the recent history of these developments.  Case studies on actual implementations, recent advances in 
relevant technologies and probable trends in the business environment are used to forecast likely future changes in this 
important area of process plant operations.  Some of the questions considered include:  How do the fundamental process 
industry economic drivers guide the technology adoption?  In what areas of plant operation have we seen the greatest 
economic impact to date and in what areas do we expect the greatest impact in the future?  The technology and 
organizational issues that have presented barriers to implementation are also discussed. 
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Introduction 

What is a “smart plant?”  We are all aware of the 
extraordinary developments that have been and are 
occurring in the computer and communication area.  
Continuing decreases in the cost and size of computing 
elements and continuing increases in the availability of 
communication bandwidth are reported almost daily.  
Advances in software and mathematical analysis have built 
on these developments to significantly increase the ability 
to model and optimize manufacturing activities.  Many 
new developments in process sensor and measurement 
devices have also appeared.  These developments have 
lead to new methods and procedures for operating 
production facilities.  The new procedures utilize more 
comprehensive and frequent measurements of the current 
state of the plant, increased use of models and other 
analytical techniques to compare what the plant is currently 
doing against what is expected and understand the 
differences, earlier detection of anomalous conditions, and 

tools to plan future operation with increased confidence. 
Collectively these advanced automation technologies have 
come to be known as “smart manufacturing.”   

Why is “smart manufacturing” important?  Computer 
and communication technology developments have 
contributed to substantial increased productivity in the 
manufacturing sector.  The US Chemical Process 
Industries’ (CPI) productivity compounded at 2.5 % per 
year during the period 1990 to 2000 (C&EN (2001)) and 
certainly some of the increase is due to the increasing use 
of this automation technology.  Of even more importance 
is the opportunity for increased productivity gains in the 
future through increased investments in this area.  
However, the link between technology developments and 
improved economic results including increased 
productivity is not always transparent.  Many 
unsupportable claims on potential benefits are made.  



   
 
Correspondingly, there are many technology developments 
that are believed to be beneficial but it is not clear how to 
translate this belief into realistic monetary values. 

The objective of this paper is to survey recent “smart 
manufacturing” technology developments in the CPI and 
show how these developments have affected the process 
industries in the past and to project how they will affect 
them in the future.  It is also intended to provide a general 
framework for understanding these recent technology 
developments and most particularly for understanding the 
potential economic benefits of the technology. 

What are the attributes of “smart manufacturing”?  
They are: 

• Wide availability of real time information on the 
current status of manufacturing and product 
conditions 

• Comparative model-based performance analysis  
• Decisions based on predictive scenarios of 

expected future plant and market behavior and 
analytical decision models 

The plant systems that support these attributes are 
shown in the figure below.   They include smart sensors, 
advanced equipment monitoring and diagnosis, and upper 
level production management and asset management 
systems. 

 

Figure 1 – Smart Manufacturing Systems 

Background 

The history of developments in automation and their 
actual application in plant production operations is 
explored in many sources including Feeley (1999).  Early 
developments in controllers were first mechanical and then 
pneumatic in character.  Controllers with electronic 
components began to be generally used in the 1960’s with 
microprocessor based controllers appearing in the 1970’s.  
Microprocessors for process control were custom devices 

until the 1990’s when standard products began to replace 
them.   

Computing capabilities were slower to move to field 
devices – primary measurements, transmitters, and valves – 
due to size, communication and field intrinsic safety 
requirements.  It was only in the 1990’s that significant 
computational capabilities came to be distributed to these 
components. 

The pioneering advanced control technology 
applications were installed in the 1960’s, but significant 
acceptance was not experienced until the 1970’s and 
1980’s (White (1997)).  This acceptance was initially 
concentrated in the oil refining and large volume chemicals 
area.   

Technology Adoption 

To assess the value of the technology developments it 
is necessary to examine the incentives for their use and the 
value they bring.  For adoption, the technology must either 
provide an improvement in the overall financial 
performance of the plant or must solve a problem that was 
not adequately solved previously.  There are two types of 
drivers for technology adoption, “technology push” and 
“economic pull.”  By “technology push” is meant that new 
technology creates new ways of accomplishing tasks that 
did not previously exist, and these new alternatives will 
always be attractive to some members of the user 
community.  “Economic pull” refers to the standard 
economic displacement of more expensive materials and 
services by equivalent cheaper ones.  Three major 
incentive areas are reviewed below – financial, safety and 
environmental issues, and workforce demographics. 

Financial 

Financial results are important and a short review of 
manufacturing economics is provided.  The financial 
measure of performance that is most commonly applied to 
businesses, including those in the process industries, is 
Return on Capital Employed or ROCE.  It is defined as: 

EmployedCapital
EBITROCE
 

=  

For the manufacturing segment of the process 
industries, the following approximations are reasonable: 

EBIT (Earnings Before Interest and Taxes) = 
(Product Revenue – Feed Costs – Utility Costs – Other 
Operating Costs) * Operating Factor – Maintenance Costs 
- Depreciation 

Capital Employed = Fixed Assets + Inventory + 
Financial Operating Capital  

where the revenue and cost factors are averaged over 
the period of interest, normally one year, corrected to 
100% operating factor.   

To increase the ROCE ratio we can either increase 
yearly earnings or decrease the average capital employed.  
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Reducing inventory is an effective way of reducing capital 
requirements.  Earnings can be increased by increasing the 
operating factor (for non market limited plants), by 
increasing product revenue and/or reducing costs.   

This leads to the following operational objectives for 
typical process manufacturing sites: 

• Produce the highest valued product mix possible 
• Maximize the production from existing equipment  
• Maximize the equipments’ on stream operating 

(service) factor 
• Continually reduce costs and pursue operational 

efficiencies 
• Keep inventories as low as possible 
• Minimize Health, Safety and Environmental 

incidents 
where the last objective implicitly includes the reality 

that HSE issues can be governing.  Note that the advanced 
automation systems we are reviewing affect every one of 
these objectives. 

Where are the opportunities for increased efficiencies?  
The average process company spends at least 60% of total 
revenue on feedstocks, energy, goods and services.  Energy 
costs are often largest component of operating costs after 
feedstock.  There are often significant opportunities for 
savings in these costs through improved operation.  Lost 
production due to unscheduled shutdowns or slowdowns 
averages 3 to 7% of production. Maintenance costs are the 
third largest cost component after feedstock and energy at 
9% to 20% of the COGS (Cost of Goods Sold) but often 
the maintenance action is provided too early when not 
required and sometimes (regrettably) too late.  Inventory is 
a significant component of working capital costs.  Average 
industry inventory levels are (CFO, 2002); measured in 
days of sales: 

• Pulp and Paper – 45 
• Chemicals – 60 
• Metals & Mining – 60 
Contrast this with: 
• Dell Computer - 8 
Clearly there is room for improvement in the CPI. 
There have been many documented case studies of the 

benefits of advanced automation to the CPI (White, 1997).  
The financial incentive is clear as it is in other areas of 
manufacturing economics. 

Safety and Environmental Issues 

The safety and environmental performance of the 
process industry is widely viewed by the public as 
unsatisfactory.  Analysis of the cause of recent accidents 
and incidents indicate that many factors including design, 
change control, and operational issues contributed to the 
incidents (Duguid (2001), Belke (1999)).  However, 
reviewing the incidents and potential amelioration indicate 
that improved measurements and real time analysis might 
well have prevented or at least substantially reduced the 
damage from approximately 25% to 50% of these 
accidents.   

Environmental emissions from process plants continue 
to be a major problem.  Although the US CPI reduced its 
emissions by 56.3% from 1989 to 1999 while increasing 
production by 33.3% (Franz, (2002a)), it still remains the 
largest single US manufacturing industry source of toxic 
emissions (Franz, 2002b).  Industry along the Texas Gulf 
Coast, which is the world’s largest single concentration of 
CPI sites, is under government mandates to reduce NOx 
emissions by a full 80% by 2007 (Sissell, 2002).  
Obtaining the latter goal and continuing the reduction will 
require many changes in plant design and operation.  
Improved measurements, modeling, analysis, and control 
are critical to the goal of reducing emissions. 

Demographics 

The demographics of process plant operators in North 
America are changing.  With industry downsizing there 
was very limited hiring in the 80’s and 90’s.  As a result 
75% - 90% of the operators in the CPI are expected to 
retire in the next 10 to 15 years (Shanely, 1999).  Clearly 
the average experience level will drop in this period.  In 
addition, the demands for enhanced analytical skills in the 
job are increasing.  A partial solution to this problem is 
again to use plant measurements, modeling and analytical 
techniques to automate routine decision processes or at 
least provide the information to make the decision process 
more efficient. 

The general conclusion from the comments above is 
that there is a significant need for improved operation in 
the CPI and that “smart” automation technology can be a 
significant contributor to the improved operation.  

Value Analysis Framework 

Many of the developments in “smart” manufacturing 
involve more and better measurements of process and 
equipment conditions and use of models to analyze the 
data.  Numerous claims have been and are made about the 
economic benefits of these individual technology 
developments.  Normally these economic benefits are 
calculated by multiplying a small potential percentage 
improvement in performance times a large number such as 
product value and claiming that the result is plausibly the 
expected benefit.  The causal map between the technology 
implementation and the improvement in performance is not 
really specified.  A close review of the claims shows, 
however, that many developments are each claiming to 
achieve the same improvement.  The concept of 
diminishing returns seems absent.   

It is the assertion of this work that the value of these 
developments can best be understood by analyzing them in 
the context of the decision process in the plant. Figure 2 
below presents this decision cycle.  We measure a 
condition in the plant or detect a change of state, analyze 
the data to potentially spot an anomaly, predict the effect 
of alternative action scenarios, decide which scenario to 
implement, and then actually implement the scenarios.   



   
 
After this, the cycle repeats.  Examples of decisions made 
in this framework include what products to produce and 
when to produce them, decisions on the resources required 
for production including feedstocks and manpower and 
decisions on when to perform maintenance on a particular 
item of equipment. 

 

 
Figure 2 – Plant Decision Cycle 

 
What are the characteristics of these components? 

Measure 

Modern process plants produce a lot of data.  It is not 
unusual for a large CPI site to have 100,000 distinct 
measurements.  If these measurements are scanned once a 
minute, ten gigabytes a week of data will be produced.  
However, the data is natively of poor quality.  Instrument 
readings drift and noise corrupts the measurements. Even 
when the actual measurements are good, the statistical 
properties are not – the data is serially auto-correlated and 
cross-correlated.  The important issues are timeliness of 
the data, its validity, and its relevance.   

Analyze 

Analysis in this context is obtaining the best possible 
estimate of the current performance of the system (plant) 
and its history.  Generally this means processing the raw 
data through a model to obtain some type of performance 
indicator, perhaps of an individual piece of equipment or 
of the overall plant or site.  This performance indicator is 
then compared against a standard.  The standard could be 
the normal, new or clean performance of the equipment, it 
could be the financial budget for the plant or it could be 
environmental or design limits.  Key issues with analysis 
are to detect under (or over) performance and precursors of 
abnormal events.     

Predict 

The next step in the decision process is to project into 
the future the expected behavior of the system based on the 
information available.  In some cases this is done by 
simply extrapolating future behavior to be the same as 
current or to expect future behavior to follow the same 

pattern the system has exhibited in the past under similar 
conditions.  In more complicated situations we will use an 
estimate of the current state, a model of the system, and 
assumptions about the disturbances or effects that the 
system will experience.   

How can we improve the accuracy of the prediction?  
In general, it will be enhanced by having more accurate 
models, having a better estimate of the current state, and 
having more information about future disturbances.  It is 
expected that the accuracy of the estimate will degrade the 
further into the future the projection occurs.  This is 
illustrated in Figure 3 below. 

 

Figure 3 – Prediction versus analysis/ estimation 

Decide 

Ultimately it is necessary to make a decision about the 
action to take in the future – including no new action and 
no change in condition.  Normally this is done by 
evaluating a set of feasible alternative decision sequences 
and then choosing one which maximizes or minimizes a 
combined set of objectives within the imposed set of 
constraints – with this evaluation and choice done within 
the time available.  The decision is improved by increasing 
the set of feasible sequences considered, by better 
projection of the implication of the decisions into the 
future including risk factors, and by the factors mentioned 
earlier of better knowledge of the current state and more 
frequent evaluations.  In simple terms, the earlier a 
problem is detected, the easier it is to solve.  

Implementation 

Implementation is the actual execution of the scenario 
chosen.  It involves all of the activities required to make 
some change occur including most particularly inducing 
individuals in the plant to perform or not perform an 
action.  One source of confusion in evaluating the benefits 
from technology is that only the action, the 
implementation, actually creates business profit or loss.  
Without implementation, measurement, analysis and 
prediction are just an exercise.   
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Survey of Technology Developments 

The decision steps mentioned above are not obviously 
new and in fact have been followed in plants for many 
years before computers had any major impact.  Those 
charged with decisions did the best they could at obtaining 
information on the state of the plant, on estimating its 
current performance and predicting what would happen 
with various decision scenarios.  However, the uncertainty 
levels were very high and most decisions were not 
analytically based. 

How have “smart” developments affected the decision 
cycle?  Referring back to figure 2, we can improve the 
overall process by 

• Knowing better what the plant is doing now – this 
implies more accurate measurements with less 
delay and more frequent measurements of 
previously difficult to measure conditions.   

• Comparing what the plant is doing against what it 
is expected to do and understanding the 
differences – this leads to model based analysis 
and techniques to better comprehend the 
information 

• Predicting better the effect of alternate decisions 
in the future 

There are certainly dozens and perhaps even hundreds 
of new developments that could be discussed.  In the 
sections below, the ones that the author views as having the 
most important impact on operations are presented. 

Measure 

Smart Sensors – One of the most dramatic technology 
developments has been in the general area of smart 
sensors.  As microprocessors have shrunk they have been 
incorporated directly into basic plant equipment.  In the 
instrumentation area this has included transmitters, valves, 
and primary measurement devises.  These devices have 
become in essence small data servers.  A basic transmitter 
a few years ago would send one 4-20 ma signal back to the 
control system as an indication of the measured value.  
Today, a modern transmitter sends back multiple readings 
plus at least six different alarm conditions including a self 
diagnosis of potential plugged leads.  A standard electric 
motor that previously had no real time measurements now 
has as many as fifteen sensors providing temperatures, 
flux, run times, etc. that are available for recording and 
diagnosis.  Valves now calculate and retain in local data 
history a current valve signature of pressure versus stem 
travel, compare it with the signature when the valve was 
installed, and provide diagnostic information or alarming 
on the difference.  In addition to normal measurements, 
cheap sensors allowing thermal photographic and 
audiometric data monitoring on major equipment are being 
routinely used.   

Process Analyzers – Procedures that could only be 
performed in laboratories a few years ago are now 
migrating to field devices.  Examples include NIR (Near 

Infra-Red) and NMR (Nuclear Magnetic Resonance) 
analyses.  A survey of developments is provided in Moore 
(1999). 

Communication – Supporting the increases in local 
measurement and analytical capability has been a change 
from analog based communication for instrumentation to 
digital bus structures.  These digital busses permit much 
more diagnostic information to be carried to the data 
system (Feeley, 1999).  The continuing evolution in remote 
access through developments in the Internet are well 
known and will not be repeated here.  What perhaps is less 
well known is the penetration of wireless communication 
into the plant environment.  Remote sensors are being 
installed without wires on plant equipment where there is 
no need for two way communication and absolute 
reliability is not as important. 

Analyze 

The new developments in the measurement area plus 
the general increase in computer capabilities generally 
mean much more data is available – more than one can 
hope to process manually.  Part of the response to this 
increase in data is an increase in automated analysis which 
takes several forms. 

Data Mining – Data mining involves processing large 
databases to find undetected patterns and associations.  
The real time data available form the CPI presents special 
challenges.  As mentioned earlier, it is usually corrupted by 
noise and non-independent, i.e. both auto-correlated and 
cross-correlated.  However, if correlations relating to 
production variables can be found or if precursors to 
failure can be identified, the potential benefits are large.  
As a result, a large number of analytical tools have been 
developed including special linear statistical techniques 
such as PCA and PLS (Hawkins et al, 1999) and more 
general tools (Hairston et al, 1999). 

Model Based Performance Monitoring -Generally this 
implies using the data in some sort of model to calculate 
performance measures, often called KPI’s (Key 
Performance Indicators).  These performance measures are 
then used to compare actual against plan or actual against 
original condition (Dormer, 1998).  An example is the 
calculation of specific energy consumption, i.e. energy 
consumed per unit of feed or product.  To accurately assess 
unit operation, this calculated value has to be corrected for 
the current feed and product types and distribution, for the 
current production rate, and for the run time since the last 
equipment maintenance.  This correction can only be done 
via a model of process operation.  Data validation and 
reconciliation procedures must be used to bring the input 
data to the standard required by the performance analysis.  
With the corrected KPI’s, actual operation versus plan can 
be accurately assessed and deviations noted. 

Important questions that can then be answered 
include: 

• What is the true maximum capacity of our 
equipment? Today? If it was clean? If it was new? 



   
 

• What really stopped us from making our 
production targets last month? 

• How do we accurately and consistently compare 
performance across all of our sites? 

• How do we make sure everybody is looking at the 
same set of numbers 

One of the major uses for this technology is predictive 
device monitoring.  Figure 4 below shows a simple 
example – a modern smart transmitter with automatic 
detection of a plugged transfer line.  The standard 
deviation of the current measured signal is calculated and 
compared with the values when it was first installed.  
Significant reductions can indicate a problem.  The 
objective of this example and other similar devices is to 
initiate alerts and corrective action based on deviations 
from expected behavior.  Automatic notification of 
appropriate maintenance group when problems occur is 
easy to implement from such a system and benefits accrue 
from reduced equipment downtime. 

Figure 4 – Typical Smart Device 
 

Virtual Analyzers - Virtual analyzers or soft sensors 
involve the use of common process measurements 
(temperatures, pressures, flows, etc.) to infer a difficult to 
measure property through the use of an empirical or semi-
empirical model.  This is, unfortunately, one of the 
development areas where the claims have outpaced reality 
by a large measure.  However, progress has continued and 
there are a number of actual installations where real value 
is obtained (Harrod, 2001).  Three key limitations that are 
not always recognized are: 

• The estimate is only good within the data region 
used to train the model. 

• Unsteady state process conditions will not 
generally yield acceptable results since the time 
constants in the process will normally be different 
for different measurements. 

• Non causal models can estimate current 
conditions but cannot be used to predict future 
behavior. 

Predict 

Perhaps the key difference in the current CPI 
operation philosophy from that of previous years is the 

continuing evolution from reacting to a situation based on 
a history of performance to responding based on a more 
analytical prediction of performance. In this situation 
modeling and simulation assume a central position.  The 
general approach is shown in figure 5 below.  Historical 
data is used to develop a model of performance.  This 
model is then used to predict expected future behavior 
based on the current and recent past data and assumptions 
about the future disturbances and pattern of operation.  
Many of the developments in advanced automation fit this 
pattern – multivariable control, scheduling algorithm 
development, etc. 

 
Figure 5 – Use of Predictive Models 

 

Figure 6 – Variance Evolution 
Further, many of the technology developments can be  

categorized by their reduction in the expected error limits 
on estimates of current performance and predictions of 
future system behavior shown previously in Figure 3.  The 
cumulative effect of these developments has been a steady 
reduction in the uncertainty of the planning projections as 
illustrated in figure 6 above.   In simple terms, we are able 
to predict better and hence make better decisions. 

Decide 

As mentioned earlier, a key to good decisions is 
efficient evaluation of the full range of potential solutions.  
Clearly, the improved modeling and computational 
capabilities has resulted in a significant improvement in the 
plant staff’s ability to evaluate alternatives.  For example, 
if there was a production problem at a complex chemical 
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site in one of a number of process units, the normal 
reaction in the past was to correct the problem by 
following the response pattern of previous similar outages.  
This was done not because the staff believed that it was the 
optimal response, but rather because the time available to 
respond and the available information did not support any 
other response.  Today, it is normally possible to analyze 
multiple possible responses and choose one that reflects 
current actual demands and availabilities. 

Real Time Simulation – The increased use of real time 
simulation as a tool for learning about complex systems 
such as a CPI plant is one of the most significant of the 
ongoing developments.  This is most valuable in situations 
with very low tolerance for error or with very infrequent 
occurrences.  Normal examples include training plant 
operators to deal with emergency situations or with plant 
start-up and shut-down.  The key improvement obtained is 
a faster and safer response to these types of situations.  An 
interesting development is the adoption of 3D virtual plant 
representations for this safety training. However, the use of 
simulation is not limited to operator training.  In fact, one 
of the biggest areas of increased use for this technology is 
in overall business simulation, particularly in the logistics 
area. 

Expert Systems – Another technology where the hype 
has significantly outpaced reality has been in the use of 
expert system technology to assist in decision making.  
Much has been proposed but few actual systems have been 
implemented.  The modeling of actual decisions has 
proven to be more difficult in practice than anticipated.  
However, of perhaps more importance has been the 
difficulty in maintaining the expert systems current as 
situations in the plant change.  However, work continues 
and there are new offerings coming such as the one in the 
press release below (Siemens, 2001). 

 
“The Industrial Solutions & Services (I&S) 

division of Siemens recently introduced an 
innovation from Siemens AG— an intelligent plant 
monitoring system christened “Human Interface 
Supervision System” (HISS) in India. HISS senses 
optical, acoustic and chemical impulses and 
combines them with analysis and reasoning to 
‘intelligently’ diagnose and forewarn abnormal 
scenarios and states in industrial plants. It monitors 
processes around the clock and improves plant safety 
and availability. As an expert system, HISS finds 
useful application in various industries including oil 

& gas exploration, pipelines, chemical and 
petrochemical segments. 

HISS modules such as “HISS Watching”, 
“HISS Listening” and “HISS Smelling” provide 
round-the-clock remote supervision for manned or 
unmanned plant locations. ……HISS actually uses 
human characteristics of analysis and reasoning 
better than humans and thus allows improvement in 
plant safety and superior plant availability, claims 
company sources.” 

Case Study 

The CPI has always been concerned with improving 
the reliability of major equipment and avoiding 
unscheduled production slowdowns or shutdowns.  As 
process plants get larger, the financial implications of even 
relatively short production outages are quite high.  Reliable 
and efficient operation of equipment is essential for 
profitable production.  There are several approaches to 
maintenance in process plants.  One is to wait until the 
equipment breaks and then fix it if it is really important.  
The second, known as preventative maintenance, uses 
average times to failure for equipment and schedules 
maintenance before the expected failure time.  However, 
equipment can vary widely in actual performance.  Some 
scheduled maintenance is unnecessary and some 
equipment fails before its scheduled shutdown.  Predictive 
maintenance attempts to find techniques to determine more 
precisely if equipment is underperforming or about to fail.  

The performance of process equipment, such as 
compressors, heaters, heat exchangers and columns, often 
deteriorates with time due to wear and tear and fouling and 
this deterioration has significant economic implications.  In 
addition, deterioration in process equipment performance 
in conjunction with traditional condition monitoring is 
often a precursor to actual equipment failure.   Even when 
process data is monitored online, the actual equipment 
performance, which is not directly measurable, can be 
masked by changes in stream compositions, operating 
conditions, ambient conditions, and other normal process 
variations.  To correct for these variations it is necessary to 
use rigorous engineering models of the performance and 
the best possible estimate of the correct values of process 
input data to the calculation.  Figure 7 below shows the 
overall functioning of the system.  This is discussed further 
in White, 2002. 



   
 

 

Figure 7 – Predictive Maintenance 
 
Efficient management of plant assets reduces 

unplanned equipment breakdowns, improves shutdown 
efficiency and optimizes the maintenance budget. 
Important associated benefits include the opportunity to 
benchmark similar equipment across multiple plant sites 
and the ability to use centralized engineering resources to 
support multiple sites.   

Experience with actual implementations indicates that 
predictive maintenance technology can result in an 
increase in potential plant production from existing 
equipment of between one and three percent due to 
reduced unscheduled shutdowns.  A reduction in 
unplanned maintenance costs of ten to thirty percent is also 
expected.  The expected incremental return on investments 
in this technology can be among the highest of any 
investments available to the plant. 

Outstanding Issues 

Clearly there have been many new developments in 
this area and many successful technology adoptions.  
However, there are numerous practical issues that have 
delayed further implementation.  While technology is part 
of the equation, it is clear that the primary issue concerns 
individuals and organizations.  The author’s experience is 
that the technology generally works – if not totally, at least 
partially.  However, many new technology 
implementations fail on the human issues involved.  
Individuals and organizations are highly resistant to 
change.  How to make individuals feel comfortable with 
the new technology and how to fit the new decision models 
into an organization’s existing decision and power 
structure are the primary open questions.  While these 
questions may seem outside the normal range of enquiry 
for technologists, their answers will continue to limit the 
rate of progress.   

Conclusion 

Dramatic changes in computer and communication 
capabilities are occurring and will continue to have a very 

large impact on plant production.  The trends in 
manufacturing financial incentives, health, safety and 
environmental issues, and plant operating demographics 
are driving many of the potential uses.  Significant benefits 
can be obtained by taking advantages of these 
opportunities.  Companies that are the quickest to take 
advantage of these opportunities will benefit the most.   

In other industries developments are ongoing and 
perhaps illustrate the path forward.  The GE appliance 
division is already developing refrigerators, washers, and 
other appliances that receive instructions and report over 
the web. It will not be too long until your doorbell rings 
and the repairman says, "I received a request from your 
refrigerator to come and replace the drive belt.“  

Can process equipment be far behind? 
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