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Abstract: This work studies the steady-state optimization of a Gas Lift Oil Well Network. The
optimization approach used is based on the methodology proposed by (Gao et al., 2016), which
is a Modifier Adaptation (MA) with gradient estimation from fitted surfaces. The methodology
uses plant data to locally approximate the cost and constraint functions of the plant by quadratic
functions and then estimates the plant gradients based on the approximated functions. The
proposed scheme is simulated using a phenomenological model of the oil well, which was
introduced by (Krishnamoorthy et al., 2016). The optimization results showed that the MA
scheme is able to increase production, reaching the plant optimum, despite the presence of
plant-model mismatch without any constraint violations. Furthermore, it was able to provide
good quadratic approximations of both cost and constraint functions.

Keywords: Real-time Optimization, Modifier-adaptation, Plant-model Mismatch, Gas Lifted
Oil Wells.

1. INTRODUCTION

Optimal operation of complex chemical processes is an
increasing necessity in face of more competitive global
markets. For upstream petroleum industries, model-based
optimization, such as Real-time Optimization (RTO), has
become a valuable approach to improve daily operations,
e.g. maximizing production rates or allocating gas injec-
tion to wells. This has been enabled through the increasing
number of smart wells being comissioned. In the recent
years, these wells have more downhole sensors and show an
increasing potential for control applications (Foss, 2012).

Gas lift is an artificial lift method applied when the
reservoir pressure is not high enough to lift the fluids from
the reservoir to the surface economically. Gas is injected
at the well bottom, which reduces fluid mixture density
and decreases the pressure at the bottom of the well. As
a consequence, the inflow from the reservoir increases.
However, there is a trade-off. At first, increasing the
gas lift flowrate to its maximum capacity increases well
productivity, but larger gas injection flowrates increase
frictional pressure drop, decreasing the well production.
Therefore, it is necessary to find the optimal injection
amount so that the production is maximized overall. Also,
process constraints like availability of gas lift or well total
gas production capacity need to be taken into account.

Hence, there exists an opportunity to apply RTO strate-
gies in the system to maximize production and avoid
constraint violations. Classical RTO approaches use mea-
surements to update the process model (by estimating its
parameters) and then optimizes this model in order to
drive the plant to an optimal performance, while satisfying

the constraints. However, if the model is not an accurate
representation of the plant, the optimal operation point
calculated by the RTO does not generally coincide with
the optimal operation point for the plant (Mendoza et al.,
2016). For example, the model can under- or overestimate
the value of a particular constraint.

This phenomenon, called plant-model mismatch, is ex-
tensively reported in the process engineering literature
and several RTO variants have emerged to deal with this
problem. Among them, Modifier Adaptation (MA) meth-
ods are especially attractive because they guarantee that
the model-based optimization problem reaches the plant
optimum upon convergence even in the presence of plant-
model mismatch (Marchetti et al., 2016).

The basic idea of MA methods is to use correction terms
for the cost and constraint functions to update the plant
model instead of estimating its parameters. The mea-
surements of the constraints and cost function are used
to: (1) calculate bias correction terms to the values of
the constraint and cost function predicted by the model;
and (2) estimate plant gradients, which are included as a
gradient correction term in the model cost and constraint
functions.

However, implementing MA methods in real situation can
be a challenging problem due to the necessity of estimating
the plant gradients (Marchetti et al., 2016). Since the
gradient cannot be measured directly, obtaining reliable
gradient estimates with noisy measurements can be a
challenging task.

In the literature, several alternatives to estimate plant
gradients are available (Marchetti et al., 2016). They are
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divided in dynamic perturbation methods, which uses
transient data, and steady-state (SS) perturbation meth-
ods that use only stationary data.

The most simple SS method to estimate steady-state
gradients is the Finite-Difference Approximation (FDA)
(François and Bonvin, 2013), in which each input is per-
turbed individually around the current operating point
and the corresponding gradient element is measured af-
ter the process reaches steady-state. For noise-free pro-
cess with few inputs, the FDA method provides suffi-
cient accurate plant gradients estimates in acceptable time
span. However, the method becomes inefficient for noise-
contaminated processes. In addition, this strategy can lead
to constraint violations if the operating point is close to a
constraint (Mansour and Ellis, 2003).

As an alternative, (Gao et al., 2016) proposed a method-
ology that uses current and past operating points to
obtain a local quadratic approximation of the cost and
constraint functions. Afterwards, the quadratic model is
used to calculate plant gradients. In comparison to finite-
difference calculations, the quadratic approximation cap-
tures information from well-distributed points, improving
the curvature information and decreasing the influence of
noise.

The main contribution of this paper is the application of
methodology proposed by (Gao et al., 2016) to a gas lift
oil well network. To the authors best knowledge, applying
this strategy to handle model uncertainty in oil production
optimization has not been reported in the literature before.
The results show that despite the presence of model
mismatch, the MA scheme is able to drive the model-
based optimization to the actual plant optimum in a few
iterations.

In the next section, the gas lift oil well network is described
and both the model and the optimization problem are
discussed. Then the applied modifier adaptation scheme
with the gradient estimation algorithm is presented in
details. Next, the results of the optimization cycle are
shown together with the ability of the proposed strategy
to optimize the oil well network in face of plant-model
mismatch. Finally, in the last section we present our
conclusions.

2. GAS LIFT OIL WELL NETWORK MODEL

A simplified flowsheet of the process can be seen in
Figure 1. The system can be divided in three sections:

(1) Wells: the well network is composed by two wells and
each well is composed by two different sections, before
and after gas injection;

(2) Annulus: a void between the actual product pipeline
and the external tubing. Gas is injected in the annulus
in order to increase the flow from reservoir;

(3) Riser: a pipeline system in which the gas/oil mixture
is transported from the wells to the surface. This
system includes a manifold that connects the wells
to the main pipeline.

The steady-state behavior of the process is modeled as
a nonlinear system of equations, which consists in mass
balances for oil and gas and relations for calculating

density, flow and pressure. The model considers constant
temperatures, frictional pressure drop, ideal gas behavior,
and simple linear relations to calculate the reservoir outlet
flows. The model results match the results obtained from
commercial high fidelity simulators (Codas et al., 2016).
For more details to the gas lift well model refer to (Krish-
namoorthy et al., 2016).

Fig. 1. Network containing two gas lifted wells. Adapted
from: (Krishnamoorthy et al., 2016) (adapted).

The optimal operation point of the system is achieved
maximizing the profit (i.e. maximizing oil production while
minimizing the cost related to compression of the gas
for artificial lifting). The optimization problem takes into
account processing capacity constraints and constraints on
the maximum gas lift flowrates. The model optimization
problem for a network with 2 wells can be written as:

max
u=[wgl,1,wgl,2]T

J := w2
oTot − 0.5

2∑
i=1

w2
gl,i

s. t. C :=

[
wgTot
wgl,1
wgl,2

]
≤

[
wgM
wglM
wglM

] (1)

Here, woTot is the total oil production and wgTot the total
gas production of the well network; wgl,i are the gas lift
flow rate of each well; wgM and wglM are the maximum
gas processing capacity of the system and maximum
gas lift flowrate for each well, respectively. The total oil
and gas production of the well is calculated using the
input-output mapping, [woTot, wgTot]

T = y(wgl,1, wgl,2),
which represents the steady-state behavior calculated by
a model.

The steady-state problem has two degrees of freedom for
optimization (i.e. u = [wgl,1, wgl,2]T ): the mass flow rate
of gas lift in each well. In order to consider plant-model
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Fig. 2. Profit contour lines for the model and plant, the
feasible region is indicated with an arrow. Dashed blue
line is the maximum gas production constraint and
dashed black lines are the maximum gas lift flow rate
for each well

mismatch in the problem two models are developed. One
for the plant and one for the optimization layer, which
will be referred as “plant” and “model”, respectively. The
difference between them is the value of the productivity
index (PI), which relates the oil flowrate leaving the
reservoir, wro, with the difference between well bottom
hole, pbh, and reservoir, pr pressures, wro,i = PIi(pr −
pbh,i), i = 1, 2.

The value of PI for the plant is [7; 7] and for the model
[5; 5]. The profit surface for the model and plant can be
seen in Figure 2. The dashed blue line is the constraint of
maximum gas production (wgTot ≤ wgM ) and the dashed
black lines are the maximum gas lift flow rate for each well.
Both constraints delimit the feasible region. The figures
show that the model and the plant optimum are different
and lie at a different set of constraints.

3. MODIFIER ADAPTATION AND GRADIENT
ESTIMATION

The methodology applied in this paper was proposed by
(Gao et al., 2016). In order to deal with the plant-model
mismatch, Modifier Adaptation applies zeroth and first
order modifiers (input-affine correction terms) for cost
and constraint functions of the optimization problem in a
way that, upon convergence, the model-based optimization
problem reaches the plant (local) optimum. For more
details regarding MA, we refer to (Marchetti et al., 2016).

The zeroth-order modifiers correspond to bias terms repre-
senting the differences between plant and model values at
the current instant. The first order modifiers represent the
difference between the plant gradients and the gradients
predicted by the model (also at the current time instant).

Then, after applying the modifiers to the model optimiza-
tion problem, the modified optimization problem is solved:

u?k+1 = argmax
u=[wgl,1,wgl,2]T

Jmod := J(u) + λTJ,ku

s. t.

Cmod := C(u) + εC,k + λTC,k

(
u−

[
wgl,1,k
wgl,2,k

]) (2)

where, J , C and wgl,i were previously defined in (1). λJ,k,
εC,k and λC,k are the modifiers that are adjusted to make
the optimized model and plant coincide. The subscript k
indicates that the values are evaluated at the kth iteration.
Also, wgl,k are the inputs applied to the system at the kth
iteration. MA is able to correct the predicted value by the
model and also the model surface near the current oper-
ation point. It is important to notice that the modifiers
are valid only locally, hence the MA schemes needs some
amount of filtering to avoid overaggressive corrections that
may destabilize the system. The modifiers are defined as:

εC,k = (I −Kε,C)εC,k−1 +Kε,C(Cp,k − Ck)

λC,k = (I −Kλ,C)λC,k−1 +Kλ,C(∇̂Cp,k −∇Ck)

λJ,k = (I −Kλ,J)λJ,k−1 +Kλ,J(∇̂Jp,k −∇Jk)

(3)

where, I is the identity matrix of appropriate dimension;
Kε,C , Kλ,C and Kλ,J are are square matrices with values
between [0, 1) on the main diagonal and zeros elsewhere;
Ck, ∇Ck and ∇Jk are the model constraints and deriva-
tives of the constraints and cost with respect to wgl,i at

the current point; ∇̂Cp and ∇̂Jp are the estimates of the
plant gradients. The plant constraint value, Cp, is directly
measured.

The modified problem (2) is solved to give the optimal
computed input u?k+1. Then, an input filter, uk+1 = uk +
Ku(u?k+1 − uk), is used to mitigate the effect of noise and
errors in the gradient predictions. Small values of the filter
gain represent more conservative update strategy. If the
modifiers are unreliable (much noise), it is better to avoid
large changes in the setpoints in order to not deteriorate
plant performance.

The idea of using a quadratic approximation for gradient
estimation comes from interpolation-based trust region
methods, which present a relatively fast rate of conver-
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gence and also a reliable convergence even in the presence
of noisy data (Conn et al., 2009). The main idea of these
methods is to construct local quadratic approximations of
the cost functions in order to provide a data-based model
for the optimization step.

Based on this idea, (Gao et al., 2016) proposed the combi-
nation of the quadratic approximation (to estimate plant
gradients) with the modifier adaptation method. The step-
by-step description of the algorithm can be seen in Fig-
ure 3. Note that, before using quadratic approximation to
estimate the gradients, the method needs that nr = (nu +
1)(nu+2)/2−1 measurements are available (with nu equals
to the number of inputs of the problem). This requirement
is imposed due to the number of coefficients that needs to
be estimated in the multidimensional quadratic function.

In order to obtain these measurements, finite-difference ap-
proximation (FDA) is applied nu times to obtain the gradi-
ent estimates. Afterwards, iterative gradient-modification
optimization and gradient estimation (IGMO) is applied
until nr measurements have been generated. IGMO is
described in details in (Gao and Engell, 2005). Basically,
it optimizes the plant using MA and estimates plant gra-
dients by a different implementation of FDA. This FDA
variant uses setpoints of the past iterations to evaluate the
gradients as shown below:

∇̂Cp,k = [Sk]−1 · [(Cp,k − Cp,k−1) . . . (Cp,k − Cp,k−nu
)]

∇̂Jp,k = [Sk]−1 · [(Jp,k − Jp,k−1) . . . (Jp,k − Jp,k−nu
)]

(4)

However, in order to obtain good approximations for the
gradients, the inverse of the input matrix (S−1

k = [(uk −
uk−1), . . . (uk − uk−1)]−1 needs to be well-conditioned. If
it is not, IGMO has an additional step that perturbs the
process in order to improve the input matrix conditioning.
Note that in comparison to the FDA, IGMO is not
as expensive because it only perturbs the system when
necessary.

After obtaining nr measurements, the gradients are com-
puted by differentiating the quadratic approximations.
Clearly, the gradient estimation error depends heavily on
the quality of the approximation. Hence, the choice of
the points (regression set) used in the estimation of the
quadratic approximation is a critical issue of the algo-
rithm. To guarantee that the gradient estimation algo-
rithm uses well-distributed points, the set of all the current
and past operation points, which is represented by U , is
analyzed and divided in three subsets:

(1) Unb: Neighborhood of the current point, which is
defined by a tuning parameter ∆u, Unb := {u : ‖u−
ucurrent‖ ≤ ∆u; u ∈ U};

(2) Udist: Set of points that are sufficiently distant from
the current point, but well-distributed and sufficiently
scattered to capture the curvature;

(3) Uouter: which is defined Uouter = U \ Unb, Udist.
Determining Unb is easy and straightforward. In turn, Udist
is determined by an optimization problem, which can be
seen in details in (Gao et al., 2016). The main idea is to
determine at least nr points by a criterion that minimizes
the distance from the current point, while penalizes using

points along the same direction. After obtaining the three
subsets, U : Unb ∪ Udist is used to estimate the quadratic
approximation. In addition, the methodology proposed by
(Gao et al., 2016) has some extra features, which are
discussed below.

The methodology imposes a covariance-based constraint
to the optimization problem in order to adjust the search
space based on previous iterations, for example: if the past
setpoints lie on a specific direction, the gradient is more
reliably estimated along that direction. The parameter γ
defines the size of ellipsoid center at the current input,
u(k), B(k) : (u−u(k))T (cov(U))−1(u−u(k)) ≤ γ2. Lower
values of γ avoid setpoints moves in directions in which
less data has been collected before, avoiding unnecessary
deterioration of the plant performance.

Also, (Gao et al., 2016) propose a switching mechanism
between model-based and data-based optimization, which
mitigates the effect of inadequate models by using the
most accurate model. This enables fast convergence rates
based in the model-based optimization, while retaining the
accuracy of the data-based quadratic model. The switching
is based on a deviation between the plant measurements
and model predictions (ρq for the quadratic approximation
model and ρm for the phenomenological model).

An additional step is used to improve the choice of the
regression set (the block with colored background in Fig-
ure 3). It is related to analyze if the calculated optimum,
u? lies in the neighborhood of the current input. If so, the
algorithm probes the plant in a different point, outside the
neighborhood of the current point, in order to improve the
quadratic approximation. Then, if the new probing point
does not improve the plant cost function, the iteration
is considered unsuccessful, the probing point is included
in the regression set and the screening algorithm is re-
initiated. This step shrinks the regression region and it is
similar to the criticality step used in (Conn et al., 2009).

4. CASE STUDY SET-UP

The focus of this article is to study plant-model mismatch
effects. Therefore, the following assumptions are made:
both cost functions and constraints are measured without
noise; and only the steady-state behavior of the plant
is analyzed. Additionally, the only source of plant-model
mismatch is parametric uncertainty due to the lack of
knowledge regarding the well productivity index. The val-
ues of the model parameter values are not shown here for
the sake of brevity. They can be found in (Krishnamoorthy
et al., 2016). Table 1 shows the algorithm parameters,
described in Section 3 .

The first parameter, perturbation step size, is used in the
finite-difference approximation (FDA) to obtain the plant
gradients at the initial point. As shown in Figure 3, FDA
should be executed only at the first step because in this
case study nu = 2. This method requires that a small
perturbation (∆h) is applied in each of the inputs. Then,
the measurements of the actual plant are used to estimate
the plant gradients. However, there is a trade-off regarding
the step size. If it increases, the derivative approximation
error increases. On the other hand, if the step size de-
creases, the errors relative to noise measurements increase
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Fig. 3. Flowsheet of MA with gradient estimation via
quadratic approximation. Adapted from: (Gao et al.,
2016)

(Brekelmans et al., 2005). The value of ∆h was chosen in
a trial-and-error process.

After the initial step, Iterative gradient-modification opti-
mization and gradient estimation (IGMO) is used for cal-
culating plant gradients and optimization. As explained,
this approach relies on the conditioning of the inverse of
the input matrix to calculate the gradients. If the condition
number is lower than δIGMO, an additional perturbation
is introduced around the current setpoint. The third and
fourth parameters are used in the screening process ex-
plained in Section 3. ∆u defines the size of the Unb set (past
setpoints in the neighborhood of current setpoint) and γ is
the scaling parameter of the covariance-based constraint.
The other parameters are the filters used in the zero- and
first-order correction terms that are added to the cost and
constraint function of the MA optimization problem. The
filter values as well as the screening parameters are also
chosen in a trial-and-error process.

5. RESULTS AND DISCUSSION

The results of the MA scheme with gradient estimation via
quadratic approximation are shown in Figure 4. The figure
shows the contour lines of the plant profit surface and the
setpoints moves from the initial point, u(0) = [1, 1] [kg/s],
to the plant optimum. The setpoints are the solutions

Table 1. Parameters and variables for the
scheme

Description Symbol Value

Perturbation step size ∆h 0.1
Conditioning number of input matrix δIGMO 0.1
Search space parameter γ 1.9
Screening parameter ∆u 0.3
Constraint bias modifier Kε,C 0.7
Constraint gradient modifier Kλ,C 0.5
Cost function gradient modifier Kλ,J 0.5
Input filter Ku 0.4
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Fig. 4. Set-point moves of a noise-free scenario. Circle
points indicate setpoints calculated by model-based
optimization, and diamond points by data-based op-
timization. Also, points indicated only with stars rep-
resent probing points for estimating plant gradients.

provided by the method described in Figure 3. In addition,
around the points of the first and second iteration, the
perturbation points to obtain the plant gradients using
FDA and IGMO can be seen. The results confirm that the
calculated optimum converged to the plant optimum in
few iterations.

The next step is the analysis of the quality of the quadratic
approximation of both profit and constraints, which can
be seen in Figure 5. The figures show the contour lines of
the surface generated by the difference between the actual
plant constraint/profit surface and the the quadratic ap-
proximations at the optimum. The difference is obtained
by “subtracting” the plant surface from the quadratic
approximation. Note that, near the plant optimum there
is no relevant difference between the actual plant surface
and the quadratic approximation for both cost function
and constraint. As the approximations are only locally
accurate, the difference increases in regions that are more
distant from the optimum.

In conclusion, despite the fact that the plant and model
optima are different (as shown in Figure 2), the MA
approach is able to reach the plant optimum, showing
robustness to the gradient uncertainty, which comes from
the deviation between the quadratic approximation and
the plant surface. Furthermore, the optimization method
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Surface contour comparison - Constraint
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Fig. 5. Difference between the estimated surface (based
on quadratic approximation at the optimum) and the
actual plant surface. This shows how well the modified
and the true profit/constraint match at the optimum.

is able to avoid constraint violations even with the faulty
gradient information, which is important for practical
applications.

6. CONCLUSION

In this work, the application of the methodology proposed
by (Gao et al., 2016) in a gas lifted oil well network
was studied. Plant-model mismatch was considered as
parametric uncertainty regarding the production index of
both wells. The simulation results shows the methodology
was capable of maximizing the production of the oil
well network and guaranteeing that, upon convergence,
the model-based optimization problem matches the plant
necessary conditions of optimality, reaching the plant
optimum. Additionally, the constraints were not violated
in any iteration.

The quadratic approximation of the plant cost function
and gradient were also obtained successfully. In few iter-
ations, the surfaces approximations were able to provide

good estimates of the plant gradients, surpassing the main
drawback of the MA-like schemes, which is obtaining plant
gradient estimation. The use of quadratic approximation
to estimate gradients for MA schemes appears as an inter-
esting alternative to real-time optimization applications in
gas lifted oil wells networks.

Further studies, which take noise and structural plant-
model mismatch into account, are planned to provide
further evidence that the methodology is well suited for
handling different sources of plant-model mismatch in oil
and gas production systems.
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