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Abstract: This paper studies the stability of Kalman filtering over a network with random packet losses,
which are modeled by a Markov process. Based on the realization of the packet loss process, two stability
notions, namely stability in stopping times and stability in sampling times, are introduced to analyze the
behavior of the estimation error covariance matrix. For second-order systems, both the stability notions
are shown to be equivalent and a necessary and sufficient condition for stability is derived. While for
a certain class of higher-order systems, a necessary and sufficient condition is provided to ensure the
stability of the estimation error covariance matrix at packet reception times. Their implications and
relationships with related results in the literature are discussed.

1. INTRODUCTION

In this paper, we are concerned with the stability problem of
Kalman filtering with random packet losses. A motivating ex-
ample is given by sensor and estimator/controller communicat-
ing over a wireless channel for which the quality of the com-
munication link varies over time because of random fading and
congestion. This happens in resource limited wireless sensor
networks where communications between devices are power
constrained and therefore limited in range and reliability.

Kalman filtering is of great importance in networked systems
due to various applications ranging from tracking, detection
and control. Recently, much attention has been paid to the
stability of the Kalman filter with intermittent observations, see
the survey paper [Schenato et al., 2007] and references therein.
The pioneering work [Sinopoli et al., 2004] analyzes the opti-
mal state estimation problem for discrete-time linear stochas-
tic systems under the assumption that the raw observations
are randomly dropped. By modeling the packet loss process
as an independent and identically distributed (i.i.d.) Bernoulli
process, they prove the existence of a critical packet loss rate
above which the mean state estimation error covariance matrix
will diverge. However, they are unable to quantify the exact
critical dropout rate for general systems except providing its
lower and upper bounds, which are attainable for some special
cases, e.g., the lower bound is tight if the observation matrix
is invertible. A less restrictive condition is given in Plarre and
Bullo [2009] where invertibility on the observable subspace is
required. Another important work is Mo and Sinopoli [2010]
which explicitly characterizes the dropout rate for a wider class
of systems, including second-order systems and the so-called
non-degenerate higher-order systems. A remarkable discovery
in Mo and Sinopoli [2010] is that there are counterexamples
of second-order systems for which the lower bound given by
Sinopoli et al. [2004] is not tight.

? This work was supported in part by the National Natural Science Foundation
of China under grant NSFC 60828006.

On the other hand, to capture the temporal correlation of net-
work conditions, the packet loss process is modeled by a bi-
nary Markov process in Huang and Dey [2007]. This is usu-
ally called the Gilbert-Elliott channel model. Under an i.i.d.
Bernoulli packet loss, the filter stability may be effectively stud-
ied by a modified algebraic Riccati equation. In contrast, this
approach is no longer feasible for the Markovian packet loss
model, rendering the stability analysis more challenging. An
interesting notion of peak covariance stability in the mean sense
is introduced in Huang and Dey [2007]. They give sufficient
conditions for the peak covariance stability for general vector
systems, which is also necessary for the scalar case. A less
conservative sufficient condition for some cases is provided by
Xie and Xie [2008]. However, their works are restricted to the
study of a random Riccati equation and do not exploit effects of
system structure on stability. Thus, they fail to offer necessary
and sufficient conditions for stability of the estimation error
covariance matrices, except for the scalar case.

We continue to study the stability of Kalman filtering with
Markovian packet losses in the present work. The system struc-
ture is exploited to investigate the effects of Markovian packet
loss on stability. Motivated by You and Xie [2010], we first
study the stability of the estimation error covariance matrix at
packet reception times and introduce the notion of stability in
stopping times. It turns out that this problem is equivalent to
the stability of Kalman filtering for a stochastic time-varying
linear system, whose studies can be traced back to Bougerol
[1993]. However, the framework in Bougerol [1993] is quite
general and not suitable to quantify the effects of Markovian
packet losses on stability. Another stability notion is the usual
mean square stability in the literature, which is referred to as
stability in sampling times in the present paper.

Our contribution shows that for second-order systems, both
stability notions are equivalent and a necessary and sufficient
condition for stability of Kalman filter is given in terms of the
transition probabilities of the Markov chain and the largest open
pole. For higher-order systems satisfying that each eigenvalue
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of the open-loop matrix has a distinct magnitude and associates
with only one Jordan block, a simple necessary and sufficient
condition for the stability in stopping times is derived. It should
be noted that except for scalar systems, there is no result in
the literature on the usual stability for the estimation error
covariance matrix under Markovian packet losses [Huang and
Dey, 2007].

The rest of the paper is organized as follows. The problem under
investigation is precisely formulated in Section 2. A necessary
and sufficient condition for the stability of Kalman filtering of
second-order systems with Markovian packet losses is provided
in Section 3. A corresponding result on higher-order system is
presented in Section 4. To improve the readability of the paper,
all of the proofs are given in Section 5. Concluding remarks are
made in Section 6.

Notation: For a symmetric matrix M , M ≥ 0 (M > 0)
means that the matrix is positive semi-definite (definite), and
the relation M1 ≥ M2 for symmetric matrices means that M1−
M2 ≥ 0. N,R and C respectively denote the set of nonnegative
integers, real numbers and complex numbers. tr(M) denotes
the summation of all the diagonal elements of M .

2. PROBLEM FORMULATION

Consider the discrete-time stochastic linear system:

{
xk+1 = Axk + wk;

yk = Cxk + vk,
(1)

where xk ∈ Rn and yk ∈ R are the state vector and the scalar
output 1 . wk ∈ Rn and vk ∈ R are white Gaussian noises
with zero means and covariance matrices Q > 0 and R > 0,
respectively. The initial state x0 is a random Gaussian vector of
mean x̂0 and covariance matrix P0 > 0. In addition, wk, vk

and x0 are mutually independent.

Due to random fading of the channel, packets may be lost
while in transit through the network. In the present work, we
ignore other effects such as quantization, transmission errors
and data delays. The packet loss process is modeled as a time-
homogenous binary Markov process {γk}k≥0, which is more
general and realistic than the i.i.d. case studied in Sinopoli et al.
[2004] due to possible temporal correlations of network condi-
tions. Furthermore, {γk}k≥0 does not contain any information
of the system output, suggesting that it is independent of the
channel input. Let γk = 1 indicate that the packet containing
the measurement yk has been successfully delivered to the state
estimation center while γk = 0 corresponds to the dropout
of the packet. Moreover, the Markov chain has a transition
probability matrix defined by

Π+ = (P{γk+1 = j|γk = i})i,j∈S =
[

1− q q
p 1− p

]
, (2)

where S , {0, 1} is the state space of the Markov chain. To
avoid any trivial case, the failure rate p and recovery rate q of
the channel are assumed to be strictly positive and less than 1,
i.e., 0 < p, q < 1, so that the Markov chain {γk}k≥0 is ergodic.
Obviously, a smaller value of p and a larger value of q indicate
a more reliable channel.
1 Due to page limitation, we restrict to the case with scalar outputs in this
paper. The case with vector measurements is investigated in the full version of
the paper [You et al., 2011].

Denote (Ω,F ,P) the common probability space for all random
variables in the paper and let Fk , σ(yiγi, γi, i ≤ k) ⊂ F be
an increasing sequence of σ-fields generated by the information
received by the estimator up to time k, i.e., all events that are
generated by the random variables {yiγi, γi, i ≤ k}. In the
sequel, the terminology of almost everywhere (abbreviated as
a.e.) is always with respect to P. Associated with the Markov
chain {γk}k≥0, the stopping time sequence {tk}k≥0 is intro-
duced to denote the time at which a packet is successfully
delivered. Without loss of generality, let γ0 = 1. Then, t0 = 0
and tk, k ≥ 1 is precisely defined by

t1 = inf{k : k ≥ 1, γk = 1},
t2 = inf{k : k > t1, γk = 1},

...
...

tk = inf{k : k > tk−1, γk = 1}. (3)
By the ergodic property of the Markov chain {γk}k≥0, tk is
finite a.e. for any fixed k [Meyn et al., 1996]. Thus, the integer
valued sojourn times {τk}k>0 to denote the time duration
between two successive packet received times are well-defined
a.e., where

τk , tk − tk−1 > 0. (4)
We recall the following interesting result.
Lemma 1. [Xie and Xie, 2009] The sojourn times {τk}k>0

are independent and identically distributed. Furthermore, the
distribution of τ1 is explicitly expressed as

P{τ1 = i} =
{

1− p, i = 1;
pq(1− q)i−2, i > 1.

(5)

As in You and Xie [2010], we shall exploit this fact to establish
our results. To this purpose, denote the state estimate and pre-
diction corresponding to the minimum mean square estimate
respectively by x̂k|k = E[xk|Fk] and x̂k+1|k = E[xk+1|Fk].
The associated error covariance matrices are defined by Pk|k =
E[(xk − x̂k|k)(xk − x̂k|k)H |Fk] and Pk+1|k = E[(xk+1 −
x̂k+1|k)(xk+1 − x̂k+1|k)H |Fk], where AH is the conjugate
transpose of A. By Sinopoli et al. [2004], it is known that
Kalman filter is still optimal. To be exact, the following recur-
sions are in force:

x̂k|k = x̂k|k−1 + γkKk(yk − Cx̂k|k−1); (6)

Pk|k = Pk|k−1 − γkKkCPk|k−1, (7)

where Kk = Pk|k−1C
H(CPk|k−1C

H + R)−1. In addi-
tion, the time update equations continue to hold: x̂k+1|k =
Ax̂k|k, Pk+1|k = APk|kAH + Q and x̂0|−1 = x̄0, P0|−1 = P0.
Let Pk+1 = Pk+1|k and Mk = Ptk+1, the following two types
of stability notion will be investigated.
Definition 1. We say the mean estimation error covariance ma-
trices are stable in sampling times if supk∈N E[Pk] < ∞ while
it is stable in stopping times if supk∈N E[Mk] < ∞ for any
non-negative P0. Here the expectation is taken w.r.t. packet loss
process {γk}k≥0.

Note that the above two types of stability notion have different
meanings. E[Pk] represents the mean prediction error covari-
ance at time k whereas E[Mk] denotes the mean prediction
error covariance at the stopping times of tk. To some extent,
the former is time-driven while the latter is event-driven. Our
objective of this paper is to derive a necessary and sufficient
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condition for the two stability notions and discuss their rela-
tionship.

In consideration of Theorems 3 and 8 of Mo and Sinopoli
[2010], there is no loss of generality to assume that:

A1: P0, Q, R are all identity matrices with compatible dimen-
sions.

A2: All the eigenvalues of A lie outside the unit circle.
A3: (C, A) is observable.

3. SECOND-ORDER SYSTEMS

At first, we look at second-order systems and make the follow-
ing assumption:

A4: A = diag(λ1, λ2) and λ2 = λ1 exp( 2πr
d I), I

2 = −1,
where d > r ≥ 1 and r, d ∈ N are irreducible.

The case that A does not contain complex eigenvalues is a
special case in Section 4. Note that (C,Ad) is not observable.
This essentially indicates that the measurements received at
times kd, k > 1 do not help to reduce the estimation error,
which will become clear in the sequel. Thus, it is intuitive that a
smaller d may require a stronger condition to ensure stability of
the mean estimation error covariance matrices. This observation
is rigourously confirmed in the rest of this section.

3.1 Stability in stopping times

Theorem 2. Consider the system (1) satisfying A1-A4) and
the packet loss process of the output follows a Markov chain
with transition probability matrix (2), a necessary and sufficient
condition for supk∈N E[Mk] < ∞ is that (1+ pq

(1−q)2 )(|λ1|2(1−
q))d < 1.

3.2 Stability in sampling times

Theorem 3. Consider the system (1) satisfying A1-A4) and
the packet loss process of the output follows a Markov chain
with transition probability matrix (2), a necessary and sufficient
condition for supk∈N E[Pk] < ∞ is that (1+ pq

(1−q)2 )(|λ1|2(1−
q))d < 1.

By Theorem 2 and 3, we immediately obtain that the notions of
stability in stopping times and stability in sampling times are
equivalent.
Remark 4. Since d ≥ 2, it can be verified that the function
(1+ pq

(1−q)2 )(1−q)d is decreasing w.r.t. q ∈ (0, 1) but increasing
w.r.t. p ∈ (0, 1). Thus, for a smaller p and a larger q, which
corresponds to a more reliable network, we can allow a more
unstable system to guarantee stability of the estimation error
covariance matrices. This is consistent with our intuition.
Remark 5. The inequality conditions in Theorems 2 and 3
imply that |λ1|2(1 − q) < 1 for all d ≥ 1. If the conjugate
complex eigenvalues satisfy that λ2 = λ1 exp(ϕI), where ϕ

2π is
an irrational number, corresponding to the case d →∞ in A4),
the necessary and sufficient conditions for both the types of
stability simply reduce to |λ1|2(1−q) < 1. Under this situation,
the failure rate p becomes immaterial.

In Huang and Dey [2007], the authors establish the equivalence
of the usual stability (stability in sampling times) and the so-
called peak covariance stability for scalar systems. But for

vector systems, they give a conservative sufficient condition
for the peak covariance stability and do not consider the usual
stability.
Remark 6. If the packet loss process is an i.i.d. process, corre-
sponding to q = 1 − p, (1 + pq

(1−q)2 )(|λ1|2(1 − q))d < 1 is

reduced to that q > 1− |λ1|−
2d

d−1 , which recovers the result in
Mo and Sinopoli [2010].

4. HIGHER-ORDER SYSTEMS

Under the i.i.d. packet loss model, an implicit characterization
of a necessary and sufficient condition for stability of general
vector linear systems is known to be extremely challenging
[Mo and Sinopoli, 2010, Sinopoli et al., 2004, Plarre and Bullo,
2009]. Fortunately, for higher-order systems such that A−1 is
cyclic, we can give a necessary and sufficient condition for the
stability in stopping times.

A5: A−1 = diag(J1, . . . , Jm), where Ji = λ−1
i Ii + Ni ∈

Rni×ni and |λi| > |λi+1|. Ii is an identity matrix with a
compatible dimension and the (u, v)-th element of Ni is 1
if v = u + 1 and 0, otherwise.

Now, we are in the position to deliver our main result with
regards to higher-order systems.
Theorem 7. Consider the system (1) satisfying A1-A3) and A5)
and the packet loss process of the output follows a Markov
chain with transition probability matrix (2), a necessary and
sufficient condition for supk∈N E[Mk] < ∞ is that |λ1|2(1 −
q) < 1.

Proof. Due to page limitation, the proof is given in the full
version of this paper [You et al., 2011].

5. PROOFS

Lemma 8. [Solo, 1991] For any A ∈ Rn×n and ε > 0, it holds
that

Ak ≤ Mηk,∀k ≥ 0, (8)
where M =

√
n(1 + 2

ε )n−1 and η = ρ(A) + εA.

If A is invertible, define φ(k, i) = Ati−tk if k > i and
φ(k, i) = I if k ≤ i. Let

Λk =
k∑

j=0

φH(k, j)CHCφ(k, j) + φH(k, 0)φ(k, 0), (9)

Ξk =
k∑

j=0

φH(j, 0)CHCφ(j, 0) + φH(k, 0)φ(k, 0), (10)

Ξ =
∞∑

j=0

φH(j, 0)CHCφ(j, 0). (11)

Lemma 9. Under A1-A3), there exist strictly positive constant
numbers α and β such that ∀k ∈ N,

αAΛ−1
k AH ≤ Mk ≤ βAΛ−1

k AH . (12)

Proof. By revising Lemma 2 in Mo and Sinopoli [2010] and
γj = 0,∀j /∈ {tk, k ∈ N}, the proof can be established.
Lemma 10. Under A1-A3), there exist strictly positive constant
numbers α̃ and β̃ such that
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α̃AE[Ξ−1]AH ≤ sup
k∈N

E[Mk] ≤ β̃AE[Ξ−1]AH . (13)

Proof. By Lemma 1, it is clear that the following random
vectors are with an identical distribution, e.g., (τk, τk +
τk−1, . . . , τk + . . . + τ1)

d= (τ1, τ1 + τ2, . . . , τ1 + . . . + τk),
where d= means equal in distribution on its both sides. Thus, it
yields that E[Λ−1

k ] = E[Ξ−1
k ]. Jointly with Lemma 9, it follows

that

E[Mk] ≤ βAE[Ξ−1
k ]AH . (14)

Select ε < 1−|λ1|−1

A−1 and η = |λ1|−1 + εA−1 < 1, it follows
from Lemma 8 that for any k ∈ N,

∞∑

j=k+1

φH(j, k)CHCφ(j, k) ≤ ‖C‖2
∞∑

j=k+1

‖Atj−tk‖2I

≤ M‖C‖2
∞∑

j=k+1

η2(tk−tj)I ≤ M‖C‖2
1− η2

I , β0I, (15)

where the last inequality is due to that τk ≥ 1,∀k ∈ N. Let
β1 = min(1, β−1

0 ) and β̃ = ββ1, we further obtain that

Ξk ≥
k∑

j=0

φH(j, 0)CHCφ(j, 0)

+β−1
0 φH(k, 0)(

∞∑

j=k+1

φH(j, k)CHCφ(j, k))φ(k, 0) ≥ β1Ξ,

where the second inequality is due to (15). Then, the right hand
side of the inequality trivially follows from (14).

Similar to (14), the left hand side of (13) can be shown by using
Fatou’s Lemma [Ash and Doléans-Dade, 2000].

5.1 Proof of Theorem 2

Proof. Define the integer valued set Sd = {kd| ∀k ∈ N}
and θ =

∑
j∈Sd

P{τ1 = j}. Let Ek, k ≥ 1 be a sequence
of events defined as follows: E1 = {τ1 /∈ Sd}, Ek ,
{τ1 ∈ Sd, . . . , τk−1 ∈ Sd, τk /∈ Sd},∀k ≥ 2. By Lemma
1, it is obvious that P(Ek) = θk−1(1 − θ) and Ei

⋂
Ej =

∅,∀i 6= j. Let Fk =
⋃k

j=1 Ej and F =
⋃∞

j=1 Ej , it
follows that Fk asymptotically increases to F and P(F ) =
P(

⋃∞
j=1 Ej) =

∑∞
j=1 P(Ej) = 1. Define the indicator func-

tion 1Fk
(w) which is one if w ∈ Fk, otherwise 0. It is

clear that 1Fk
=

∑k
j=1 1Ej asymptotically increases to 1F .

Since P(F ) = 1, then 1F = 1 a.e.. By the monotone
convergence theorem [Ash and Doléans-Dade, 2000], it fol-
lows that E[Ξ−1] = E[Ξ−11F ] = E[Ξ−1(limk→∞ 1Fk

)] =
limk→∞

∑k
j=1 E[Ξ−11Ej ].

Sufficiency: It is clear that

E[Ξ−11Ej
] ≤ E[(

j∑

i=j−1

φH(i, 0)CHCφ(i, 0))−11Ej
].

In addition, we obtain that

j∑

i=j−1

φH(i, 0)CHCφ(i, 0) = φH(j − 1, 0)
[
c1

c2

]

×
[

1 + λ
−2τj

1 1 + λ
−τj

1 λ
−τj

2

1 + λ
−τj

1 λ
−τj

2 1 + λ
−2τj

2

] [
c1

c2

]
φ(j − 1, 0).(16)

Define Σj =
[

1 + λ
−2τj

1 1 + λ
−τj

1 λ
−τj

2

1 + λ
−τj

1 λ
−τj

2 1 + λ
−2τj

2

]
, it follows that

if τj /∈ Sd, we have Σ−1
j ≤ 4

λ
−2τj
1 +λ

−2τj
2 −2λ

−τj
1 λ

−τj
2

I ≤
2|λ1|2τj

1−cos( 2π
d )

I . Thus, let c = max(c−2
1 , c−2

2 ), it follows from

(16) that if τj /∈ Sd, (
∑j

i=j−1 φH(i, 0)CHCφ(i, 0))−1 ≤
2c|λ1|2tk

1−cos( 2π
d )

I. Combining the above, we obtain that E[Ξ−1] ≤
2cI

1−cos( 2π
d )

limk→∞
∑k

j=1 E[|λ1|2tj 1Ej
]. In addition, the fol-

lowing statements are true: limk→∞
∑k

j=1 E[|λ1|2tj 1Ej ] =

limk→∞
∑k

j=1 E[(
∏j−1

i=1 |λ1|2τi1{τi∈Sd})|λ1|2τj 1{τj /∈Sd}] ≤
limk→∞ E[|λ1|2τ1 ]

∑k
j=1(E[|λ1|2τ11{τ1∈Sd}])

j−1, which is fi-
nite if E[|λ1|2τ1 ] < ∞ and E[|λ1|2τ11{τ1∈Sd}] < 1. By some
algebraic manipulations, it is clear that (1 + pq

(1−q)2 )(|λ1|2(1−
q))d < 1 is equivalent to that |λ1|2(1 − q) < 1 and

pq
(1−q)2

(|λ1|2(1−q))d

1−(|λ1|2(1−q))d < 1. Together with Lemma 1, it implies
that E[|λ1|2τ1 ] < ∞ and

E[|λ1|2τ11{τ1∈Sd}] =
pq

(1− q)2
(|λ1|2(1− q))d

1− (|λ1|2(1− q))d
< 1.

Necessity: Denote Ξ′k =
∑k

j=0 φH(j, 0)CHCφ(j, 0). By (15),
we have that

Ξ = Ξ′j−1 + φH(j, 0)(CHC +
∞∑

i=j+1

φH(i, j)CHCφ(i, j))

×φ(j, 0) ≤ Ξ′j−1 + φH(j, 0)(CHC + β0I)φ(j, 0). (17)

Then, let β−1
2 = max( 1

1−|λ1|−2 , 1, β0), it follows that

Ξ−11Ej ≥ (Ξ′j−1 + φH(j, 0)(CHC + β0I)φ(j, 0))−11Ej

= (
j−1∑

i=0

|λ1|−2tiCHC + φH(j, 0)(CHC + β0I)φ(j, 0))−11Ej

≥ (
1

1− |λ1|−2
CHC + φH(j, 0)(CHC + β0I)φ(j, 0))−11Ej

≥ β1(CHC + φH(j, 0)(CHC + I)φ(j, 0))−11Ej
. (18)

In view of Lemma 10, supk∈N E[Mk] < ∞ is equivalent to
E[Ξ−1] < ∞. This implies that

lim
k→∞

k∑

j=1

E[(CHC +φH(j, 0)(CHC +I)φ(j, 0))−11Ej
] < ∞.

(19)
By some manipulations, one can verify that there exists a
positive constant β3 > 0 such that tr(CHC +φH(j, 0)(CHC +
I)φ(j, 0))−11Ej

) ≥ β3|λ1|2tj 1Ej
. In light of (19), we obtain

that
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lim
k→∞

k∑

j=1

E[|λ1|2tj 1Ej ]

= E[|λ1|21{τ1 /∈Sd}] lim
k→∞

k∑

j=1

(E[|λ1|21{τ1∈Sd}])
j−1 < ∞,

which is equivalent to (1 + pq
(1−q)2 )(|λ1|2(1 − q))d < 1 by

Lemma 1.

5.2 Proof of Theorem 3

Proof. Given an arbitrary j ∈ N, there exists an i ∈ N such
that id ≤ j ≤ (i + 1)d. Then, Pj+1 ≤ |λ1|2(j−id)Pid+1 +∑j−id−1

i=0 |λ1|2iI ≤ |λ1|2dPid+1 + 1−|λ1|2d

1−|λ1|2 I . This implies that
supi∈N E[Pid+1] ≤ supj∈N E[Pj ] ≤ |λ1|2d supi∈N E[Pid+1] +
1−|λ1|2d

1−|λ1|2 I. Thus, it follows that supk∈N E[Pk] < ∞ if and only
if supk∈N E[Pkd+1] < ∞.

Sufficiency: Consider a large k ∈ N and define
k0 = inf{j ≤ k|jd ∈ {tk, k ∈ N} and ∀ti ∈ (jd, kd], τi ∈ Sd}.
With regard to the value of k0, two cases are separately dis-
cussed.

C1: If k0 = 0, let i0 = 0. By A1), we obtain that Pk0d+1 ≤
AP0A

H + Q = AAH + I .
C2: If k0 > 0, there must exist an i0 > 0 such that k0d = ti0

and τi0 < d. In view of Lemma 9, it follows that

Pk0d+1 ≤ βA(
i0∑

j=i0−1

φH(i0, j)CHCφ(i0, j))−1AH

= βA(CHC + (A−τi0 )HCHCA−τi0 )−1AH

= βA

[
c−1
1

c−1
2

]
Σ−1

i0

[
c−1
1

c−1
2

]
AH

≤ 2cβ|λ1|2d

1− cos( 2π
d )

AAH . (20)

By defining ∆ = (1 + 2cβ|λ1|2d

1−cos( 2π
d )

)AAH + I , it yields that

Pk0d+1 ≤ ∆,∀k0 ∈ {0, . . . , k}. (21)

Consider the integer compositions of k−k0. Here a composition
of k−k0 is a way of writing k−k0 as the sum of a sequence of
strictly positive integers, i.e., write k−k0 = δ1+. . .+δl, where
1 ≤ l ≤ k − k0 − 1 and δi ≥ 1,∀i ∈ {1, . . . , l}. By fixing the
composition size l, it is clear that there are

(
k−k0−1

l−1

)
possible

integer compositions, where
(
n
k

)
is the binomial coefficient.

In addition, for each composition of size l, it follows from
Lemma 1 that the probability of {τi0+1 = δ1d, . . . , τi0+l−1 =
δl−1d, τi0+l ≥ δld} is computed by

P{τi0+1 = δ1d, . . . , τi0+l−1 = δl−1d, τi0+l ≥ δld}

=
l−1∏

j=1

P{τj = δjd}P{τl ≥ δld}

= (
l−1∏

j=1

pq

(1− q)2
(1− q)δjd)(

pq

(1− q)2
(1− q)δld

∞∑

j=0

(1− q)j)

=
1
q
(

pq

(1− q)2
)l(1− q)(k−k0)d. (22)

0 1 1i
d !

"
#

0i l l
d !

"
#

0 1 1i l l
d !

" # #
$

0k d 0 1( )k d ! ( )
l

k d ! kd

 

Fig. 1. A composition

For the integer k−k0, there are
(
k−k0−1

l−1

)
possible compositions

of size l.

The total probability for all the possible compositions with size
l is denoted by P(l|k0) and computed as follows:

P(l|k0) =
1
q

(
k − k0 − 1

l − 1

)
(

pq

(1− q)2
)l(1− q)(k−k0)d.

Let sk =
∑k−1

k0=0

∑k−k0−1
l=1 |λ1|2(k−k0)dP(l|k0), we obtain that

sk =
1
q

k∑

j=1

j−1∑

l=1

(
j − 1
l − 1

)
(

pq

(1− q)2
)l(|λ1|2(1− q))jd

=
p

(1− q)2

k∑

j=1

(|λ1|2(1− q))jd

j−1∑

l=0

(
j − 1

l

)
(

pq

(1− q)2
)l

=
p

(1− q)2

k∑

j=1

(|λ1|2(1− q))jd(1 +
pq

(1− q)2
)j−1. (23)

Now, we are ready to compute E[Pkd+1] as follows:

E[Pkd+1] = E[E[Pkd+1|k0]] ≤
k∑

k0=0

E[Pkd+1|k0]

=
k−1∑

k0=0

k−k0−1∑

l=1

E[Pkd+1|k0, l]P(l|k0) ≤
k−1∑

k0=0

k−k0−1∑

l=1

E
[
|λ1|2(k−k0)dPk0d+1 +

|λ1|2(k−k0)d − 1
|λ1|2 − 1

I

]
P(l|k0)

≤ sk∆ +
sk

|λ1|2 − 1
I, (24)

where the first inequality is due to that Pk+1 ≤ |λ1|2Pk +
I,∀k ∈ N under A1). Together with (23), we immediately
concludes that supk∈N E[Pkd+1] < ∞ if (1+ pq

(1−q)2 )(|λ1|2(1−
q))d < 1.

Necessity: By (2), it is clear that the binary state Markov chain
is irreducible and aperiodic. Thus, it has an unique stationary
distribution. In particular,

P{γ∞ = i} = lim
k→∞

P{γk = i} =
p1−iqi

p + q
,∀i ∈ S. (25)

Now, consider a special case that the Markov chain starts at
this stationary distribution, i.e., P{γ0 = i} = p1−iqi

p+q ,∀i ∈ S.
It follows that the distribution of γk,∀k ∈ N is the same
distribution as that of γ0. Under this situation, it can be verified
that

Π− = (P{γk = j|γk+1 = i})i,j∈S =
[
1− q q

p 1− p

]
. (26)

For any measurable function f : Rk+1 → Rn×n, it is easy to
establish the following result:
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E[f(γk, . . . , γ0)]

=
∑

ij∈S,0≤j≤k

f(ik, . . . , i0)P{γk = ik, . . . , γ0 = i0}

=
∑

ij∈S,0≤j≤k

f(ik, . . . , i0)P{γ0 = i0}

×
k−1∏

j=0

P{γj+1 = ij+1|γj = ij} (27)

=
∑

ij∈S,0≤j≤k

f(ik, . . . , i0)P{γk = i0}

×
k−1∏

j=0

P{γj = ij+1|γj+1 = ij} (28)

= E[f(γ0, . . . , γk)] = E[f(γ1, . . . , γk+1)], (29)

where (27) follows from (2) while (28) is due to (2), (26) and
that the distribution of γk is the same as that of γ0. The last
equality is due to the strict stationarity of the Markov chain.
By Lemma 3 of Mo and Sinopoli [2010], there exists a positive
constant β4 such that

Pk+1

≥ β4(
k+1∑

i=1

γk+1−i(A−i)HCHCA−i + (A−k−1)HA−k−1)−1.

Together with (29), we have that

E[Pk+1]

≥ β4E(
k+1∑

i=1

γi(A−i)HCHCA−i + (A−k−1)HA−k−1)−1

≥ β4E(
∞∑

i=1

γi(A−i)HCHCA−i + (A−k−1)HA−k−1)−1.(30)

Note that under A2) and A4), the term in (30) is decreasing
w.r.t. k, which, jointly with monotone convergence theorem
[Ash and Doléans-Dade, 2000], implies that supk∈N E[Pk+1] ≥
β4E[(

∑∞
i=1 γi(A−i)HCHCA−i)−1] = β4E[Ξ−1], where the

last equality follows from the definition of Ξ in (11). Finally,
by Lemma 10 and the proof of necessity in Theorem 2, we get
that (1 + pq

(1−q)2 )(|λ1|2(1− q))d < 1.

6. CONCLUSION

We have examined the stability of Kalman filtering with Marko-
vian packet losses. Two stability notions have been introduced
to analyze estimation error covariances of the Kalman filtering.
For second-order systems, the two stability notions have been
shown to be equivalent and a necessary and sufficient condi-
tion is obtained for ensuring stability. Under a certain class
of higher-order systems, a necessary and sufficient condition
has been derived to guarantee the stability of the estimation
error covariance matrix in stopping times. All of the results
can recover the related results in the existing literature. Our
future works are to characterize the relationship of the two
stability notions and find the corresponding stability conditions
for general vector systems.
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