
Derivative-Free Optimization of Offshore
Production Platforms Sharing a Subsea

Gas Network ?

Eduardo Camponogara ∗ Amanda S. Machado ∗

Thiago L. Silva ∗ Caio M. Giuliani ∗ Bruno F. Vieira ∗∗

Alex F. Teixeira ∗∗

∗ Federal University of Santa Catarina, Florianópolis, SC 88040,
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Abstract: Several systems in the real-world arise from the integration of subsystems, bringing
about the need for coordination to share limited resources and drive economic gains. Large
offshore oilfields fall in this category, such as the Santos Basin, which consists of multiple
reservoirs that are operated by platforms interconnected by a subsea gas network. The high
content of CO2 imposes constraints on the produced gas delivered to an onshore terminal. To
cope with complexity, previous works proposed modeling the production platforms in terms
of boundary conditions, thereby decoupling the platform local problems from the optimization
of integrated operations. This work follows the same strategy, however proposes the use of
derivative-free optimization to find boundary conditions that optimize the overall production.
Such an approach adds flexibility from the direct use of simulators for the gas network, while
allowing the platform problems to be solved with the method of choice, possibly using mixed-
integer nonlinear or linear optimization. The derivative-free approach was shown to be effective
in the optimization of the integrated production of the Santos Basin.

Keywords: Derivative-free optimization, production optimization, multi-reservoir oilfields, CO2
constraints, surrogates.

1. INTRODUCTION

The Santos Basin is an oil field that spreads over a
large area in the deep waters of the Atlantic, about 300
km off the coast of Brazil. Several Floating Production
Storage Offloading (FPSO) platforms have been deployed
to produce oil and gas from this multi-reservoir oilfield
(Fraga et al., 2015). The oil is transported by special
vessels, known as shuttle tankers, to onshore terminals
and refineries, whereas the gas is transferred by a network
of subsea pipelines to an onshore terminal for further
processing. Because of the high content of contaminants in
the produced gas, the platforms are equipped with special
units that sequestrate most, but not all of the CO2 which
is reinjected in the reservoirs.

To meet constraints on the maximum concentration of
CO2 at the onshore terminal, the gas exports from the
Pre-Salt platforms must be coordinated and mixed with
gas devoid of contaminants. The CO2 free gas is produced
by FPSO 4 and FIX platform, with the latter being a
fixed platform that produces from gas reservoirs and which
serves as the hub for the gas network. Figure 1 shows a
schematic of the production system in the Santos Basin.

Some works have appeared in the literature that deal with
the production optimization from multiple platforms that
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Fig. 1. Simplified representation of the production system
in the Santos Basin.

share a gathering network, not unlike the Santos Basin.
These efforts can be roughly divided in long-term opti-
mization, which extends over years of operations and con-
cerns reservoir models, and short-term optimization, which
focuses on daily or weekly optimization and considers the
production infrastructure.
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In the long-term, Huseby and Haavardsson (2009) opti-
mized the production rates of multiple reservoirs in terms
of the remaining recoverable oil volumes. More recently,
Klokk et al. (2010) developed a simplified network model
for long-term optimization of the value chain of such oil-
fields, taking into consideration CO2 injection sites and
shared facilities.

In the short-term, Selot et al. (2008) presented strategies
to optimize gas transportation systems in order to honor
contractual agreements. Rømo et al. (2009) developed
models to optimize the network transport of natural gas
on the Norwegian Continental Shelf. Camponogara et al.
(2017) proposed a methodology for production optimiza-
tion of multi-reservoir systems that was applied to the
Santos Basin. This methodology relies on surrogates for
platforms and piecewise-linear approximation of fluid flow,
yielding a mathematical formulation to which standard
algorithms can be applied.

Aiming to contribute to the state of the art, this paper
proposes the application of derivative-free algorithms to
coordinate the production from multiple offshore plat-
forms, which are coupled by a subsea gas pipeline network
and jointly limited by processing constraints at onshore
facilities. As in (Camponogara et al., 2017), platforms
are represented by surrogates but instead the subsea gas
network is modeled directly in simulation software. The
derivative-free approach brings about flexibility and re-
duces the effort of model synthesis and maintenance, but
does not ensure a globally optimal solution.

The paper is organized in the following way. Section 2
gives a formal statement for the problem of optimizing
production in offshore platforms that share a subsea gas
network. Section 3 presents a brief review of derivative-free
methods and discusses their application to the problem of
concern. Computational results from the application to the
production system of the Santos Basin appear in Section
4. Some conclusions are drawn in Section 5.

2. PROBLEM FORMULATION

Consider the set I of offshore platforms responsible for
production from the reservoirs. Such platforms are com-
plex systems that require high investments in capital for
deployment and operation. They often have dozens of
wells for hydrocarbon production and injection of water or
gas, separators, compressors and CO2 sequestration units,
among several other topside processes. The daily produc-
tion optimization of platforms has attracted the interest of
scientists and practitioners, which led to the development
of different models, algorithms, and systems. Arguably, the
most prominent approaches are based on Mixed-Integer
Nonlinear Programming (MINLP) and Mixed-Integer Lin-
ear Programming (MILP). MINLP typically uses existing
nonlinear models or relies on the synthesis of models from
data, obtained from simulation and field measurements
(Grimstad et al., 2016). MILP formulations, on the other
hand, are often put together from piecewise-linear interpo-
lation of existing data or approximation of existing models
(Silva and Camponogara, 2014).

Here, the production platforms are represented by sur-
rogates, whose domain variables are the gas exportation

rate and CO2 concentration, and whose simulated func-
tions are the optimal oil production rate and gas export
pressure. The domain variables act as boundary conditions
that decouple the platform optimization problems from
the coordination of their integrated production and the
handling of system constraints. Unlike in other disciplines,
here a boundary condition is not a given value but rather
a variable which is manipulated by an algorithm. This
way, the integrated optimization problem seeks boundary
conditions for the platforms that maximize the total oil
production, while ensuring that the simulated variables
satisfy system constraints, particularly the gas processing
capacity and the maximum CO2 concentration at the
onshore terminal.

The boundary conditions of a platform i are represented
by a set Xi, such that each feasible boundary condition
xi = (qgas,i, rCO2,i) induces an optimal oil production
fi(xi). The CO2 content in the gas phase is the ratio
of CO2 to gas flow, i.e. rCO2 = qCO2/qgas. The pressure
pi for gas export is a complex function that depends
jointly on the boundary conditions of all platforms, and
the network itself. The compressor at a platform i can
operate with a pressure pi provided that it lies within the
range [pmin

i , pmax
i ].

The terminal operates at a given inlet pressure pt, maxi-
mum gas rate qmax

gas,t, and maximum CO2 content rmax
CO2,t.

Let x = (xi : i ∈ I) be a vector with boundary conditions
of all platforms, and p = (pi : i ∈ I) be the vector with the
pressures for exportation. Then, conceptually, the problem
of maximizing production of offshore platforms sharing a
subsea gas network can be cast as follows:

S : max
x

f(x) =
∑
i∈I

fi(xi) (1a)

s.t. : H(p, x, xt) = 0 (1b)

pmin ≤ p ≤ pmax (1c)

qgas,t ≤ qmax
gas,t (1d)

rCO2,t ≤ rmax
CO2,t (1e)

x ∈ X = X1 × · · · × Xn (1f)

where:

• H is a function that represents the subsea network.
The pressures p that will be established at the plat-
forms are a function of boundary conditions, namely
the gas flows and CO2 concentrations given by x.
• pmin and pmax give the pressure bounds.
• xt = (qgas,t, rCO2,t) has the total gas flow received by

the onshore terminal and its CO2 concentration.

The coordination problem S can be seen as the search for
the boundary conditions x to maximize total oil produc-
tion, while satisfying the flow equations given by H and the
system constraints (1c)–(1f). This problem is conceptual
because it cannot be directly implemented without a rep-
resentation of boundary condition sets Xi, the production
functions fi, and the flow equations H.

In (Camponogara et al., 2017), Xi, fi and H where mod-
eled with piecewise-linear functions leading to a MILP
approximation of S, which in turn can be optimized
with standard algorithms such as branch-and-bound and
branch-and-cut. Here we propose to keep the piecewise-
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linear representation of surrogates for platforms, but in-
stead use a simulator directly to compute network flows,
pressures, and compositions. The platform surrogates were
validated against simulators. Notice that to obtain points
(xi, fi(xi)), the end user can use the model and algorithm
of their choosing, which can be MINLP, MILP obtained
with piecewise-linear approximation, and even derivative-
free optimization applied to platform simulators.

3. DERIVATIVE-FREE OPTIMIZATION

Herein derivative-free optimization concerns the problem
of minimizing a function f(x) : Rn → R over a domain
x ∈ X . The function f is available as a black-box, and
its derivatives are either unavailable or unreliable (Conn
et al., 2009; Rios and Sahinidis, 2013). Such problems
arise, for instance when the evaluation of f is subject to
noise or too costly for the application of finite difference
methods. Below we present a brief review of derivative-
free optimization (DFO), with some of the approaches for
tackling constraints. As in derivative-based methods, the
handling of constraints may rely on the iterative solution
of unconstrained (or less constrained) problems, such as in
penalty methods and the augmented Lagrangian (Giuliani
and Camponogara, 2015). The handling of constraints
is discussed in the sequence, with a particular focus on
constraints defined by functions without derivatives.

3.1 Brief Introduction

Generally speaking derivative-free methods can be classi-
fied as direct-search and model-based. Direct-search meth-
ods are based on successive evaluation of f at appropriate
directions. On the other hand, model-based methods con-
struct a surrogate for f around the current iterate, which
is then combined with standard algorithms to define the
next iterate. The models are updated iteratively to capture
the behavior of f around the incumbent solution.

Model-Based Methods These methods first sample the
function around the incumbent solution to build an initial
surrogate. They proceed by optimizing the surrogate, with
derivative-based methods, and then evaluate the proposed
solution which can be accepted or rejected. The surrogate
is then updated according with this decision.

Trust-region methods rely on a surrogate that is suffi-
ciently accurate within a neighborhood of the current it-
erate, the so-called trust-region. As models are used, these
methods tend to be efficient in finding descent. But this
comes at the expense of model maintenance, a procedure
that is costly. The size and position of the trust-region
are adjusted depending on whether or not the surrogate
solution is accepted, and if the error between the predicted
and actual function value decreases.

Direct-Search Methods Direct search methods, such as
Hooke and Jeeves’ (Hooke and Jeeves, 1961) and Nelder
Meads’ (Nelder and Mead, 1965) work based only on
function values, without attempting to build any model.
While in the 1960’s these methods were heuristic, more
recent variations have proven global convergence.

The simplex method of Nelder and Mead operates with a
set of points defining a simplex at each iteration. Various

operations are performed about the centroid of the simplex
in order to produce an improved solution, with which the
simplex is revised.

Methods related to Nelder and Meads’ are the Generalized
Pattern Search (Torczon, 1997), the Generating Set Search
(Kolda et al., 2003), and the Mesh Adaptive Direct Search
(MADS) (Audet and Dennis Jr, 2006). At each iteration,
these methods sample the objective in a finite number
of points around the current approximate solution. If the
current iterate is not already optimal, one of the search
directions is guaranteed to be a descent direction. So
descent may be found for a sufficiently small step length.

3.2 Dealing with Simulated Constraints

Giuliani and Camponogara (2015) proposed the penal-
ization of relaxable constraints using the augmented La-
grangian, and the subsequent application of a derivative-
free trust-region algorithm. A comparison with a standard
optimization algorithm in an application to oil produc-
tion platforms indicates that the derivative-free approach
can be effective. This kind of penalization is suitable for
constraints defined by functions for which derivatives are
not available, or too complicated to compute, such as
simulated functions.

The use of the derivative-free trust-region method, which
is model-based, still requires that objective and constraint
functions be well defined at all points. When such func-
tions are also the result of a black-box simulation, they
may not be available at some points: in some cases the
simulator may not return any meaningful result. This is
sometimes called a hidden constraint.

The Mesh Adaptive Direct Search (MADS) methods (Au-
det and Dennis Jr, 2006) address such constraints through
an extreme barrier approach that rejects infeasible trial
points. A number of variations have been developed for
generating random or deterministic orthogonal directions,
as with OrthoMADS (Abramson et al., 2009). In this work
we employed the NOMAD (Le Digabel, 2011) package,
which implements the OrthoMADS algorithm.

4. COMPUTATIONAL RESULTS

A computational analysis is performed to assess the ef-
fectiveness of OrthoMADS in the solution of the coordina-
tion problem S, which has simulated constraints regarding
the CO2 concentration in the gas reaching the onshore
terminal. The performance and robustness of the method
are investigated for different initial guesses and constraint
limits around the system’s nominal operating conditions.

The coordination problem S seeks to orchestrate the
integrated production of the Santos Basin as depicted in
Figure 1. For a Pre-salt FPSO i ∈ {1, 2, 3}, the boundary
condition xi = (qgas,i, rCO2,i) is given by its gas export
and CO2 content. FPSO 4 and Fixed Platform have only
gas export rate as boundary condition xi = (qgas,i) since
they produce gas devoid of CO2 from Post-salt reservoirs.
Due to flashing and complex phenomena involved in gas
transportation, the total gas qgas,t received at the onshore
terminal does not match the total gas injected by the
platforms, but rather depends on the multiphase flow
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simulation. Consequently the constraints on total flow and
CO2 content of the gas delivered at the terminal, given
respectively by (1d) and (1e), are simulated functions. The
inlet pressure pt at the terminal was fixed at 4.5 MPa in
every simulation.

The compositional model for the gas pipeline network is
available in a recent version of the commercial multiphase
flow simulator Pipesim. The optimization method is im-
plemented in Python using the OPAL interface (Audet
et al., 2010) for the package NOMAD (Le Digabel, 2011),
which implements the OrthoMADS algorithm. The com-
munication between the optimization software and the
simulator requires the use of the interface Openlink in
Python. Because this interface is not available in recent
versions of Pipesim, the simulation model was adapted to
Pipesim 2009, which is compatible with this interface.

4.1 Handling Simulated Constraints

Late in the implementation of the optimization method, we
discovered that OPAL cannot handle multiple nonlinear
or simulated constraints. It admits multiple constraints
on the decision variables that are manipulated directly,
namely boundary conditions, but only one constraint
on simulated variables. In view of this limitation, the
constraints (1d) and (1e) of the coordination problem were
combined into a single, but equivalent constraint given by:

max(qgas,t − qmax
gas,t, 0)

qmax
gas,t

+
max(rCO2,t − rmax

CO2,t, 0)

rmax
CO2,t

≤ 0 (2)

Some remarks on this equivalent constraint are in order:

• Notice that the left-hand side of (2) is positive if any
of the original constraints is not fulfilled, deeming
the constraint violated. Such a condition occurs if
the total gas delivered at the terminal or its CO2

content exceed the respective bound. The left-hand
side assumes the value zero, and the constraint is
satisfied, only when both original constraints are met.
• The violations in gas and CO2 content were nor-

malized to promote numerical stability and ensure a
proper satisfaction of both constraints. Because the
gas rate is given in millions of m3/d, and CO2 content
is a fraction given in percentage (%), a small variation
on total gas flow would subsume any variation in CO2

content without the normalization.

4.2 Initial Guesses

The robustness of the method is assessed by evaluating
the solutions to which the method converges when starting
from different initial guesses, one induced by the system’s
nominal operating condition and four additional points in
the neighborhood. Table 1 presents five platform boundary
conditions for the gas pipeline network, i.e. gas export
rates and CO2 concentrations (in percentage), which are
the initial guesses provided to the optimizer.

The nominal case is denoted by BASE. PREgas is a
variation of the nominal case in which the total gas coming
from the Pre-Salt is increased by 15%, while the Post-
Salt gas is reduced by the same ratio. The initial guess
POSgas represents a boundary condition in which the gas
coming from the Pos-Salt is increased by 15%, and the

Table 1. Initial boundary conditions.

Guess B. Cond. P1 P2 P3 P4 FIX

BASE
qgas,i 0.471 0.834 0.793 0.884 2.097
rCO2,i 5.02 4.84 4.00 0.25 0.27

PREgas
qgas,i 0.541 0.959 0.912 0.751 1.783
rCO2,i 5.02 4.84 4.00 0.25 0.27

POSgas
qgas,i 0.400 0.709 0.674 1.016 2.412
rCO2,i 5.02 4.84 4.00 0.25 0.27

PRECO2
qgas,i 0.471 0.834 0.793 0.884 2.097
rCO2,i 5.77 5.57 4.6 0.25 0.27

POSCO2
qgas,i 0.471 0.834 0.793 0.884 2.097
rCO2,i 4.27 4.11 3.40 0.25 0.27

gas with high content of contaminants is decreased in the
same proportion. The same analogy holds for PRECO2 and
POSCO2, i.e., these guesses represent boundary conditions
in which the CO2 concentration is increased and decreased
by 15% with respect to the nominal case, respectively.
However, since the CO2 concentration is constant for the
Pos-Salt platforms, only a variation in CO2 content of the
Pre-Salt platforms is considered. The table presents the
gas export ratio and the CO2 concentrations (rCO2) of
each platform in all cases. It should be mentioned that the
values of physical quantities are given in the international
system units (SI). Gas flow is measured in million standard
cubic meters per day (MSm3/d), CO2 concentration in
percent (%), and time in seconds.

4.3 Analysis of Results

Table 2 shows the computational results obtained with
OrthoMADS, which was applied to solve the coordination
problem S by iteratively simulating the subsea gas net-
work. Three different upper bounds were imposed to the
total flow and CO2 concentration of the gas arriving at
the onshore terminal:

• The first case (C1) considers both constraints relaxed,
meaning that the problem solution is equivalent to the
unconstrained case.
• The second one (C2) limits the total gas reaching the

onshore terminal with respect to the first case.
• The last case (C3) constrains the maximum CO2

content allowed in the mixture that reaches the ter-
minal, while keeping the upper bound on the total
gas relaxed.

The results shown in Table 2 lead us to draw some remarks:

(1) The initial guess (x0) can influence the solution to
which the derivative-free algorithm converges, which
suggests that multiple runs should be performed to
increase robustness.

(2) The running time of the algorithm tends to increase
as the constraints become more stringent, either the
bound on total gas or CO2 content. This behav-
ior is consistent with the nature of derivative-free
algorithms, which were originally designed for un-
constrained optimization. Constraints are handled by
some form of penalization that can be difficult to opti-
mize, particularly when the constraint is a simulated
function such as the CO2 content.

In practice, the constraint on the total CO2 content
is typically more challenging since it depends on the
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Table 2. Sensitivity to initial guess.

qmax
gas,t rmax

CO2,t x0 qgas,t rCO2,t f(x) f. eval. time

C1

5.663 2.50 BASE 5.222 2.39 59799 197 1802
5.663 2.50 PREgas 5.622 2.06 59799 331 2995
5.663 2.50 POSgas 5.275 2.28 57496 320 2819
5.663 2.50 PRECO2 5.389 2.50 59799 201 2207
5.663 2.50 POSCO2 5.080 2.29 59799 234 2499

C2

3.681 2.50 BASE 3.666 2.27 54113 275 2610
3.681 2.50 PREgas 3.667 2.46 56416 264 2420
3.681 2.50 POSgas 3.671 2.19 56416 373 3362
3.681 2.50 PRECO2 3.670 1.76 54113 267 3056
3.681 2.50 POSCO2 3.639 2.07 53640 251 2797

C3

5.663 1.25 BASE 5.140 1.24 55196 240 3010
5.663 1.25 PREgas 5.138 1.25 55196 467 4316
5.663 1.25 POSgas 5.112 1.24 54723 346 3095
5.663 1.25 PRECO2 5.111 1.25 54723 208 2227
5.663 1.25 POSCO2 5.210 1.24 55669 212 2344

compositions of all platform streams. Figure 2(a) shows
the impact of the CO2 constraint on the optimization of
the coordination problem S for a range of CO2 upper
bounds and different initial guesses. Figure 2(b) correlates
the optimal CO2 content of the gas at the treatment unit
with the CO2 constraint for three initial guesses.
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Fig. 2. Total oil production and CO2 content at the
terminal for different CO2 constraint values.

For this analysis, the upper bound on the total gas was
sufficiently large, set at qmax

gas,t = 5.663 MSm3/d, so that
only the CO2 constraint has impact in the optimization.
Some conclusions can be stated from the results shown
in the figure. The total oil production varied significantly
with respect to the initial guess for the scenarios with the
CO2 constraint up to 2.50%. For the cases in which the
CO2 constraint is more relaxed, the total oil production
converged to the same value. Notice that in most cases the
objective tends to increase as the CO2 constraint becomes
more relaxed.

5. SUMMARY

The maturing of existing oil assets is forcing operators
to search for new reservoirs, which are found in deep
waters and inhospitable areas such as in the Arctic. The
development of such assets must be carefully analyzed

given the high investments, which is of particular relevance
with today’s price of the oil barrel. Among these assets,
multi-reservoir oilfields located in the deep waters of Brazil
stand out for the sheer size, complexity, and long distance
from the coast. Such oilfields are operated with multiple
platforms that share a subsea gas network and terminal.
This gives rise to the problem of coordinating platform
production to meet constraints on the CO2 content of the
gas delivered, while ensuring production maximization,
which is key to make the enterprise profitable.

To that end, this work extended previous work by coordi-
nating the overall production from multiple platforms with
a derivative-free algorithm. Although this approach does
not guarantee global optimality, it offers flexibility to opti-
mize the gas-network simulation model directly, while still
inducing optimal performance of the platforms from the
obtained boundary conditions. Another advantage of the
derivative-free approach is the ability to cope with more
complex gas networks, with multiple sources and sinks that
can elicit complex behavior, such as flow splitting (Silva
et al., 2015). The computational experiments indicate that
good, feasible solutions can be reached after an hour of
computation in a modest computer and without the use
of parallelization.
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