

Identification of deterministic piecewise affine models of genetic regulatory networks

Giancarlo Ferrari-Trecate

Dipartimento di Informatica e Sistemistica (DIS), Università degli Studi di Pavia, Italy

giancarlo.ferrari@unipv.it

Thanks to: O. Bernard, D. Chieppi, S. Druhle, H. de Jong, R. Porreca

Overview

- 1. Basics on Genetic Regulatory Networks (GRNs) and their identification
- 2. PieceWise Affine (PWA) models of GRNs
- 3. Data-based reconstruction of GRNs
 - Pitfalls of general methods for PWA system identification
 - Towards gray-box identification of GRNs
 - Switch detection
 - Threshold reconstruction
- 4. A case study: identification of *E. coli* carbon starvation response
- 5. Conclusions

Genetic regulatory networks

- GRNs underlie functioning and development of living organisms
 - Components: genes, proteins, small molecules, and their mutual regulatory interactions

• Genes can be turned on and off

Genetic regulatory networks

- GRNs underlie functioning and development of living organisms
 - Components: genes, proteins, small molecules and their mutual regulatory interactions
- GRNs are usually **large** (many genes) and **complex** (feedback loops)

Gene expression data

- Experimental techniques in biology have led to the production of enormous amount of data on the dynamics of gene expression:
 - DNA microarrays
 - gene reporter systems

Data-driven modeling of GRNs

 System identification problem: derive a model of the regulatory interactions according to measurements and model structure

Gene reporter systems \Rightarrow adequate sampling time to capture GRN dynamics

State of the art

Classes of dynamical models that were used for modeling genes and GRNs:

- Linear (Gardner et al., Science 301, 2003)
 - \rightarrow only valid near an equilibrium point
- Nonlinear smooth (Jaeger et al., Nature 430, 2004)
 - \rightarrow more adequate description but difficult to use for identification
- PieceWise Affine (PWA)
 - \rightarrow compromise between linear and non-linear
 - Introduced by Glass and Kauffman in the 1970s
 - de Jong et al., Bull. Math. Biol. 66, 2004
 - Ghosh and Tomlin, Syst. Biol. 1, 2004
 - Batt et al., HSCC05, Vol. 3414 of LNCS, 2005
 - \rightarrow tools for analysis and abstractions available
 - \rightarrow identification methods for PWA systems available

PWA models of GRNs

Consider a GRN composed by n genes

• State vector: $x = [x_1, x_2, \dots, x_n] \in \Omega$

gene product concentrations

• State set $\Omega \subset \mathbb{R}^n_{>0}$: hyperrectangle including the origin

PWA models of GRNs

PWA models of GRNs

- All thresholds split Ω into hyperrectangular domains $\{\Delta^j\}_{j=1}^s$
- Step functions are constant on each domain \Rightarrow PWA system

$$\dot{x} = \mu^j - \nu^j x$$
 if $\lambda(x) = j$

•
$$\mu^j = \begin{bmatrix} \mu_1^j & \dots & \mu_n^j \end{bmatrix}^T \ge 0, \ \nu^j = \operatorname{diag}(\nu_1^j, \dots, \nu_n^j) > 0$$

• $\lambda(x) = j \Leftrightarrow x \in \Delta^j$: switching function

PWA model of a molecule concentration

Dynamics of the *i*-th molecule concentration:

$$\dot{x}_i = \kappa_i^j - \gamma_i^j x_i \quad \text{if} \quad x \in M_i^j$$

• $\{M_i^j\}_{j=1}^{s_i}$: molecule domains (regions in Ω where the *i*-th concentration obeys to the same dynamics)

• Inputs:
$$x_p, p \neq i$$

Standing assumption: no sliding-mode behaviors

Data model

Discrete-time model for the *i*-th molecule concentration:

$$x_i(k+1) = \tilde{\kappa}_i^j - \tilde{\gamma}_i^j x_i(k) + \eta_i(k) \quad \text{if} \quad x(k) \in M_i^j$$
$$y_i(k) = x_i(k) + \xi_i(k)$$

•
$$\tilde{\kappa}_i^j = (\kappa_i^j \setminus \gamma_i^j)(1 - e^{-\gamma_i^j T})$$
, $\tilde{\gamma}_i^j = -e^{\gamma_i^j T}$: rate parameters

- *T* : sampling time
- η_i, ξ_i : noise
- $y_i(k)$: measured data

Common data models:

- PieceWise Autoregressive eXogenous (PWARX): $\xi_i = 0$
- PWA Output-Error (PWA-OE): $\eta_i = 0$

Identification of GRNs

PWA discrete-time model of the GRN:

$$x_i(k+1) = \tilde{\kappa}_i^j - \tilde{\gamma}_i^j x_i(k) + \eta_i(k) \quad \text{if} \quad x(k) \in M_i^j$$
$$y_i(k) = x_i(k) + \xi_i(k)$$
$$i = 1, \dots, n$$

Identification problem: reconstruct

- the number of modes
- all rate parameters
- all switching thresholds

from the dataset $\{y_i(k), k = 1, ..., N, i = 1 : ..., n\}$

Can one use available algorithms for the identification of PWA models ?

Input-output PWA models

PWARX / PWA-OE models considered in hybrid identification:

$$\underbrace{u(k)}_{\text{system}} \xrightarrow{\text{MISO PWA}} w(k)$$

$$\begin{aligned} z(k+1) &= \phi^j \left[\begin{array}{cc} r(k)' & 1 \end{array} \right]' + \eta(k) & \text{if} \quad r(k) \in \mathcal{X}^j \\ w(k) &= z(k) + \xi(k) \end{aligned}$$

•
$$r(k) = \begin{bmatrix} z(k) & \cdots & z(k-n_a) & u(k)' & \cdots & u(k-n_b)' \end{bmatrix}'$$

• $\{\mathcal{X}^j\}_{j=1}^{\tilde{s}}$:polyhedral partition of the polytope \mathcal{X}

PWA models for a single molecule concentration fall within this class

Identification of I/O PWA models

PWARX / PWA-OE models considered in hybrid identification:

$$\begin{aligned} z(k+1) &= \phi^j \left[\begin{array}{cc} r(k)' & 1 \end{array} \right]' + \eta(k) & \text{if} \quad r(k) \in \mathcal{X}^j \\ w(k) &= z(k) + \xi(k) \end{aligned}$$

Pitfalls of available methods

Existing identification methods are generic in nature and do not exploit features of PWA models of GRNs

Example 1: Switch detection from noisy measurements

- Very challenging problem for general PWARX / PWA-OE models
- Much easier for PWA models of GRNs

Pitfalls of available methods

Existing identification methods do not take into account constraints of PWA models of GRNs

Example 2: switching thresholds \Rightarrow hyperrectangular domains

Neglecting this kind of information ...

The concept of threshold associated to a concentration variable is lost

Pitfalls of available methods

Existing hybrid identification methods produce a single result but data are often scarce and multiple models might be plausible

Identification of PWA models of GRNs

Our approach: gray-box identification

- 1) Detection of switches in gene expression data
- 2) Estimation of the number of modes and attribution of the measurements to mode data sets
- 3) Reconstruction of
 - thresholds on concentration variables
 - all "minimal" combinations of thresholds consistent with the data

4) Estimation of kinetic parameters for all models generated in point 3

- Step 2 is currently under study
- Step 4 is easy (LS on each mode data set)

Next:

- two algorithms for step 1
- a procedure for step 3

Switching index

(Porreca et al., 2006)

PWA-OE model for the *i*-th molecule:

$$\begin{aligned} x(k+1) &= \tilde{\kappa}^j - \tilde{\gamma}^j x(k) \quad \text{if} \quad x(k) \in M^j \\ y(k) &= x(k) + \xi(k), \ \xi(k) \sim WGN(0, \sigma_n^2) \end{aligned}$$

• $\{M^j\}_{j=1}^s$: molecule domains

Switching index:

$$o(k) = \frac{x(k+1) - x(k)}{x(k) - x(k-1)}$$

The index emphasizes switches:

- if x(k-1), x(k), x(k+1) belong to the same molecule domain for $k = k_a, \ldots, k_b$, then o(k) is constant
- otherwise, it has a varying profile

Behavior of the switching index

Moving Average (MA) switching indexes

Data-based indexes

Data-based MA switching index:
$$\tilde{\bar{o}}(k) = \frac{y(k+W) - y(k)}{y(k+W-1) - y(k-1)}$$

Fieller's theorem allows one to compute the α -level confidence sets for $\tilde{\bar{o}}(k)$ in closed form

The higher W the smaller confidence sets

HYGEIA PhD school on hybrid systems biology. July 20th, 2007, Siena, Italy

Switch detection algorithm

Key idea: aggregation rule based on confidence sets computed on different MA windows

Switch detection algorithm

Key idea: aggregation rule based on confidence sets computed on different MA windows

Further features of the complete algorithm (Porreca et al., 2006)

- re-inizialization after the detection of a switch
- backtracking for improving switch detection
- ad hoc handling of confidence sets of infinite length

Switch detection based on nonlinear estimation

Exponential model of the data (j-th mode):

$$y(k) = \frac{\kappa^j}{\gamma^j} - \left(\frac{\kappa^j}{\gamma^j} - x(k_0)\right) e^{-\gamma^j(k-k_0)T} + \xi(k)$$

Switch detection strategy:

- = estimate $\hat{\kappa}^j, \; \hat{\gamma}^j, \; \hat{x}(k_0)$ using aggregated measures up to the time k_P
- hypothesis test:
 - $H_0: y(k_P+1)$ belongs to the same mode;
 - I_{α} : α -level confidence interval for $y(k_P+1)$ under H₀,
- switch detection rule: $y(k_P+1)
 ot\in I_lpha$

Comparison of the methods

Classification accuracy

extensive simumlations

Results based on

Molecule domain fragmentation

		switching indexes	nonlinear estimation	
σ_n	10 ⁻⁵	accuracy 97,1% fragmentation 4,4%	fragmentation 34,4%	
	10 ⁻⁴	accuracy 93,8% fragmentation 5,2%	fragmentation 26,9%	
	10 ⁻³	accuracy 69,7% fragmentation 16,4%	6 accuracy 69,7% 6 fragmentation 30,7%	
	10 ⁻²	accuracy 22,3% fragmentation 34,3%	5 accuracy 63,8% 5 fragmentation 15,2%	

Assume that in early stages of identification:

- the number of modes has been estimated
- data have been attributed to modes of operation (i.e. data have been partitioned into mode data sets $\mathcal{F}_1, \ldots, \mathcal{F}_s$)

- Switching thresholds: axis-parallel (ap-) hyperplanes
- A set of switching thresholds consistent with the data must separate all pairs $(\mathcal{F}_p,\mathcal{F}_q),\,p\neq q$

How to find all "minimal" combinations of ap-hyperplanes that separate the sets $\mathcal{F}_1, \ldots, \mathcal{F}_s$?

Separation power of ap-hyperplanes

(Druhle et al., 2005)

- An <u>ap-hyperplane</u> has a supporting vector parallel to one axis
 - The label of the axis is the <u>direction</u> of the ap-hyperplane
- The separation power $S(\theta)$ of an ap-hyperplane θ describes the separated data sets
- Two ap-hyperplanes with a same direction and a same separation power are <u>equivalent</u> (thus defining equivalence classes of ap-hyperplanes)

Cuts

For each class of equivalence, the ap-hyperplane that minimizes the empirical risk (i.e. that lies in the middle of the equivalence class) is a <u>cut</u>

The collection $\mathcal{C}^* of$ all cuts can be easily computed

Standing assumption: all pairs of sets are separated by \mathcal{C}^{\ast}

 \mathcal{C}^* contains unnecessary cuts (i.e. unnecessary regulation circuits)

Occam's razor: find the *simplest* collections of cuts that separate the sets

Multicuts

A collection of cuts such that all pairs of sets are separated is a multicut

Rough idea: find all minimal multicuts by enumerating all multicuts

combinatorial explosion !

Better ideas:

- remove cuts that are "redundant"
- find criteria for avoiding the enumeration of all multicuts

Multicut algorithm

(Druhle et al., 2005)

- remove cuts that are "redundant"
- find criteria for avoiding the enumeration of all multicuts

Mathematics: define partial order relations on cuts and multicuts and exploit the theory of POSETS.

Algorithms: branch-and-bound methods for computing all minimal multicuts

A case study

Identification of the GRN governing carbon starvation response of *E. coli*

time

Transitions from exponential to stationary phase involve observable changes in:

morphology,
metabolism,
gene expression,
...

Simplified GRN

$$\begin{aligned} \dot{x}_{CRP} &= \kappa_{CRP}^{0} + \kappa_{CRP}^{1} s^{-} \left(x_{Fis}, \theta_{Fis}^{1} \right) s^{+} \left(x_{CRP}, \theta_{CRP}^{1} \right) s^{+} \left(x_{S}, \theta_{S} \right) - \gamma_{CRP} x_{CRP} \\ \dot{x}_{Fis} &= \kappa_{Fis}^{1} \left(1 - s^{+} \left(x_{CRP}, \theta_{CRP}^{1} \right) s^{+} \left(x_{S}, \theta_{S} \right) \right) \\ &+ \kappa_{Fis}^{2} s^{+} \left(x_{GyrAB}, \theta_{GyrAB} \right) \left(1 - s^{+} \left(x_{CRP}, \theta_{CRP}^{1} \right) s^{+} \left(x_{S}, \theta_{S} \right) \right) - \gamma_{Fis} x_{Fis} \\ \dot{x}_{GyrAB} &= \kappa_{GyrAB} s^{-} \left(x_{Fis}, \theta_{Fis}^{3} \right) - \gamma_{GyrAB} x_{GyrAB} \\ \dot{x}_{rrn} &= \kappa_{rrn} s^{+} \left(x_{Fis}, \theta_{Fis}^{2} \right) - \gamma_{rrn} x_{rrn} \\ \dot{x}_{S} &= 0 \end{aligned}$$

Switch detection

Data produced by an OE-PWA model (\times = true switches)

• simulation of the transition stat. \rightarrow exp. due to carbon upshift

Vertical lines: switch detected by the algorithm based on nonlinear estimation

- all switches have been reconstructed
- one spurious switch in the profile of protein Fis

Data produced by a PWARX model (vertical lines = true switches)

- correct classification used for building the mode data sets $\mathcal{F}_1, \ldots, \mathcal{F}_s$

Non "redundant" cuts found by the algorithm:

Cut	Variable	Threshold value	Interaction	Correct? (Y/N)
C_1	x_{Fis}	0.26	Fis activates <i>fis</i>	Ν
C_2	x_{GyrAB}	0.49	GyrAB activates fis	Υ
C_3	x_{rrn}	0.03	Stable RNAs activate rrn	Ν
C_4	x_{CRP}	0.65	CRP inhibits <i>fis</i>	Υ
C_5	x_{Fis}	0.5	Fis activates <i>rrn</i>	Υ
C_6	x_{Fis}	0.74	Fis inhibits $gyrAB$	Υ

Merging the best minimal multicuts obtained on stat. \rightarrow exp. and exp. \rightarrow stat. data sets, only one interaction (autoactivation of CRP) has not been inferred

Conclusions

- Data-driven modeling of GRNs is a very active area of systems biology
 - Experimental techniques for obtaining accurate gene expression data are available
- Hybrid systems are appealing for modeling GRNs
 - compromise between linear and nonlinear models
 - they preserve the on/off behavior of genes
- Identification of PWA models of GRNs: exploit structure in order to
 - improve identification results
 - obtain multiple, biologically meaningful models

Current limitations of the proposed methods for switch detection and threshold reconstruction:

- absence of sliding-mode behaviors
- separability of mode data sets
- no capability of detecting "missing" genes

