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Abstract: This paper deals with a new approach of trajectory tracking for a X-Y robot by using the 
sampled and delayed output of a low cost vision system. The proposed approach is based on the theory of 
piecewise continuous systems which constitute a particular class of hybrid systems with autonomous 
switching and controlled impulses. A new robust trajectory tracking system, consisting of a specific 
piecewise continuous controller and a piecewise continuous observer, is developed. Real-time results are 
given to illustrate the effectiveness and robustness of the new robot control system.  
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1. INTRODUCTION 

Nowadays, Computer Numerical Controlled (CNC) tools are 
widely used in manufacturing automation. For instance, 
workpieces in the machining centers are placed on an X-Y 
table and two-axis motion CNC systems are part of the 
mainstream configuration (Park et al. 2003). During the last 
few years, one of the recent advances in this field is the use 
of direct drive X-Y table systems (Liu et al. 2005). In 
comparison with the conventional gear reduction systems, 
direct drive systems offer lower friction and higher 
mechanical stiffness, and thus are very suitable for high 
speed and high acceleration applications. Recently, many 
kinds of robust motion control schemes for X-Y table based 
robot accurate positioning have been proposed: a fuzzy 
control (Kung et al. 2009), a neural network based control 
(Lin et al. 2004), a numerical adaptive fuzzy control (Tsai et 
al. 2006), a composite nonlinear feedback control consisting 
of linear and nonlinear feedbacks without switching element 
(Cheng et al. 2007), an integral sliding mode control (Chen et 
al. 2007), etc.   

A considerable amount of research has also been done in the 
field of vision based mechanical systems control (Hutchinson 
et al. 1996, Monroy et al. 2007, Xu et al. 2009, Tsai et al. 
2009, Tamadazte et al. 2009, Hu et al. 2010). The interest for 
this class of systems is motivated by the need of supervision 
and remote control, and by the fact that they ensure more 
flexible contactless wiring and improved signal/noise ratio 
(Monroy et al. 2007). As it is well known, the introduction of 
visual sensors often deliver sampled and delayed signals due 
to their digital nature and computation-transfer time (e.g. 
image processing) respectively. In vision based X-Y robots, 

the vision system determines the robot position coordinates 
( , )C Cx y  and transmits them to the control computer. The 
available information for the control system is thus the 
sampled and delayed signal ( ( ) ( )),C e e C e ex kt T y kt T− − =  

, ,,( )C k q C k qx y− −  where et  is the camera sampling period, 

e eT qt=  represents the delay corresponding to the time 
necessary for image data acquisition, processing and transfer 
and k, q are integers. For the considered in this paper low cost 
vision system one has 40et = ms and 1q = , and the robot 
position measurements are denoted by , 1 , 1( , )C k C kx y− − . An 
example form of ( , )C Cx y  and , 1 , 1( , )C k C kx y− −  is given in 
Fig. 1. The challenge here is to realize a robust trajectory 
control of the vision based X-Y robot using the sampled and 
delayed signal , 1 , 1( , )C k C kx y− − . To solve this problem we 
propose in this paper a robot control system based on the 
theory of the Piecewise Continuous (PC) systems and 
consisting of a PC controller (PCC) and a PC observer 
(PCO).  

 
Fig. 1. Measurement signals: (xC, yC) and (xC,k-1, yC,k-1)  
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The paper is organized as follows. First, the PC systems are 
introduced in Section II. Then, in Section III a new PCC is 
developed by enabling switching at high frequencies. In order 
to estimate the robot position, a PCO is proposed in Section 
IV. The experimental vision based X-Y robot platform is 
described in Section V and real time trajectory tracking 
results are presented in Section VI. Finally, in Section VII 
some concluding remarks are given. 

2. PIECEWISE CONTINUOUS SYSTEMS 

The PC systems (PCS) which were first introduced in 
(Koncar et al. 2003) are characterized by two input spaces 
and two time spaces. The first time space is the discrete time 
space { , 0, 1, 2, }iS t i= = L  called switching space. The 
second one is the continuous time space { }t SΦ = ℑ −  where 

{ [0, ]}tℑ = ∈ ∞ . Each input corresponds to one specific time 
space. At each switching instant, the plant is controlled from 
the first input space V σ . Between two switching instants, the 
plant is controlled from the second input space rU . Two 
successive switching instants it  and 1it +  delimit a piece 

noted { }1] , [i t i it t t +Φ = Φ ∀ ∈ . Thus for i et iT= , the state-
space based approach makes possible to describe a Linear 
PCS (LPCS) as 

( ) ( )e d ex iT B v iT+ = , t S∀ ∈  (1a) 
( ) ( ) ( )cx t Ax t B u t= +& , tt∀ ∈Φ  (1b) 
( ) ( )y t Cx t= , t∀ ∈ ℑ  (1c) 

where { , 0, 1, 2, }eS iT i= = L , ( ) nx t ∈ℜ is the system state 
vector, ( ) my t ∈ℜ  is the output vector, ( )v t σ∈ℜ  and 

( ) ru t ∈ℜ  are the input vectors, n nA ×∈ℜ  is the system state 

matrix, n r
cB ×∈ℜ and n

dB σ×∈ℜ  are the input matrices, and 
m nC ×∈ℜ  is the output matrix. At switching instants the 

system state changes according to the linear algebraic relation 
(1a) and the continuous-time state evolution is described by 
the linear differential equation (1b). Fig. 2 illustrates the 
LPCS structure and symbolic representation.  

Integrating (1b) in { }] , ( 1) [i t e et iT i TΦ = Φ ∀ ∈ +  and taking 
into account (1a), one obtains 

( )( ) exp ( ) ( ) exp ( ) ( ) ,
e

t
e d e c i

iT
x t A t iT B v iT A t B u d tτ τ τ= − + − ∀ ∈ Φ∫ . (2) 

The left limit ( )ex iT −  of ( )x t  at et iT=  is deduced from (2) 
for the interval 1i−Φ : 

( ) ( )
( 1)

( ) exp ( ) ( 1) exp ( ) ( )
e

e

iT
e e d e c

i T
x iT A t iT B v i T A t B u dτ τ τ−

−
= − − + −∫ . (3) 

Thus in the general case ( ) ( )e ex iT x iT− +≠ . An example state 
evolution of a 1st order system with Te=1s and Bd=1 is shown 
in Fig. 3. According to the classification of (Tittus et al. 
1998), this class of control systems has hybrid properties. 
Moreover, according to Branicky taxonomy (Branicky et al. 
1998), PCS are hybrid systems with autonomous switching 
and controlled impulses. Based on the PCS theory, a PC 

controller requiring a linear plant model was developed in 
(Koncar et al. 2003). In this paper we propose a new class of 
PC controllers which allow controlling the plant without 
knowledge of its model. The new controller can be easily 
implemented and makes possible to realize robust output 
trajectory tracking of the vision based X-Y robot.  

The analysis of the existing vision based control systems 
shows that the delaying and sampling of the camera signal 
are not sufficiently compensated. That is why in Section IV 
we develop a PC observer which gives a continuous 
undelayed estimate of the x-y robot position.  

Further on, the discrete values of every function ( )f t  will be 
considered as being sampled with eT  period and to simplify 
the notations ( )ef iT  will be denoted as if . Moreover, if 
some signal ( )f t  is discontinuous, we shall consider the 
right value at the discontinuity since the switching at each 

eiT  imply consequences at eiT + . For simplification, the 
notation ( )i ef f iT+ +=  will be used. 

3. PIECEWISE CONTINUOUS CONTROLLER 

In this section, we first present the existing PCC and the 
sampled trajectory tracking strategy used to determine the 
controller parameters. Then we derive a new PC controller by 
enabling switching at high frequencies, i.e. for 0eT +→ . 

PCC was introduced in (Koncar et al. 2003) and is described 
as  

i iλ δψ+ = , t S∀ ∈  (4a) 

( ) ( ) ( )t t tλ αλ βϕ= +& , tt ∈ Φ   (4b) 
( ) ( )u t tγλ= , t ∈ ℑ  (4c) 

where ( ) ntλ ∈ ℜ , ( ) stψ ∈ℜ  and ( ) rtϕ ∈ℜ  the PCC state and 
inputs, respectively. Equation (4a) defines the controller state 

)(tλ  at switching instants by means of the discrete time input 

 
Fig. 3. LPCS state evolution for switching period Te=1s 

∫
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 (a) System structure   (b) Symbolic representation 

Fig. 2. Linear piecewise continuous systems 
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)(tψ  and the linear transformation matrix n sδ ×∈ ℜ . 
Equation (4b) describes the continuous-time evolution of the 
controller state under the action of the continuous time input 

)(tϕ . Here n nα ×∈ℜ  and n rβ ×∈ℜ are the state matrix and 
the input matrix of the controller. For a simplified PCC, β  
can be imposed zero and in this case the only parameter 
defining the controller state behavior in iΦ  is α  which is 
chosen so as to ensure the stability of the controller. Equation 
(4c) is the output equation of the controller, where r nγ ×∈ℜ  
is the output matrix. The output ( )u t ∈ ℜ  is the control signal 
to be applied to the plant. According to the LPCS description 
in Section 2, in general i iλ λ+ −≠ . 

Consider the application of PCC to a plant modeled as  

( ) ( ) ( )x t Ax t Bu t= +&  (5a) 
( ) ( )y t Cx t=  (5b) 

11 −− = kk yθ  (5c) 

where ( ) nx t ∈ℜ , ( )u t ∈ ℜ , ( )y t ∈ ℜ  are respectively the 
plant state, input and output, respectively, and 1kθ −  are the 
delayed and sampled output measurements to be used by the 
controller. Without loss of generality we assume that 

[1 0 0]C = K . The closed loop system (5), (4) is then 
described as  

( ) ( ) ( )x t Ax t Bu t= +& , t ∈ ℑ  (6) 

i iλ δψ+ = , i S∈  (7) 

( ) ( )t tλ αλ=& , t S∈ ℑ −  (8) 
( ) ( )u t tγλ= , t ∈ ℑ . (9) 

The tuning of PCC consists of determining ( )tψ  and δ  so as 
to achieve sampled tracking of a desired trajectory ( )sc t  by 
the plant state ( )x t  with one sampling period of delay:  

1 ,i s ix c+ = , 0,1, 2,...i =  (10) 

Equations (6)-(8) allow us to express the state value 1ix +  as a 
function of ix :  

1i d i ix A x M λ+
+ = +  (11) 

where eAT
dA e=  and 

0

eT A
dM A e B e dτ ατγ τ−= ∫ . 

From (11) and (6) we obtain the relation   

{ }1
,i s i d iM c A xλ+ −= −  (12) 

which gives the switching value of the controller state under 
the condition that 1M −  exists. Therefore the sampled 
tracking of ( )sc t can be ensured for   

1Mδ −=  and ( ) ( ) ( )s dt c t A x tψ = − . (13) 

 

The performance of PCC (4), (13) can be enhanced by 
enabling switching at high frequencies, i.e. for 0eT +→ . 
Consider the case of sampled output tracking  

1 ,i o iy c+ = , 0,1, 2,...i =  (14) 

where ( )oc t  is the desired output trajectory. In this case a 
first order PCC is used and then from (11) one obtains  

1
0

eT A
i d i d iy CA x CA e B e dτ ατγ τ λ− +
+ = + ∫  (15) 

where iλ ∈ℜ , α ∈ ℜ  and γ ∈ℜ . For 0eT +→  and using 
first order approximation one has  

1
0

( ) (1 )
eT

i i n iy x I A B dτ γ ατ τλ+
+ = ϒ + ϒ − +∫  (16) 

where ( )n eC I ATϒ = +  and nI  is the nth order unit matrix. 
We can thus rewrite (16) as  

( )2
1 ( )i i e i e e iy y CAT x CB T Tγ ε λ+

+ = + + +  (17) 

where 2( )eTε  is negligible when 0eT +→ .From (17) and 
(14) we have 

( )2
,( )e e i o i i e iCB T T c y CAT xγ ε λ++ = − −  (18) 

which enable us to evaluate the initial condition of the PCC 
state at each switching instant. In order to solve (18) 
numerically, we rewrite it as 

( )( )2
,( )i i e e i o i i e iCB T T c y CAT xλ λ γ ε λ+ + +− − + = − − . (19) 

With fast switching ( 0eT +→ ), equation (19) becomes 

,i i o i iI c yλ λ+ − += + −  (20) 

where ( )21 ( )e eI CB T Tγ ε− = − + . Equation (20) can be 

interpreted algorithmically as an iterative evaluation of iλ+  at 
each calculation step: 

,i i o i iI c y+ − +λ ← λ + − . (21) 

Thus for fast switching the calculation of the PCC initial 
condition at each switching instant is highly simplified: for 

0eT +→  the evolution of the controller state is negligible and 
PCC can be regarded as a Zero Order Hold (ZOH). If 
switching occurs at each calculation step of the computer, the 
ZOH can be replaced by a simple circuit as shown in Fig. 4. 
Thus the new PC controller doesn’t require a plant model 
which is a major advantage in comparison with the existing 

_

+
γ

I −

( )tλ ( )u t+
( )y t

( )oc t

( )e t

 
Fig. 4. New piecewise continuous controller  

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

925



 
 

     

 

PCC. However, a continuous feedback is required. 

4. PIECEWISE CONTINUOUS OBSERVER 

In this section we derive a PC observer which makes possible 
to estimate the plant continuous state ( )x t  using the sampled 
and delayed measurements 1kθ − . The proposed PCO consists 
of two LPCS and a Reduced Order Discrete time Luenberger 
(RODL) observer (Luenberger et al. 1971) connected as 
shown in Fig. 5 where the matrices A, B and C in LPCS I and 
LPCS II are defined in (5).  

According to (3) for LPCS I one has 

1 1
( 1)

( ) exp ( ) ( ) ( ),
e

t
k k

k t
x t A t Bu d t tτ τ τ ξ − −

−
= − = ∈ Φ∫ . (22) 

Thus at each et kt=  one obtains the signal  

1, 1
1

( 1) 2, 1

exp ( ) ( )
e

e

kkt kk
k e kk t k

A kt Bu d
ξ

ξ τ τ τ
ξ

−
−

−
−

⎡ ⎤
= − = ⎢ ⎥

⎢ ⎥⎣ ⎦
∫  (23) 

where 11k
kξ − ∈ℜ  and ( 1)

12k n
kξ −

− ∈ ℜ . 

Denoting [ ]
k

T T
k kx wθ= and 11 12

11
21 22

,d
A A

A A
A A

⎡ ⎤
= ∈ℜ⎢ ⎥

⎣ ⎦
, the 

vector 1
1

n
kw −

− ∈ℜ  is estimated by using the RODL observer  

-1 1 2, 1 1, 1( )k k
k k k k kz Fz G Lθ ξ ξ− − −= + + −  (24a) 

1 1 1ˆk k kz w Lθ− − −= −  (24b) 

where  

22 12F A LA= − , 

22 12 21 11( ) ( )G A LA L A LA= − + − , 

and 1nL −∈ℜ  is determined to ensure the observer stability, 
thus the convergence of ˆkw  to kw . Estimating 1kw −  as 

1 1 1ˆ k k kw z Lθ− − −= + , one gets 1 1 1ˆ ˆ[ ]T T
k k kx wθ− − −= . Then ˆkx  is 

estimated integrating (6) in the 1k −Φ  piece:  

1 1ˆ ˆ k
k d k kx A x ξ− −= + . (25) 

The continuous time state estimate ˆ( )x t  is the output of 
LPCS II:  

ˆ ˆ( ) exp ( ) ( )
e

t
d k

kt
x t A x A t Bu dτ τ τ= + −∫ . (26) 

5.  VISION BASED X-Y ROBOT PLATFORM 

The proposed PC control system has been implemented and 
tested on the vision based X-Y robot platform shown in Fig. 
6 and contains the following parts:  
1) A mechanical system composed of an X-Y aluminum 
chassis, enabling only 48 cm displacement on each axis. The 
x-axis moves along the y-axis. Axes are actuated by AC 
motors via notched belt.  
2) A vision system of a low cost IR CCD (Jai M50 IR) 
camera with a sampling rate of 25 frames/sec and a low 
resolution of 640 × 480 pixels configured in non-interlaced 
mode. This camera is linked to a vision computer which is 
equipped with an image acquisition card (ELTEC PC-EYE 4) 
and image processing software (TEKVIS).  
3) A controller designed through Matlab/Simulink and 
implemented on the dSpace card DS1103 via ControlDesk. 
The control signals are sent to a power amplifier via ± 10 V 
DAC.  
4) Two servo motors (SANYO DENKI PY2A015A3-A3) 
and two AC motors (P50B050020-DXS00M) driven by a 
dSpace computer input/output card via a power amplifier 
supplied with 240 V. The AC motors deliver a nominal 
couple of 3.0 Nm with a power of 200 W. The platform 
returns the cart’s continuous positions (xC, yC) by means of a 
8 μm resolution incremental encoders equipped with the AC 
motors. 

On the x-axis, the motor-cart is modeled as   

( )C C x x xx x k u τ= − +&& &  (27) 

where ux is the motor input voltage, xC is the robot 
displacement, kx is the overall gain of the motor-cart on x-
axis and τx is the time constant of the motor-cart on x-axis. In 
the same way, we can model the motor-cart on y-axis. For the 
platform considered, x yτ τ= = 0.008s and x yk k= = 2.92. 

The vision system determines the X-Y robot position 
coordinates (xC, yC) and transmits them to the control 

 
Fig. 6. Vision based X-Y robot platform 

1kθ −
1ˆkx −

dA

ˆkx [{ }, , , , ]e n nkt A B I IΣ
ˆ( )x t

1( )k tξ −

1
k
kξ −

( )u t

[{ }, , ,0, ]e nkt A B IΣ

+
+

Fig. 5. Piecewise continuous observer 
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computer via the RS-232 serial communication port. The 
measurements of the camera are available at a sampling rate 
of T = 40 ms (acquisition-processing-transfer time). An 
infrared LED has been placed on the robot as illustrated in 
Fig. 6 so as to facilitate its localization in the X-Y plan by the 
IR camera. In order to synchronize the camera with the 
controller, the camera is triggered by an external periodical 
pulse signal generated via the dSpace card. Moreover, in 
view of enhancing the camera as a sensor, the latter is 
calibrated by a four step TSAI calibration procedure 
(Heikkila et al. 1997) which is included in the control. This 
calibration also compensates the deformations caused by the 
camera lens. Under these conditions the visual measurements 

, 1 , 1( , )C k C kx y− −  of the robot position coordinates (xC, yC) are 
obtained.  

As the X-Y robot structure is symmetrical, for simplification 
sake, only the x-axis control is considered. According to (27) 
the state space robot model can be written as 

( ) ( ) ( )x t Ax t Bu t= +&   
( ) ( )y t Cx t=   

1 , 1k C kxθ − −=   

where [ ]( ) ( ) ( ) T
C Cx t x t x t= & , ( ) ( )xu t u t= , ( )y t  are the robot 

state, input and output, respectively, 1kθ −  are the delayed and 
sampled measurements of the cart displacement, and 

0 1
10

x

A
τ

⎡ ⎤
⎢ ⎥=

−⎢ ⎥⎣ ⎦

, 0

x
x

B k
τ

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

, [ ]1 0C = . 

6.  EXPERIMENTAL RESULTS 

The structure of the proposed vision based trajectory tracking 
control system is shown in Fig. 7. For PCO, 0x yF F= = , 

0.848x yG G= = −  and 0.848x yL L= =  were determined and for 

PCC 0.92x yI I− −= =  and 1x yγ γ= =  were chosen. The 
desired output trajectories for each axis are defined as  

,

,

sincos sin
sin( )sin cos

o x x

o y y

c m t
c n t

ωα α
ω ϕα α

⎡ ⎤ ⎡ ⎤−⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥ +⎣ ⎦⎣ ⎦ ⎣ ⎦

 (28) 

where α  (rad) is the oblique angle, m and n (m) are 
amplitudes, xω  and yω  (rad/s) are the imposed frequencies 
for each axis and ϕ  (rad) is the phase. During the 
experiments, the parameters were first chosen as 
( ) ( ), , , , , 0.33 ,0.04,0.06,5,10,0.5x ym nα ω ω ϕ π π=  defining a 
circle. 

The corresponding real-time results are given in Fig. 8 and 9 
where ( )Cx t  and ( )Cy t  are the continuous X-Y robot 
position coordinates measured by encoders, ˆ ( )Cx t  and ˆ ( )Cy t  
are the X-Y robot coordinates estimated by PCO, and , 1C kx −  
and , 1C ky −  are the sampled and delayed measurements 
obtained by the camera. Fig. 8 shows that the proposed PCO 
compensates very well sampling and delaying effects of the 
low cost vision system on x-axis. Moreover, from Fig. 9a 
(which shows ,o xc , ,o yc  and ( )Cx t , ( )Cy t ) one can 
conclude that the proposed tracking controller ensures a 
perfect tracking of the desired output reference. In order to 
test the robustness of the proposed control system, a 
perturbation was introduced by hiding the IR LED for an 
instant (thus breaking the feedback loop). The corresponding 
results are given in Fig. 9b.  

Then the parameters in (28) were chosen as 
( ) ( )0.67, , , , , ,0.04,0.04,2.5,7.5,0.5x ym n πα ω ω ϕ π=  defining a 
Lissajous curve. The results of tracking this reference, with 
and without perturbation, are illustrated in Fig. 10. The tests 
results demonstrate the efficiency and the robustness of the 
proposed control system when the camera drops out some 
measurements. Illustrative videos are available at 
http://www-lagis.univ-lille1.fr/~wang/Research_eng.html 

6. CONCLUSIONS 

A new approach for trajectory tracking control of vision 
based X-Y robots is proposed based on the theory of 
piecewise continuous systems. The developed control system 
uses sampled and delayed data from a low cost CCD camera 
and consists  of specific piecewise continuous controller and 
piecewise continuous observer. This control system can be 
easily implemented and ensures robust output trajectory 
tracking.  
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Fig. 8. Piecewise Continuous Observer on x-axis 
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Fig. 9. Tracking a circle trajectory under different conditions 

 
(a) without perturbation 

 
(b) with perturbation 

Fig. 10. Tracking a Lissajous curve under different conditions 
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