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1. INTRODUCTION

The control of quantum systems is a rapidly growing and
evolving field whose applications include quantum com-
puting, control of molecular dynamics, design of semicon-
ductor nanodevices, control of charged particles in beam
accelerators; etc., see Pierce et al. [1988] and references
therein. The most effective strategies in classical control
applications involve feedback control and one of the major
concentrated activities of control theory of the past three
decades has been the development of the ‘H∞-optimal
control theory’, which addresses the issue of the worst-
case controller design for classical linear plants subject to
unknown disturbances and plant uncertainties.

Note that in many engineering problems (target maneuver,
missile guidance, etc.), control over a limited period of
time is needed. In such cases, the effect of the initial
conditions is most important and infinite horizon H∞

methods cannot provide a satisfactory control strategy.
The motivation for finite horizon H∞ control problems
is then to consider the transient response of the system
within the framework of H∞ control problems.

Within these perspectives, this paper solves the finite
horizon H∞ control problem for a class of linear quantum
systems using a dynamic game approach for the case of
sampled-data measurements. Note that solving the finite
horizon H∞ control problem for the case of sampled
data measurements has a significance importance in the
development of quantum control theory. In fact, practical
and modern quantum control systems usually use digital
? This work was completed with the support of a University of
New South Wales Postgraduate Award and the Australian Research
Council.

computers as discrete-time controllers to control quantum
continuous time systems.

2. FORMULATION OF THE PROBLEM

2.1 The Plant Model

We consider a class of linear quantum dynamical systems
described in the Heisenberg picture by a set of quantum
stochastic differential equations; see James et al. [2008]
and Nurdin et al. [2009].

The system is therefore described by the following contin-
uous quantum stochastic differential equations (QSDEs)
defined on the finite time interval [0, tf ] and by the dis-
crete time-varying quantum difference equation for the
measured output defined at the jump time tk.

dx(t) =A(t)x(t)dt+B(t)du(t)dt+D(t)dw(t)dt

+Gv(t)dv(t);

y(tk) =Cd(tk)x(tk) +Nd(tk)βw(tk) + Ld(tk)ṽ(tk);

z(t) =H(t)x(t) +G(t)βu(t) +M(t)βw(t); (1)

where

H(t)TG(t) = 0; H(t)TH(t) = Q(t); G(t)TG(t) = I;

M(t) = 0. (2)

For the linear quantum systems under consideration,
the continuous measurement dy(t) is now replaced by
a sampled-data measurement y(tk) where {tk}k≥1 is an
increasing sequence of measurement time instants:

0 ≤ t1 < t2 < · · · < tK < tf .
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The initial system variables x(0) = x0 consist of operators
(on an appropriate Hilbert space) satisfying the commu-
tation relations:

[xj(0), xk(0)] = 2iΘjk

where Θ is a real antisymmetric matrix with components
Θjk; see James et al. [2008].

Furthermore, we assume that the state of the quantum
system is a Gaussian state with mean x̌0 ∈ Rn and
covariance matrix Y0; e.g., see Meyer [1995]. Then 〈x0〉 =
x̌0 and

Y0 =
1
2
〈
(x0 − x̌0)(x0 − x̌0)T + ((x0 − x̌0)(x0 − x̌0)T )T

〉
.

(3)
Here, 〈.〉 denotes quantum expectation; e.g., see Parthasarathy
[1992]. In the sequel, we will fix Y0 but x̌0 will be taken as
part of the disturbance.

Here, A(t) ∈ Rn×n, B(t) ∈ Rn×nu , D(t) ∈ Rn×nw ,
Gv(t) ∈ Rn×nv and (n, nw, nu and nv are positive integers)
for all t ∈ [0, tf ]. Also, x(t) = [x1(t) · · ·xn(t)]T is a vector
of self-adjoint possibly noncommutative system variables;
e.g., see James et al. [2008] for more details.

Cd(tk) ∈ Rnyk
×nk , Nd(tk) ∈ Rnyk

×nwk , Ld(tk) ∈ Rnyk
×nvk

and (nk, nwk
, nyk

, and nvk
are positive integers) for

all k ∈ [0,K]. The quantity dw(t) represents the input
variables or disturbances, du(t) is the control input, y(tk)
is the sampled measured output and z(t) is the controlled
output.

We assume that dw(t) = βw(t)dt + dw̃(t) where w̃(t) is
the noise part of w(t) and βw(t) is a square integrable
classical disturbance signal. The set of all such βw(t) is
denotedW. The noise w̃(t) is a vector of quantum Wiener
processes with Ito table Fw̃ and commutation matrix Tw̃
which are defined below. Similarly, we also assume that
du(t) = βu(t)dt+dũ(t) where ũ(t) is the noise part of u(t)
and βu(t) is a self-adjoint adapted process. The noise ũ(t)
is a quantum noise with Ito matrix Fũ and commutation
matrix Tũ. Also, the vector dv(t) represents any additional
quantum noise in the plant. It has an Ito matrix Fv and
commutation matrix Tv.

The non-negative symmetric Ito matrices Fw̃, Fũ and Fv
and the commutation matrices Tw̃, Tũ and Tṽ are defined
in Maalouf and Petersen [2010].

We also assume that the vector ṽ(tk) represents an ad-
ditional quantum measurement noise. It has a covari-
ance matrix Fṽk

. The non-negative symmetric covari-
ance matrix Fṽk

satisfies the following equation: Fṽk
=

E
(
ṽ(tk)ṽ(tk)T

)
.

Let

Gvt(t) = [B(t) D(t) Gv(t) ]

and dvt(t) = [ dũ(t) dw̃(t) dv(t) ]T .

Then equation (1) becomes

dx(t) =A(t)x(t)dt+B(t)βu(t)dt+D(t)βw(t)dt

+Gvt(t)dvt(t);

y(tk) =Cd(tk)x(tk) +Nd(tk)βw(tk) + Ld(tk)ṽ(tk);

z(t) =H(t)x(t) +G(t)βu(t) +M(t)βw(t); (4)

2.2 The Controller Model

We consider a sampled-data classical controller K of the
following form defined by a differential equation with
jumps on the finite time interval [0, tf ]:

dψ(t) = Fc(t)ψ(t)dt; ψ(0) = ψ0;

ψ(t+k ) = Fcd
(tk)ψ(t−k ) +Gcd

(tk)y(tk);

βu(t) =Hc(t)ψ(t) (5)

where ψ(t) is the controller state. For all t ∈ [0, tf ], Fc(t) ∈
Rnc×nc and Hc(t) ∈ Rnu×nc (nc is a positive integer).
Also, Fcd

(tk) ∈ Rnck
×nck and Gcd

(tk) ∈ Rnck
×nyk (nck

is
a positive integer) for all k ∈ [0,K].

2.3 The Closed-Loop System

The closed-loop system is obtained by making the identi-
fication βu(t) = Hc(t)ψ(t) and interconnecting equations
(4) and (5) to give a quantum-classical system described by
the following stochastic differential equations with jumps

dη(t) = Ã(t)η(t)dt+ D̃(t)βw(t)dt+ L̃(t)dvt(t);

η(t+k ) = Ãd(tk)η(t−k ) + D̃d(tk)βw(tk) + L̃d(tk)ṽ(tk);

z(t) = H̃(t)η(t) (6)

where

η(t) =
[
x(t)
ψ(t)

]
, η(t−k ) =

[
x(tk)
ψ(t−k )

]
,

η(t+k ) =
[
x(tk)
ψ(t+k )

]
, Ã(t) =

[
A(t) B(t)Hc(t)

0 Fc(t)

]
,

D̃(t) =
[
D(t)

0

]
, L̃(t) =

[
Gvt

(t)
0

]
,

Ãd(tk) =
[

I 0
Gcd

(tk)Cd(tk) Fcd
(tk)

]
,

D̃d(tk) =
[

0
Gcd

(tk)Nd(tk)

]
,

L̃d(tk) =
[

0
Gcd

(tk)Ld(tk)

]
and H̃(t) = [H(t) G(t)Hc(t) ] .

2.4 The cost function

We take the overall disturbance as

β̂w(t) = (x̌0, βw(t), {ṽ(tk)}) .

We therefore have to determine, whether, under the given
measurement scheme, the upper value of the game with
cost function
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Lγ(K, β̂w)

=
〈
x(tf )TQfx(tf )

〉
+
∫ tf

0

〈
z(t)T z(t)

〉
dt

−γ2x̌T0 Q0x̌0 − γ2

{∫ tf

0

βw(t)Tβw(t)dt

+
K∑
k=0

(
βw(tk)Tβw(tk)

)}
−γ2

{
E
(
ṽ(tk)T ṽ(tk)

)}
=
〈
x(tf )TQfx(tf )

〉
+
∫ tf

0

〈
x(t)TQ(t)x(t)

〉
dt

+
∫ tf

0

〈
βu(t)Tβu(t)

〉
dt− γ2x̌T0 Q0x̌0

−γ2

{∫ tf

0

βw(t)Tβw(t)dt

+
K∑
k=0

(
βw(tk)Tβw(tk)

)}
−γ2

{
E
(
ṽ(tk)T ṽ(tk)

)}
(7)

is bounded, and if so, to obtain a corresponding min-sup
controller

βu(t) = µ(t, y1, y2, · · · , yk)
where tk < t ≤ tk+1, Qf = QTf ≥ 0, Q0 is a weighting
matrix taken to be positive definite, Q(t) = Q(t)T ≥ 0
and 〈.〉 represents the quantum expectation over all initial
variables and noises; see Parthasarathy [1992].

2.5 Explicit Expression for Lγ

For the quantum closed-loop system (6), we define the
covariance matrix P given by

P (t) =
1
2

〈
η(t)η(t)T +

(
η(t)η(t)T

)T〉
. (8)

Note that P0 = P (0) = diag(Y0 + x̌0x̌
T
0 , 0). We calculate

dP (t) =
1
2

{〈
dη(t)η(t)T

〉
+
〈(
dη(t)η(t)T

)T〉}
+

1
2

{〈
η(t)dη(t)T

〉
+
〈(
η(t)dη(t)T

)T〉}
+

1
2

{〈
dη(t)dη(t)T

〉
+
(〈
dη(t)dη(t)T

〉)T}
.

An expression for dP (t) using the quantum Ito rule (see
James et al. [2008], Parthasarathy [1992]) is given by

dP (t) = Ã(t)P (t)dt+ P (t)Ã(t)T dt+ D̃(t)βw(t)〈
η(t)T

〉
dt+ 〈η(t)〉βw(t)T D̃(t)T dt

+L̃(t)Sv(t)L̃(t)T dt (9)

where

Sv(t)dt =
1
2

〈
dvt(t)dvt(t)T +

(
dvt(t)dvt(t)T

)T〉
.

Thus, we obtain the matrix differential equation with
jumps

Ṗ (t) = Ã(t)P (t) + P (t)Ã(t)T + D̃(t)βw(t)
〈
η(t)T

〉
+ 〈η(t)〉βw(t)T D̃(t)T + L̃(t)Sv(t)L̃(t)T ; (10)

P (t+k ) = Ãd(tk)P (t−k )Ãd(tk)T

+D̃d(tk)βw(tk)βw(tk)T D̃d(tk)T

+L̃d(tk)Svk
L̃d(tk)T

+Ãd(tk)
〈
η(t−k )

〉
βw(tk)T D̃d(tk)T

+D̃d(tk)βw(tk)
〈
η(t−k )T

〉
Ãd(tk)T (11)

where Svk
= 1

2E
(
ṽ(tk)ṽ(tk)T

)
.

Now, we find an expression for Lγ . In fact,

η(tf ) =
[
x(tf )
ψ(tf )

]
so that Q

1/2
f x(tf ) =

[
Q

1/2
f 0

] [
x(tf )
ψ(tf )

]
=
[
Q

1/2
f 0

]
η(tf )

and x(tf )TQ1/2
f = η(tf )T

[
Q

1/2
f

0

]
.

Hence,〈
x(tf )TQfx(tf )

〉
=
〈
x(tf )TQ1/2

f Q
1/2
f x(tf )

〉
=
〈
η(tf )T

[
Q

1/2
f

0

] [
Q

1/2
f 0

]
η(tf )

〉
=
〈
η(tf )T

[
Qf 0
0 0

]
η(tf )

〉
=

1
2
tr

〈[
Qf 0
0 0

] (
η(tf )η(tf )T

+
(
η(tf )η(tf )T

)T)〉
= tr

([
Qf 0
0 0

]
P (tf )

)
= tr

(
Q̂fP (tf )

)
where Q̂f =

[
Qf 0
0 0

]
.

On the other hand,〈
x(t)TQ(t)x(t)

〉
= tr

(
Q̂(t)P (t)

)
where Q̂(t) =

[
Q(t) 0

0 0

]
and〈

βu(t)Tβu(t)
〉

= tr(Ĥ(t)P (t))

where Ĥ(t) =
[

0 0
0 Hc(t)THc(t)

]
.

Let R(t) = Q̂(t) + Ĥ(t) =
[
Q(t) 0

0 Hc(t)THc(t)

]
.

Hence,
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Lγ(K, β̂w)

= tr
(
Q̂fP (tf )

)
+
∫ tf

0

tr (R(t)P (t)) dt

−γ2

[
η̌T0 Q̂0η̌0 +

∫ tf

0

βw(t)Tβw(t)dt
]

−γ2

[
K∑
k=1

(
βw(tk)Tβw(tk) + E

(
ṽ(tk)T ṽ(tk)

))]

(12)

where Q̂0 =
[
Q0 0
0 0

]
and η̌0 = 〈η0〉.

2.6 The Finite Horizon H∞ problem

We will consider, as the standard problem, the case where
x0 is a part of the unknown disturbance. Let

(x̌0, βw(.), ṽ(tk)) := β̂w(.) ∈ Ωq = Rn ×W × Vk. (13)

The set of admissible controllers K, which will be denoted
by M, are controllers which are of the form given by (5)
and under which the problem defined by (4) and (5) has
a unique solution for every β̂w(.) ∈ Ωq.

Lγ(K, β̂w) defined in (7) can be written in terms of the
closed-loop system variable η(t) as

Lγ(K, β̂w) =
〈
η(tf )T Q̂fη(tf )

〉
+
〈∫ tf

0

η(t)TR(t)η(t)
〉
dt

−γ2

(
η̌T0 Q̂0η̌0 +

∫ tf

0

βw(t)Tβw(t)dt
)

−γ2

(
K∑
k=0

(
βw(tk)Tβw(tk)

)
+E

(
ṽ(tk)T ṽ(tk)

))
= tr

(
Q̂fP (tf )

)
+
∫ tf

0

tr (R(t)P (t)) dt

−γ2

(
η̌T0 Q̂0η̌0 +

∫ tf

0

βw(t)Tβw(t)dt
)

−γ2

(
K∑
k=0

(
βw(tk)Tβw(tk)

)
+E

(
ṽ(tk)T ṽ(tk)

))
.

On the other hand, we define, Jγ(K, β̂w) = −Lγ(K, β̂w).

The disturbance attenuation problem to be solved is the
following:

Problem Pγ . Determine necessary and sufficient condi-
tions on γ such that the quantity

inf
K∈M

sup
β̂w∈Ωq

Lγ(K, β̂w)

is finite, and for each such γ find a controller K that
achieves the minimum. The infimum of all γ’s that satisfy
these conditions will be denoted by γ∗q .

3. AUXILIARY CLASSICAL STOCHASTIC AND
DETERMINISTIC SYSTEMS

The Auxiliary Classical Stochastic System

We define the following classical linear stochastic system
with sampled data measurements

dξ(t) =A(t)ξ(t)dt+B(t)βu(t)dt+D(t)βw(t)dt

+Gvt(t)S
1/2
v (t)dvt(t); t ≥ 0;

y(tk) =Cd(tk)ξ(tk) +Nd(tk)βw(tk) + Ld(tk)S1/2
vk

ṽ(tk);

z(t) =H(t)ξ(t) +G(t)βu(t) (14)
where equations (2) are satisfied and ξ(0) = ξ0 is a
Gaussian random variable with mean x̌0 and covariance
matrix Y0.

The vector dvt(t) represents a stochastic noise in the plant
and vt(t) is a Wiener process. We also assume that the
vector ṽ(tk) represents a stochastic measurement noise.

3.1 Closed-Loop System

The classical controller K is given by (5) and the cor-
responding closed-loop stochastic system is obtained by
making the identification βu(t) = Hc(t)ψ(t) and intercon-
necting equations (14) and (5) to give:

dµ(t) = Ã(t)µ(t)dt+ D̃(t)βw(t)dt+ L̃s(t)dvt(t);

µ(t+k ) = Ãd(tk)µ(t−k ) + D̃d(tk)βw(tk) + L̃ds(tk)ṽ(tk);

z(t) = H̃(t)µ(t) (15)

where µ(t) =
[
ξ(t)
ψ(t)

]
, µ(t+k ) =

[
ξ(tk)
ψ(t+k )

]
, µ(t−k ) =[

ξ(tk)
ψ(t−k )

]
, L̃s(t) = L̃(t)S1/2

v (t) and L̃ds
(tk) = L̃d(tk)S1/2

vk .

3.2 Cost Function

We define the classical cost function

L̂(K, βw) = E
(
ξ(tf )TQfξ(tf )

)
+
∫ tf

0

E
(
z(t)T z(t)

)
dt

where Qf = QTf ≥ 0 and

L̂γ(K, β̂w)

= E
(
ξ(tf )TQfξ(tf )

)
+
∫ tf

0

E
(
z(t)T z(t)

)
dt

−γ2

{
x̌T0 Q0x̌0 +

∫ tf

0

βw(t)Tβw(t)dt
}

−γ2

{
K∑
k=0

(
βw(tk)Tβw(tk) + E

(
ṽ(tk)T ṽ(tk)

))}
(16)

where E(.) denotes the stochastic expectation.

3.3 An Explicit Expression for the Closed-Loop Cost
Function

For the stochastic closed-loop system (15), we define the
covariance matrix

P̃ (t) = E(µ(t)µ(t)T ). (17)

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

10144



Note that P̃ (0) = P̃0 = P (0) = diag(Y0 + x̌0x̌
T
0 , 0).

Using the classical Ito rule, we can write

dP̃ (t) =E(dµ(t)µ(t)T ) + E(µ(t)dµ(t)T ) + E(dµ(t)dµ(t)T )

= Ã(t)P̃ (t)dt+ P̃ (t)Ã(t)T dt+ D̃(t)βw(t)E(µ(t)T )dt

+E(µ(t))βw(t)T D̃(t)T dt+ L̃(t)Sv(t)L̃(t)T dt;

P̃ (t+k ) = Ãd(tk)P̃ (t−k )Ãd(tk)T

+D̃d(tk)βw(tk)βw(tk)T D̃d(tk)T

+L̃d(tk)Svk
L̃d(tk)T

+Ãd(tk)E
(
µ(t−k )

)
βw(tk)T D̃d(tk)T

+D̃d(tk)βw(tk)E
(
µ(t−k )T

)
Ãd(tk)T . (18)

We have that

Q
1/2
f ξ(tf ) =

[
Q

1/2
f 0

]
µ(tf )

and ξ(tf )TQ1/2
f = µ(tf )T

[
Q

1/2
f

0

]
.

Hence,

E
(
ξ(tf )TQfξ(tf )

)
(19)

= E
(
ξ(tf )TQ1/2

f Q
1/2
f ξ(tf )

)
= E

(
µ(tf )T

[
Q

1/2
f

0

] [
Q

1/2
f 0

]
µ(tf )

)
= E

(
µ(tf )T

[
Qf 0
0 0

]
µ(tf )

)
= tr

([
Qf 0
0 0

]
P̃ (tf )

)
= tr

(
Q̂f P̃ (tf )

)
.

On the other hand, E
(
z(t)T z(t)

)
= tr

(
H̃(t)T H̃(t)P̃ (t)

)
.

Thus,

L̂(K, β̂w) = tr
(
Q̂f P̃ (tf )

)
+
∫ tf

0

tr
(
H̃(t)T H̃(t)P̃ (t)

)
dt

and

L̂γ(K, β̂w)

= tr
(
Q̂f P̃ (tf )

)
+
∫ tf

0

tr
(
H̃(t)T H̃(t)P̃ (t)

)
dt

−γ2

[
µ̌T0 Q̂0µ̌0 +

∫ tf

0

βw(t)Tβw(t)dt
]

−γ2
K∑
k=0

(
βw(tk)Tβw(tk) + E

(
ṽ(tk)T ṽ(tk)

))
(20)

where µ̌0 = E(µ0).

3.4 Equivalence Between P (.) and P̃ (.)

Theorem 1. The covariance matrices P (.) given by (8) and
P̃ (.) given by (17) are equal.

As a consequence of Theorem 1, Lγ(K, β̂w) ≡ L̂γ(K, β̂w)
for all classical linear controllers K of the form (5) and
for all disturbance inputs βw(t). This equivalence between
the cost functions of the quantum closed-loop system
Lγ(K, β̂w) and the corresponding cost functions of the
stochastic closed-loop system L̂γ(K, β̂w) is in the sense
that applying the same controller K given by (5) to the
quantum system (4) and the stochastic system (14), then
the resulting quantum closed-loop system (6) and the
resulting stochastic closed-loop system (15) will have the
same cost functions values for all disturbance inputs βw(t),
i.e; Lγ(K, β̂w) will have the same value as L̂γ(K, β̂w).

3.5 Reformulation of the Auxiliary Classical Stochastic
Closed-Loop System

In this subsection, we reformulate the stochastic worst
case performance problem for the closed-loop system. The
closed-loop system (15) can also be rewritten as:

dµ(t) = Ã(t)µ(t)dt+ D̃(t)βw(t)dt+ dvn(t);

µ(t+k ) = Ãd(tk)µ(t−k ) + D̃d(tk)βw(tk) + v̂(tk)

z(t) = H̃(t)µ(t) (21)

where dvn(t) = L̃s(t)dvt(t) and v̂(tk) = L̃ds(tk)ṽ(tk).

We now assume that the initial condition random variable
µ(0) = µ0 for the closed-loop system (21) is normal
with mean m and covariance matrix R0. The stochastic
process vn(t) has zero mean and covariance matrix R1(t).
We assume that the process vn(t) is independent of µ0

and that the matrices R0 and R1(t) are symmetric and
nonnegative definite for all t ∈ [0, tf ]. We assume as well
that v̂(t) has a zero mean and covariance matrix Rv̂(t).

Reformulating the Closed-Loop Performance Index We
rewrite the performance index for the closed-loop system
as:

L̂γ(K, β̂w)

= E
(
µ(tf )T Q̂fµ(tf )

)
+
∫ tf

0

E
(
µ(t)TR(t)µ(t)

)
dt

−γ2

{
µ̌T0 Q̂0µ̌0 +

∫ tf

0

βw(t)Tβw(t)dt
}

−γ2

{
K∑
k=0

(
βw(tk)Tβw(tk) + E

(
ṽ(tk)T ṽ(tk)

))}
(22)

where Q̂f = Q̂Tf ≥ 0, R(t) = R(t)T ≥ 0.

We note here that the closed-loop performance index (22)
is equivalent to the closed-loop cost function (20). In
fact, E

(
µ(tf )T Q̂fµ(tf )

)
= tr

(
Q̂f P̃ (tf )

)
where P̃ (t) =

E
(
µ(t)µ(t)T

)
and E

(
µ(t)TR(t)µ(t)

)
= tr

(
R(t)P̃ (t)

)
with R(t) = H̃(t)T H̃(t) having G(t)TG(t) = I,

H(t)TH(t) = Q(t) and H(t)TG(t) = 0 from (2). Let
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Ĵγ(K, β̂w)

= −L̂γ(K, β̂w)

= E
(
µ(tf )T Q̃fµ(tf )

)
+
∫ tf

0

E
(
µ(t)T R̃(t)µ(t)

)
dt

+γ2

{
µ̌T0 Q̂0µ̌0 +

∫ tf

0

βw(t)Tβw(t)dt
}

+γ2

{
K∑
k=0

(
βw(tk)Tβw(tk) + E

(
ṽ(tk)T ṽ(tk)

))}
(23)

where Q̃f = Q̃Tf = −Q̂f ≤ 0 and R̃(t) = R̃(t)T = −R(t) ≤
0.

We want to minimize Ĵγ(K, β̂w) over β̂w(.) which is equiv-
alent to maximizing L̂γ(K, β̂w) over β̂w(.).

Using Theorem 1, P (.) and P̃ (.) are equal. Thus, mini-
mizing Ĵγ(K, β̂w) over β̂w(.) is equivalent to maximizing
Lγ(K, β̂w) over β̂w(.).

By taking x̌0 as a part of the unknown disturbance, the
quantum cost function Lγ(K, β̂w) defined in Problem Pγ is
equal to the stochastic cost function L̂γ(K, β̂w) since P (.)
and P̃ (.) are equal.

Hence, minimizing Ĵγ(K, β̂w) over β̂w(.) is equivalent to
maximizing Lγ(K, β̂w) over β̂w(.) in Problem Pγ .

The Auxiliary Classical Deterministic System

We now consider a deterministic system corresponding to
the auxiliary classical stochastic system (14) defined as:

ξ̇(t) =A(t)ξ(t) +B(t)βu(t) +D(t)βw(t); ξ0 = x̌0;

y(tk) =Cd(tk)ξ(tk) +Nd(tk)βw(tk);

z(t) =H(t)ξ(t) +G(t)βu(t) (24)

where equations (2) are satisfied.

The standard problem we consider is the case where x̌0 is
a part of the unknown disturbance. The set of admissible
controllers K will be denoted by M. These controllers are
of the form given by (5) and such that the problem defined
by (24) and (5) has a unique solution for every ξ0 and every
βw(.) ∈ W.

We also introduce the extended performance index

L̃γ(K, β̂w)

= ξ(tf )TQfξ(tf ) +
∫ tf

0

z(t)T z(t)dt

−γ2

(∫ tf

0

βw(t)Tβw(t)dt+ x̌T0 Q0x̌0

)
−γ2

(
K∑
k=0

βw(tk)Tβw(tk)

)

= ξ(tf )TQfξ(tf ) +
∫ tf

0

(
ξ(t)TQ(t)ξ(t)

)
dt

+
∫ tf

0

(
βu(t)Tβu(t)

)
dt

−γ2

(∫ tf

0

βw(t)Tβw(t)dt+ x̌T0 Q0x̌0

)
−γ2

(
K∑
k=0

βw(tk)Tβw(tk)

)
where Q0 is a weighting matrix, taken to be positive
definite and γ > 0.

Also, L̃γ(K, β̂w) can be rewritten in terms of the closed-
loop variable µ(t) as

L̃γ(K, β̂w)

= µ(tf )T Q̂fµ(tf ) +
∫ tf

0

µ(t)TR(t)µ(t)dt

−γ2

(∫ tf

0

βw(t)Tβw(t)dt+ µ̌T0 Q̂0µ̌0

)
−γ2

(
K∑
k=0

βw(tk)Tβw(tk)

)

= tr
(
Q̂f P̃ (tf )

)
+
∫ tf

0

tr
(
H̃(t)T H̃(t)P̃ (t)

)
dt

−γ2

(∫ tf

0

(
βw(t)Tβw(t)

)
dt+ µ̌T0 Q̂0µ̌0

)
−γ2

(
K∑
k=0

βw(tk)Tβw(tk)

)
(25)

where Q̂0 =
[
Q0 0
0 0

]
. The corresponding disturbance

attenuation problem to be solved is the following:

Problem P̃γ . Determine necessary and sufficient condi-
tions on γ such that the quantity

inf
K∈M

sup
β̂w∈Ωq

L̃γ(K, β̂w)

is finite, and for each such γ find a controller K (or family
of controllers) that achieves the minimum. The infimum of
all γ’s that satisfy these conditions will be denoted by γ∗c .

4. AN EQUIVALENT DETERMINISTIC WORST
CASE PERFORMANCE PROBLEM FOR THE

CLOSED-LOOP SYSTEM

4.1 The Closed-Loop System

In the deterministic case, the closed-loop system corre-
sponding to (24) and (5) is given by:

µ̇(t) = Ã(t)µ(t) + D̃(t)βw(t); µ0 = m

µ(t+k ) = Ãd(tk)µ(t−k ) + D̃d(tk)βw(tk);

z(t) = H̃(t)µ(t). (26)

4.2 The Performance Index

The closed-loop deterministic performance index is given
by:
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J̃γ(K, βw) = µ(tf )T Q̃fµ(tf ) +
∫ tf

0

(
µ(t)T R̃(t)µ(t)

)
dt

+γ2

∫ tf

0

(
βw(t)Tβw(t)

)
dt

+γ2
K∑
k=0

βw(tk)Tβw(tk) (27)

with Q̃f = Q̃Tf ≤ 0 and R̃(t) = R̃(t)T ≤ 0.

4.3 Solution to the Deterministic Worst Case Performance
Problem

To determine the worst case closed-loop cost, we assume
that the admissible disturbance strategies are such the
value of the disturbance signal is a deterministic function
of time. The deterministic worst case performance problem
can be stated as follows:

Problem: Consider the closed-loop deterministic system
described by (26). Find an admissible strategy βw(.) such
that the criterion (27) is minimal.

We define the following Riccati equation with jumps

Ż(t) + Z(t)Ã(t) + Ã(t)TZ(t) + R̃(t)

−γ−2Z(t)D̃(t)D̃(t)TZ(t) = 0; Z(tf ) = Q̃f ; (28)

Z(t−k ) = Ãd(tk)TZ(t+k )Ãd(tk)− Ãd(tk)TZ(t+k )D̃d(tk)(
γ2I + D̃d(tk)TZ(t+k )D̃d(tk)

)#

D̃d(tk)T

Z(t+k )Ãd(tk)

(29)

where # denotes the Moore-Penrose pseudo-inverse.
Lemma 2. Assume that the Riccati equation (28)-(29) has
a solution on the interval 0 ≤ t ≤ tf . Consider any square
integrable disturbance signal βw(t) defined on [0, tf ] and
let µ(t) be a corresponding solution of the differential
equation (26). Assume that there are K jumps in the
interval [0, tf ]. Then

µ(tf )T Q̃fµ(tf ) +
∫ tf

0

(
µ(t)T R̃µ(t)

)
dt

+γ2

∫ tf

0

(
βw(t)Tβw(t)

)
dt+ γ2

K∑
k=0

βw(tk)Tβw(tk)

= µT0 Z0µ0

+γ2
K−1∑
k=0

∫ t(k+1)−

tk+

(
βw(t) + γ−2D̃(t)TZ(t)µ(t)

)T
(
βw(t) + γ−2D̃(t)TZ(t)µ(t)

)
dt

+γ2

∫ tf

tK+

(
βw(t) + γ−2D̃(t)TZ(t)µ(t)

)T
(
βw(t) + γ−2D̃(t)TZ(t)µ(t)

)
dt

+γ2
K∑
k=0

[βw(tk) + Γ(tk)]T(
γ2I − D̃d(tk)TZ(t+k )D̃d(tk)

)
[βw(tk) + Γ(tk)] . (30)

where Γ(tk) =
(
γ2I + D̃d(tk)TZ(t+k )D̃d(tk)

)#

D̃d(tk)TZ(t+k )Ãd(tk)µ(t−k ).
Theorem 3. Assume that the Riccati equation (28)-(29)
has a solution on [0, tf ]. Assume as well that there are
K jumps in the interval [0, tf ]. Then, the optimal linear
solution of the deterministic worst case performance prob-
lem (26), (27) is such that the deterministic signal βw(t)
is given by the worst case distrurbance

β∗w(t) =−G0(t)µ(t); ∀t 6= tk; t ∈ [0, tf ];

β∗w(tk) =−
(
γ2I + D̃d(tk)TZ(t+k )D̃d(tk)

)#

D̃d(tk)TZ(t+k )Ãd(tk)µ(t−k ) (31)
where

G0(t) = γ−2D̃(t)TZ(t). (32)
Here Z(t) is the solution of the matrix Riccati equation
(28)-(29). The minimal value of the criterion function is
given by J̃γ(K, β∗w) = mTZ0m.
Theorem 4. The deterministic linear quadratic control
problem has a finite solution, for every initial system
variable µ0 = m, if and only if the Riccati differential
equation with jumps (28)-(29) has a symmetric solution
Z(.) on [0, tf ].

5. SOLUTION TO THE STOCHASTIC WORST CASE
PERFORMANCE PROBLEM

To determine the worst case closed-loop cost, we assume
that the admissible disturbance strategies are such the
value of the disturbance signal is a deterministic function
of time. The stochastic worst case performance problem
can be stated as follows:

Problem: Consider the closed-loop stochastic system de-
scribed by (21). Find an admissible strategy βw(.) such
that the following criterion is minimal

J̌γ(K, βw)

= Ĵγ(K, β̂w)− γ2µ̌T0 Q̂0µ̌0

= E
(
µ(tf )T Q̃fµ(tf )

)
+
∫ tf

0

E
(
µ(t)T R̃(t)µ(t)

)
dt

+γ2

{∫ tf

0

βw(t)Tβw(t)dt+
K∑
k=0

(
βw(tk)Tβw(tk)

)}
+γ2

{
E
(
ṽ(tk)T ṽ(tk)

)}
. (33)

Lemma 5. Assume that the Riccati equation (28)-(29) has
a solution on the interval 0 ≤ t ≤ tf . Assume as well that
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there are K jumps in the interval [0, tf ]. Consider any
square integrable disturbance signal βw(t) defined on [0, tf ]
and let µ(t) be a corresponding solution of the stochastic
differential equation (21). Then

µ(tf )T Q̃fµ(tf ) +
∫ tf

0

(
µ(t)T R̃µ(t) + γ2βw(t)Tβw(t)

)
dt

+γ2
K∑
k=0

βw(tk)Tβw(tk)

= µT0 Z0µ0

+γ2
K−1∑
k=0

∫ t(k+1)−

tk+

(
βw(t) + γ−2D̃(t)TZ(t)µ(t)

)T
(
βw(t) + γ−2D̃(t)TZ(t)µ(t)

)
dt

+γ2

∫ tf

tK+

(
βw(t) + γ−2D̃(t)TZ(t)µ(t)

)T
(
βw(t) + γ−2D̃(t)TZ(t)µ(t)

)
dt

+γ2
K∑
k=0

[βw(tk) + Γ(tk)]T(
γ2I + D̃d(tk)TZ(t+k )D̃d(tk)

)
[βw(tk) + Γ(tk)]

+
K−1∑
k=0

(∫ t(k+1)−

tk+

dvn(t)TZ(t)µ(t)

)

+
K−1∑
k=0

(∫ t(k+1)−

tk+

µ(t)TZ(t)dvn(t)

)

+
K−1∑
k=0

(∫ t(k+1)−

tk+

tr(Z(t)R1(t))dt

)

+
∫ tf

tK+

dvn(t)TZ(t)µ(t) +
∫ tf

tK+

µ(t)TZ(t)dvn(t)

+
∫ tf

tK+

tr(Z(t)R1(t))dt+
K∑
k=0

(
µ(t−k )T Ãd(tk)T

Z(t+k )v̂(tk)
)

+
K∑
k=0

(
βw(tk)T D̃d(tk)TZ(t+k )v̂(tk)

)
+

K∑
k=0

(
v̂(tk)TZ(t+k )Ãd(tk)µ(t−k )

)
+

K∑
k=0

(
v̂(tk)TZ(t+k )D̃d(tk)βw(tk)

+v̂(tk)TZ(t+k )v̂(tk)
)
.

Using Lemma 5, the following theorem provides a solution
to the stochastic worst case performance problem for the
closed-loop system.
Theorem 6. Assume that the Riccati equation (28)-(29)
has a solution on [0, tf ]. Assume as well that there are K
jumps in the interval [0, tf ].Then, the minimal value of the

criterion function in the stochastic worst case performance
problem (21), (33) satisfies

min
βw∈W

J̌γ(K, βw) ≥ mTZ(0)m+ α

where

α= tr(Z(0)R0) +
K−1∑
k=0

∫ t(k+1)−

tk+

tr(R1(t)Z(t))dt

+
∫ tf

tK+

tr(R1(t)Z(t))dt+
K∑
k=0

tr(Z(t+k )Rv̂(tk))

+γ2
K∑
k=0

E
(
ṽ(tk)T ṽ(tk)

)
. (34)

Here Z(t) is the solution of the matrix Riccati equation
(28)-(29).

6. A RELATIONSHIP BETWEEN J̌γ(K, βW ) AND
J̃γ(K, βW )

The following theorem shows the relationship between the
optimum values of the stochastic cost function J̌γ(K, βw)
and the deterministic cost function J̃γ(K, βw) where m ∈
R(n+nc) defines the initial condition of the deterministic
system (26) and the mean of the initial condition in the
stochastic system (21). Let

V̌ (m) = inf
βw∈W

J̌γ(K, βw) (35)

and
Ṽ (m) = inf

βw∈W
J̃γ(K, βw). (36)

Theorem 7. Given any m ∈ R(n+nc), the infimum V̌ (m) in
the stochastic case is related to the corresponding infimum
Ṽ (m) in the deterministic case by the following equation

V̌ (m) = Ṽ (m) + α (37)

where α is given by (34).

7. A USEFUL RESULT

Theorem 8. Assume D̃(t), L̃(t) and R̃(t) are continuous
in t. Then the worst case performance problem (21), (33)
and (35) has a finite infimum for any m ∈ R(n+nc) if and
only if the RDE (28)-(29) has a solution Z(.) on [0, tf ].

8. EQUIVALENCE BETWEEN THE
DETERMINISTIC WORST CASE PERFORMANCE
PROBLEM AND THE STOCHASTIC WORST CASE

PERFORMANCE PROBLEM

Theorem 9. For γ sufficiently large, the RDE (28)-(29) has
a solution on [0, tf ].

As a consequence of Theorem 9, the following set is
nonempty:

Γ̂ = {γ̂ > 0|the RDE (28)-(29) has a solution on [0, tf ]

∀γ ≥ γ̃} .

Define γ̂ as γ̂ = inf
{
γ : γ ∈ Γ̂

}
.
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Theorem 10. For γ = γ̂, the RDE (28)-(29) has a finite
escape time.
Theorem 11. If the RDE (28)-(29) admits a solution
defined over [0, tf ] then inf

βw∈W
J̌γ(K, βw) > −∞ and

inf
βw∈W

J̃γ(K, βw) > −∞.

9. EQUIVALENCE BETWEEN THE QUANTUM
WORST CASE PERFORMANCE PROBLEM AND

THE DETERMINISTIC WORST CASE
PERFORMANCE PROBLEM

Let Jγ(K, βw) = Jγ(K, β̂w)− γ2x̌T0 Q0x̌0.
Theorem 12. (a) In the deterministic case, J̃γ(K, βw) has

a finite infimum in βw for all m ∈ R(n+nc) if and only
only if γ > γ̂.

(b) In the stochastic case, J̌γ(K, βw) has a finite infimum
in βw for all m ∈ R(n+nc) if and only if γ > γ̂.

(c) J̌γ(K, βw) has a finite infimum in βw for all m ∈
R(n+nc) if and only if J̃γ(K, βw) has a finite infimum
in βw for all m ∈ R(n+nc).

(d) In the quantum case, Jγ(K, βw) has a finite infimum
in βw for all m ∈ R(n+nc) if and only if J̃γ(K, βw) has
a finite infimum in βw for all m ∈ R(n+nc).

10. SOLUTION TO THE FINITE HORIZON H∞

CONTROL PROBLEM FOR SAMPLED-DATA
MEASUREMENTS SYSTEMS

In order to solve the finite horizon quantum H∞ problem
for sampled-data measurements systems, we now introduce
the GRDE (Generalized Riccati Differential Equation) in
Σ(t):

Σ̇(t) =A(t)Σ(t) + Σ(t)A(t)T +

γ−2Σ(t)Q(t)Σ(t) +D(t)D(t)T (38)

Σ(t+k ) = Σ(t−k )[I + C(tk)T Ñ(tk)−1C(tk)Σ(t−k ]−1 (39)

where Ñ(t) = N(t)N(t)T and Σ(0) = Q−1
0 . Here, Q0 is a

positive definite matrix. We also introduce the GRDE in
Z(t):

Ż(t) + Z(t)A(t) +A(t)TZ(t)−
Z(t)

(
B(t)B(t)T − γ−2D(t)D(t)T

)
Z(t) +Q(t) = 0,

Z(tf ) = Qf . (40)
In addition, we introduce the following condition

∀t ∈ [0, tf ], ρ(Σ(t)Z(t)) < γ2 (41)
where ρ(.) denotes the spectral radius.

Let

˙̌ξ(t) =
(
A+ γ−2Σ(t)Q(t)

)
ξ̌(t) +B(t)β̂u1(t), (42)

ξ̌(0) = 0;

ξ̌(t+k ) = ξ̌(t−k ) + Σ(t+k )C(tk)T Ñ(tk)−1

(y(tk)− C(tk)ξ̌(t−k )) (43)
where

β̂u1(t) = −B(tT )Z(t)(I − γ−2Σ(t)Z(t))−1ξ̌(t). (44)
To keep matters simple, we will assume in the subsequent
development that D(t)N(t)T = 0.

Theorem 13. Consider the disturbance attenuation prob-
lem Pγ with continuous imperfect system variable mea-
surement y(t) as given in (4), and let the corresponding
optimum attenuation level be γ∗q .

(i) For a given γ > 0, if the Riccati differential equations
(38)- (39) and (40) have solutions over [0, tf ], and if
the condition (41) is satisfied, then necessarily γ ≥ γ∗q .

(ii) For each such γ, there exists an optimal controller,
given by (42) (43) and (44).

(iii) If either (38)-(39) or (40) has a conjugate point in
[0, tf ], or if (41) fails to hold, then γ ≤ γ∗q ; i.e., for any
smaller γ (and possibly for the one considered) the
supremum in problem Pγ is infinite for any admissible
controller.

11. CONCLUSION

This paper shows that solving the finite horizon H∞

control problem for sampled-data measurements systems
is equivalent to solving a corresponding deterministic
continuous-time problem with imperfect state measure-
ments. From this, the solution to the finite horizon quan-
tum H∞ control problem for sampled-data measurements
systems can be obtained in terms of a pair of GRDEs.
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