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Abstract: In this paper we will demonstrate Response Surface Methodology (RSM) applied
to process simulation of an offshore oil and gas separation plant. By performing surrogate
experiments according to Design of Experiment (DoE) and subsequent construction of multiple
linear regression models for the chosen responses, the overall separation process is optimised in
terms of power consumption under the constraints of quality specification of gas and oil export,
respectively. The fluid treated in the separation plant is rich in NGL (Natural Gas Liquids)
which causes challenges in meeting the export specifications. Further, the NGL causes increased
condensate recycle in the compression system thereby increasing power consumption for the
compressors as well as increased cooling for heat exchangers. Offshore the NGL is difficult to
dispose, which makes fractionation unattractive and the NGL must be exported via the oil
(partly stabilised) or via the gas (rich gas) or a combination of the two. Effectively, this violates
the export specifications and the NGL must be extracted in on-shore facilities either at the oil or
gas receiving facilities. By exploring different options, applying RSM, it is found that in terms
of overall power consumption export of NGL with the gaseous products is more effective that
exporting the NGL with the partly stabilised oil. The methodology used in the present paper
can also be applied to existing production facilities as a generic optimisation tool. Due to the
simplicity of the regression models mimicking the separation plant they can be coupled with
the overall process control for potential on-line plant optimisation.
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1. INTRODUCTION

Process optimisation of offshore facilities for oil and gas
separation involves building a simulation model of the
plant in question. The process simulation must include
a representative description of the well fluid and an ap-
propriate equation of state. By modelling all the involved
unit operations the optimisation can begin by changing
relevant process parameters (pressure and temperature).
Often a sensitivity analysis is made to explore the impor-
tance of the different independent variables (factors) and
the optimisation may be done changing these one at a
time. This can be a tedious and time consuming process.
Some process simulators may have built in optimisation
algorithms, however, as the process simulation grows in
complexity and simulation convergence becomes time con-
suming, difficulties may be met. It is the authors expe-
rience that the simulator built in optimisation methods
may suffer from difficulties in finding the global optimum.
More elaborate optimisations may be done by coupling
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the process simulations with general purpose optimisation
software e.g. (Adams et al., 2014).

In this paper we will use a different approach in which the
optimisation part is de-coupled from the complex process
simulation. This is done by applying response surface
methodology (RSM) and using the process simulation
to perform virtual or surrogate experiments (Grimstad,
2015; Grimstad et al., 2016). Optimisation is subsequently
performed on the formulated response surface(s).

To demonstrate the application of RSM to optimisation
of oil and gas separation facilities a realistic model of
an offshore separation plant is made using commercial
process simulation software. A fluid description of the
well fluid treated includes a significant portion of NGL
(Natural Gas Liquids). The NGL challenge the power
consumption of the separation plant due to significant
condensate recycles in the compression system. The main
target in this paper is to minimise the power consumption.
Part of the optimisation is also to choose the best method
for disposing the NGL.
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2. METHODS
2.1 Tools

Process simulations are performed with AspenTech HYSYS
v8.3.

All subsequent data handling and analysis is performed in
Python 2.7 with the stack of Numpy (Van Der Walt et al.,
2011), Scipy (Jones et al., 2001-), Pandas (McKinney,
2010), Matplotlib (Hunter, 2007). Regression analysis is
performed using the StatsModels module (Seabold and
Perktold, 2010), and subsequent constrained optimisation
is performed using Sequential Least SQuares Programming
(SLSQP) (Kraft, 1994) in Numpy.

2.2 Response surface methodology

The simulation experimental plan and subsequent analysis
is based on theory from Design of Experiments (DoE)
and Response Surface Methodology (RSM). An exhaustive
presentation of the methods of DoE and RSM will not
be given here. Instead the reader is referred to relevant
textbooks and literature (Box et al., 1978; Myers et al.,
2009). However, a very brief introduction will be given
below. RSM can be thought of as a multi stage process
consisting of the following steps:

(1) Lay-out of experimental test plan according to DoE
and conducting experiments (in this case simulations)
(2) Building an empirical response surface model by
generating linear regression model for each of the
dependent variables, Y;, of interest (also referred to
as responses) as a function of independent variables,

(3) Cljleck for linear regression assumption violations,
lack-of-fit etc. (normal residuals, random residuals,
outliers with influence etc.)

(4) Perform regression model selection (repeat 3-5)

(5) Validate models outside training set

(6) Using the response surface model for finding the op-
timal operating point by (constrained) optimisation.

A number of different experimental plans and philosophies
can be chosen depending on the objective of the test plan
and the number of feasible experiments. The experimental
design may range from 2-level full factorial experiments
with a few independent variables (also referred to as
factors) - enabling to estimate both main effects and
all interactions between variables, to 3-level experimental
designs with many factors. When the number of factors
increase the number of required tests for full factorial
experimental plans grow exponentially. However, usually
the effect of interactions above pair-wise interactions can
be ignored, whereby the number of experiments can be
reduced significantly by using a fractional factorial design
in which it can be assumed that higher order (above two)
interaction effects are negligible. In this study we apply a
so-called face-centered central composite design (ccd).

The general second order response surface model with &
factors can be expressed as

k—1 k
Yo > Bymiay (1)

i=1,i<j j=2

K k
y="Po+ > Biwi+ > Bix; +
=1 1=1
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By linear regression analysis (Faraway, 2004) the coeffi-
cients () can be estimated. It often turns out that some
of the effects (usually second-order terms) are statistically
insignificant and can be excluded from the model by either
e.g. step-wise linear regression or a criterion based strategy
(Faraway, 2004).

Once a response surface model which fits the experimental
data to a satisfactorily level has been identified for each
of the responses the response surface can be investigated.
This is often done visually, at least to start with, and
this is the part of the process which has given name
to the methodology. By inspecting the response surface
the optimum settings may be visually identified directly.
However, often several constraints must be satisfied. Those
can be both constraints in factors but also constraints in
responses.

A general optimisation problem with p response equal-
ity constraints, ¢ response inequality constraints and n
bounds for factors is defined and solved:

Minimize f(x)

Subject to the constraints

gi(x)=0fori=1,...,p (2)
hi(z) >0for i=1,...,q (3)
L.<z.<U.for r=1,...,n (4)

Previously response surface methodology has been ap-
plied by one of the authors to optimise fuel oil con-
sumption and NOy for large two-stroke diesel engines
(Mayer et al., 2010), for zero-dimensional model valida-
tion (Scappin et al., 2012), and gas engine performance
optimisation (Andreasen, 2012; Juliussen et al., 2011). For
general application of DoE to simulations see (Law, 2014).
For applications to chemical process simulations see e.g.
(Wang et al., 2012; Pontes et al., 2011). To our knowledge
application of response surface methodology to plant wide
optimisation of an offshore oil and gas separation plant
has not previously been published.

2.8 Fluid and process simulation description

The process simulated is a three stage separation process,
with gradual decrease of separator pressure. A simplified
flow diagram showing the modelled process is shown in
Figure 1.

The gas from the 2" and 3" stage separators is com-
pressed to a pressure enabling commingling with gas from
the upstream 15% stage separator. Gas from the 15t stage
separator, commingled with gas from the 2" and 3" sep-
arator, is compressed further, before cooling and dehydra-
tion. The water dry gas is routed to the dew point control
and NGL treatment facilities. These facilities consist of
heat exchangers and turbine-expander /re-compressor. The
cold fluid leaving the turbine-expander is routed to a low
temperature knock-out drum. The gas is used for cooling of
the dehydrated gas and the liquid is routed to a reboiled
NGL splitter column. The gas from the NGL splitter is
routed back to the compression system and the liquid from
the reboiler is routed to the separation system.
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The flow diagram does not show condensate recycle
streams from compressor suction scrubbers as well as de-
hydration inlet scrubber. For a more detailed view please
see Figure 2.

The setup of the well fluid and thermodynamics package
is summarised in Table 1. The well fluid NGL content
is too high in order to both meet oil and gas export
specifications.

Table 1. Dry fluid and Equation of State (EOS)
data. Minor fractions of Ny and CO5 have been
omitted. GOR is the gas-to-oil ratio. Water cut

is 53%.
Parameter Unit Value
GOR Sm?3/Sm? 200
C1 content mole % 48.83
C2-C4 content mole % 17.23
C5-C10 content mole % 20.08
C10+ content mole % 13.86
Oil density kg/m3 853.5
Gas density kg/m3 1.030
EOS - Soave-Redlich-Kwong
Liquid density method - COSTALD
Enthalpy method - From EOS

3. RESULTS AND DISCUSSION

Based on a preliminary sensitivity analysis the following
factors (independent variables) are found to be of special
interest:

X1 Pressure at turbine expander outlet (Peyp)

X2 Reboiler temperature (Trepoir)

X3 Pressure in 3'¢ stage separator (Pgep)

X4 Booster compressor discharge temperature (Ppooster)

X5 Temperature at the inlet to the dehydration facilities
(Tdehya)

The factor level settings for each simulation experiment
are summarised in Table 2. The full experimental plan of
the applied face-centered central composite design (see e.g.
(Croarkin and Tobias, 2017)) is given in Table 3.

Table 2. Factor level settings

Level Pexp Treboil Psep Pboostcr Tdchyd
(bar) (°C) (bar) (bar) (°C)
High (+1) 45 35 25 95 35
Mid (0) 35 25 2.3 90 30
Low (-1) 25 15 2.1 85 25

The following responses (dependent variables) are recorded
after convergence of each process simulation according to
the simulation experimental plan:

Y7 Export gas dew point (°C)

Y, Export gas Wobbe index (MJ/Nm?)

Y3 Export gas higher heating value, HHV (MJ/Nm?)
Yy Export gas specific gravity, SG (-)

Y5 Export oil Reid Vapour Pressure, RVP (psia)

The results of conducting process simulation experiments
for each of the simulations defined by the experimental
plan are summarised in Table 3.
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For each of the responses linear regression models are
built. Insignificant terms are removed in manual back-
wards selection process removing terms with P-values >
0.05. Using this approach the following reduced regression
models are derived (HHV and Dew point not shown):

Y5 = 0.0862.X + 0.3914.X3 — 0.1072X4 4 0.1550X5
—0.0006.X1 X4 + 0.0006X; X5 — 0.0184.X5X5
Y, = 0.0029X; + 0.0159X5 — 0.0035X4

+0.0048X5 — 9.06 - 107° X1 X5

—1.887-107°X; X4 +1.838 - 107° X, X5 (5)
—0.0006X5X5 —2.25- 1075 X, X5
+2.204-107° X2 + 0.6699 (6)

Y5 = —0.3862X; + 0.0903X, — 0.1227.X4 — 0.9514.X5
+ 0.0031X; X4 — 0.0007X2X4 4 0.0163X3X4

+0.0490X3 X5 + 0.0027X4 X5 — 0.0009X 3
+0.0060X2 + 38.31 (7)
(8)

The performance of the reduced regression models are
visualised in Figures 3-6. As seen from the figures the
derived regression models provides excellent fit to the
simulation data. Validation simulations have been done
separately both inside and outside the factor level settings
used in the DoE with satisfactory results (not shown).
For each of the regression models the usual assumptions
(e.g. homoscedasticity, random and normal distributed
residuals) are checked and found to be within normal
acceptance criteria.

The response surface of power as a function of X; and Xj5
is depicted in Figure 7.

Once the regression model is derived it is possible to
define optimisation objectives. The overall objective is
to minimise the plant power requirements. Three cases
are defined with the constraints showed in Table 4. Case
1 considers oil export which meets all specifications for
pipeline transport and receiving facilities, but allowing the
oil export not to be fully stabilised i.e. a higher portion
of NGL can be exported via the oil export. Case 2 is a
variation of Case 1 where the Wobbe index constraint has
been removed. Case 3 considers export of fully stabilised
oil but where the gas quality in terms of energy content
and density (HHV, Wobbe index and SG) is allowed to
exceed the gas specifications, yet with specifications for
hydrocarbon dew point.

The results of the optimisation, and benchmarking the
results against full process simulations using identical
factor settings are summarised in Table 5.

First of all, it is observed that the regression models ap-
plied yield results which matches the process simulations
quite well. Thus, even despite the great complexity of the
process simulations including fluid phase behaviour and
vast amount of different unit operations modelled, the very
simple regression models capture these effects adequately.

In terms of the minimisation of the power requirements
for process equipment drivers, mainly compressors, it is
obvious comparing Case 1 and Case 3, that meeting export
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Table 3. Simulation experimental plan factor level settings and process simulation responses to
experimental plan. 1 = high value, 0 = mid value and -1 = low value.

Factors Responses

No Pexp Treboil Psep Pbooster Tdehyd Wobbe SG HHV Dew Power RVP

(MJ/Nm?) () MJ/Nm®) (€% (kW) (psia)
1 0 0 0 0 0 56.56 0.663 43.64 -22.89 8670 14.71
2 -1 -1 -1 -1 -1 55.85  0.6419 42.39 -37.37 10130 16.41
3 -1 -1 -1 -1 56.88  0.6724 44.17  -17.38 8439 13.82
4 -1 1 -1 -1 -1 55.84  0.6417 42.38 -37.46 10160 15.95
5 1 -1 -1 -1 56.86  0.6718 44.16  -17.55 8453 13.44
6 -1 -1 1 -1 -1 55.82 0.641 42.33 -38 9012 17.32
7 1 -1 1 -1 -1 56.82  0.6707 44.09 -18.09 7591 14.83
8 -1 1 1 -1 -1 55.83  0.6416 42.37 -37.81 9158 17.15
9 1 1 -1 -1 56.81 0.6704 44.07 -18.2 7605 14.41
10 -1 -1 -1 1 -1 55.62  0.6354 42 -42.69 11440 16.72
11 -1 -1 1 -1 56.55  0.6626 43.61 -22.34 9550 15.06
12 -1 1 -1 1 -1 55.64  0.6358 42.03 -42.32 11600 16.23
13 1 -1 1 -1 56.55  0.6625 43.61  -22.37 9577  14.51
14 -1 -1 1 1 -1 55.63  0.6357 42.02 -42.57 10190 17.9
15 -1 1 1 -1 56.51  0.6613 43.53 -23.11 8478 16.01
16 0 0 0 0 56.52  0.6618 43.57  -23.45 8629 14.52
17 -1 1 1 1 -1 55.58  0.6341 41.92 -43.04 10070 17.25
18 1 1 1 -1 56.53 0.662 43.57  -22.73 8553 15.67
19 -1 -1 -1 -1 1 56.54  0.6623 43.6  -23.97 9127  13.76
20 1 -1 -1 -1 1 57.68  0.6965 45.62  -4.154 7643 11.32
21 -1 1 -1 -1 1 56.52  0.6617 43.56 -24.24 9143 13.35
22 1 -1 -1 1 57.67 0.6963 45.6  -4.198 7660 11.07
23 -1 -1 1 -1 1 56.44  0.6593 43.42  -25.55 8300 14.88
24 -1 1 -1 1 57.58  0.6933 45.43  -5.428 7017 12.53
25 -1 1 1 -1 1 56.42  0.6589 43.39 -25.64 8307 14.5
26 1 1 -1 1 57.58  0.6933 45.43  -5.346 7025 12.24
27 -1 -1 -1 1 1 56.26  0.6541 43.11 -28.6 10120 14.49
28 -1 -1 1 1 57.3  0.6851 44.94  -9.965 8372 12.54
29 -1 1 -1 1 1 56.27 0.6544 43.13 -28.39 10180 14.01
30 1 1 -1 1 1 57.28 0.6842 44.89  -10.22 8398 12.14
31 -1 -1 1 1 1 56.17  0.6515 42.95 -30.42 9184 15.95
32 1 -1 1 1 1 57.17  0.6805 44.67 -12.6 7592 13.88
33 -1 1 1 1 1 56.17 0.6514 42.95 -30.4 9232 15.41
34 1 1 1 1 1 57.14  0.6803 44.66 -12.15 7620 13.44
35 0 0 0 0 0 56.52  0.6617 43.56  -23.43 8602 14.52
36 -1 0 0 0 0 56.03 0.6474 42.71  -33.17 9569 15.72
37 1 0 0 0 0 57.05  0.6775 44.49  -14.08 7960 13.46
38 0 -1 0 0 0 56.52  0.6618 43.56  -23.46 8597  14.68
39 0 1 0 0 0 56.52  0.6617 43.56  -23.45 8640 14.29
40 0 0 -1 0 0 56.52  0.6617 43.56 -23.4 9108 13.95
41 0 0 1 0 0 56.53  0.6619 43.57 -23.44 8275 15.32
42 0 0 0 -1 0 56.71  0.6673 43.89 -20.54 8261 14.19
43 0 0 0 1 0 56.39  0.6577 43.32  -25.55 9068 14.84
44 0 0 0 0 -1 56.17  0.6515 42.95 -29.76 9137  15.86
45 0 0 0 0 1 56.92 0.6735 44.25 -16.84 8249 13.6
46 0 0 0 0 0 56.51  0.6613 43.53  -23.67 8615 14.52

requirements for the gas is much more demanding in terms
of energy than meeting oil export specifications. In other
words exporting NGL mainly in the gas export is less
energy intensive than exporting the NGL mainly in the oil
export. Case 2 which is Case 1 without the Wobbe index

Table 4. Constraints applied in power optimi-

sation.
Response Casel Case2 Case3
Export gas dew point <=2 <=2 <=2
Export gas Wobbe index < 56.2 - -
Export gas HHV < 46 < 46 —
Export gas SG <0.7 <0.7 -
Export oil RVP - - 12
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constraint also shows that the minimiser finds a minimum
which is in favour of pushing the NGL towards the gas
export and removing constraints on both Wobbe index
and RVP gives the lowest power requirement.

It is also worth mentioning that for all cases many factors
tends to be at their applied bounds which means that
further reduction of the power requirement is possible if
the bounds are expanded. The minimum power for all
cases is achieved with the discharge pressure of the booster
compressor at the lower bound. Further, the pressure after
the turbine-expander seems to be the most important
control parameter for determining the amount of NGL in
the gas export as well as the total power requirement.
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Table 5. Optimisation results. Factors are bounded by the level settings used in the experimental
plan for fitting regression models.

Case 1 Case 2 Case 3
Response  RSM  HYSYS Error (%): RSM  HYSYS Error (%): RSM  HYSYS Error (%)
Power 8841 8832 -0.1 7008 7017 0.13 7129 7084 -0.63
Dew -36.13 -36.05 -0.22 -6.23 -5.428 -12.87 -6.03 -5.439 -10.58
Wobbe 56.2 55.9 -0.54 57.87 57.58 -0.5 57.88 57.57 -0.54
HHV 42.3 42.47 0.4 45.15 45.43 0.62 45.18 45.41 0.51
SG 0.647 0.6433 -0.57 0.697 0.6933 -0.53 0.6975 0.6931 -0.63
RVP 17.05 17.02 -0.18 12.45 12.53 0.64 12 12.02 0.17
Factors
Pexp 26.95 26.95 45 45 45 45
Treboil 15 15 15 15 35 35
P rdgep. 2.5 2.5 2.5 2.5 2.45 2.45
Puooster 85 85 85 85 85 85
Tdehyd 25 25 35 35 35 35
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Fig. 3. Total plant power requirements (kW). Regression
model prediction vs. process simulation results.
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4. CONCLUSION

In this paper it has been demonstrated that RSM can be a
powerful tool for optimising oil and gas separation facilities
by using process simulations as a surrogate model of a
real plant. The regression models derived from DoE closely
resembles the results from process simulations. Due to the
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Fig. 5. Export gas Wobbe Index (MJ/Nm?). Regression
model prediction vs. process simulation results.
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simplicity of these models, they hold potential for being
coupled to the control of the real physical process and
could be used for on-line process control and optimisation.
The chosen example in the present paper, is a process with
a fluid containing a significant amount of NGL, where it is
challenging to meet oil and gas export specifications. The
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results clearly shows that it is much less energy demanding
to export the NGL mainly with the gas export rather
than with the oil export. Further, allowing NGL to exceed
key export specifications for both oil and gas, the energy
requirement can be reduced even further.
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