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Abstract: The concept of ”graceful” transition through a Hopf bifurcation for a system of
nonlinear ordinary differential equations (ODEs) is introduced. The key idea is to control the
system such that its state space trajectory is close to the branch of equilibrium solutions or to the
branch of periodic solutions associated with a Hopf bifurcation. This kind of evolution is called
”graceful” and can be generated by formulating and solving optimization control problems.
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1. INTRODUCTION

The dynamics of nonlinear systems is rich in complicated
phenomena that are usually not desired in engineering
applications. Vibrations -periodic or not- have to be ap-
propriately managed through control design. Common
examples of practical applications include aircraft flutter
control, surge and stall control of compressors, and control
of power systems. One problem of particular interest is
to adequately control the transition between qualitatively
different operating conditions, because it is during these
transitions that the most dangerous vibration related phe-
nomena occur. In this paper we address one such situation
and show how one can design control laws which guarantee
the graceful transition of a nonlinear autonomous system
of ODEs between an equilibrium operating condition and
an oscillatory (periodic) one.

In particular, it is assumed that the equilibrium solution
belongs to a branch of equilibria which loses its stability,
as the control parameter is varied, through a Hopf bifur-
cation. Using feedback to stabilize a system with a Hopf
bifurcation has been studied by several authors (Abed
[1986], Berns [1998], Chen [1998], Yu [2004]). If the equi-
librium state is linearly controllable, the bifurcation can
be stabilized or shifted by linear feedback. However, non-
linear feedback is needed for systems with uncontrollable
linearizations. Behtash and Sastry (see Bentah [1988]), Gu
et al. (Gu [1999]), Hamzi et al. (Hamzi [2000]) studied
bifurcations of uncontrollable systems. Yuen and Bau (see
Yuen [2004]) demonstrated theoretically and experimen-
tally the use of a nonlinear feedback controller in a thermal
convection loop that renders a subcritical Hopf bifurcation
supercritical.

Delayed feedback control (Just [1998], Pyragas [1998])
can be used to stabilize unstable periodic orbits. The
advantage of the method is that neither the exact form of
the periodic orbit nor knowledge of the system of equations
is required. These algorithms are real-time implementable,
as they only make use of a control signal obtained from the

difference between the current state of the system and the
state of the system delayed by one period of the unstable
periodic orbit.

Our focus here is on controlling the transition of finite di-
mensional systems of ODEs through supercritical Hopf bi-
furcations. Briefly, this bifurcation leads to the emergence
of a branch of asymptotically stable limit cycles when the
branch of equilibria loses its stability. The main challenge,
from a practical applications perspective, consists in con-
trolling the evolution of the system between qualitatively
different solutions of the system such that this evolution
is ”graceful”. In this context, graceful evolution means
that the trajectory of the system is close either to the
equilibrium solution branch or to the periodic one.

The solution proposed herein, and illustrated via a simple
example, is based on the formulation of optimization
problems which guarantee ”graceful” evolution as defined
in the above and refined in the body of the paper.

2. PROBLEM FORMULATION

2.1 The System

Consider a nonlinear autonomous system of ODEs:

ẋ =
dx

dt
= f(x, u), x ∈ X ⊂ Rn, λ ∈ Λ ⊂ R, t ∈ T ⊂ R (1)

where f(x, λ) is a function of class Ck in X×Λ, k > 0, x is
the state vector, λ is the control, t is the time (independent
variable), whereas X, Λ, and T are open sets.

2.2 Equilibrium and Periodic Solutions; Hopf Bifurcation

The equilibrium solutions of (1) are defined by

0 = f(x, λ). (2)

Let (xi, λi) be a solution pair of (2) for which the eigen-
values of

Ji =
∂f

∂x
(xi, λi) (3)
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belong to the open left hand semi-plane of the complex
plane, i.e. xi is an exponentially stable equilibrium. Then,
according to the implicit function theorem, there exists
a branch of equilibrium solutions passing through (xi, λi)
and which can be expressed as an unique function, x =
g(λ), of class Ck on an open connected set (i.e. interval),
Λe ∈ Λ, containing λi:

x = g(λ), xi = g(λi), f(g(λ), λ) = 0, g : Λe → X. (4)

Assume that the stability of this branch is lost through a
Hopf bifurcation, which means that, as λ varies it reaches
a point, λH , at which a pair of eigenvalues of the Jacobian
of f(x, λ) evaluated along this branch,

J(λ) =
∂f

∂x
(g(λ), λ), (5)

crosses the imaginary axis in a transversal manner. If the
pair of eigenvalues of interest is γ(λ)± jω(λ), this means:

ω(λH) 6= 0,
∂γ

∂λ
(λH) 6= 0. (6)

It is also assumed that the Hopf bifurcation is supercritical,
which means that the bifurcation is one sided, i.e., in the
neighborhood of the Hopf bifurcation point, the branch of
periodic solutions exists only for λ > λH . The supercritical
Hopf bifurcation leads to the emergence of a branch of
asymptotically stable periodic solutions, while the stability
of the equilibrium branch is lost.

2.3 Graceful Evolution

In this paper we are interested in controlling the transition
between an equilibrium xi which belongs to the equilib-
rium branch and a periodic solution, xf (s),

xf (s) = xf (s+ τ), (7)

which belongs to the branch of periodic solutions (here s is
just a notation for the parameter used to parameterize the
periodic solution while τ > 0 is the period of xf (s)). Let
λf > λH be the value of the control for which solution
xf (s) is obtained. Additionally, it is required that the
transition is conducted in a ”graceful” manner, which is
characterized as follows. Firstly, as long as the control
parameter is in the region corresponding to the branch
of stable equilibrium solutions the system’s trajectory is
sufficiently close to this branch, such that if the control
is frozen the system settles down to the corresponding
asymptotically stable equilibrium. Secondly, when the
control parameter passes into the region of the branch of
asymptotically stable periodic solutions (i.e. λ > λH) the
system’s trajectory is sufficiently close to this branch such
that, if the control is frozen the system’s trajectory settles
down to the corresponding asymptotically stable periodic
solution. In other words, the state of the system belongs
either to the basin of attraction of an asymptotically stable
equilibrium or to the one of an asymptotically periodic
solution, depending on the current value of the control.
(The idea can be slightly enlarged by not requiring that
xi is an equilibrium but an initial condition close to the
branch of equilibrium solutions).

There are several practical advantages associated with
graceful evolution of which the most important is that this

is a fault tollerant controlled transition. If failure in the
actuating mechanisms occur (e.g. due to power loss) this
will not lead to catastrophic behavior: in the region of the
asymptotically stable equilibrium branch the system will
settle down to a stable equilibrium, whereas in the region
of the asymptotically stable periodic solutions branch it
will settle down to a stable limit cycle. Thus, in any case,
a predicted, stable behaviour is achieved. Other practical
advantages are described in detail in Sultan [2007] where
controlled transition (though not graceful) through a Hopf
bifurcation has been numerically explored.

3. OPTIMIZATION FOR CONTROL DESIGN

To guarantee graceful evolution, for each of the two regions
of interest (i.e. of the branch of equilibria and of the
branch of periodic solutions, respectively) optimization
control problems can be formulated. Controling the system
such that its state space trajectory is arbitrarily close
to a branch of equilibrium solutions has been previously
addressed so in the following we shall only summarize
one possible procedure based on the equilibrium branch
parameterization.

3.1 Control in the Equilibrium Solutions Branch Region

Let λe(s), xe(s) = g(λe(s)) be a parameterization of the
equilibrium branch and let the controls vary along this
curve i.e. λ(t) = λe(t), t ∈ Te, where Te is a time interval
which is used to parameterize the curve. Let ti denote the
starting point of this interval. The length of Te depends
on several factors, for example the length of the segment
of the curve used in this control method and the speed
with which the control varies along this curve, as it will be
discussed later. Clearly we should have λ(ti) = λe(ti) = λi.
Let the corresponding solution to the initial value problem
be labeled xd(t) and called the deployment path, i.e.,

ẋd = f(xd, λe(t)), xd(ti) = xi. (8)

An optimization problem to guarantee that xd(t) is close
to the equilibrium branch can be formulated as

min
λe(t)

I subject to (8) and

‖ xd(t) − xe(t) ‖≤ η,∀t ∈ Te (9)

where I is a performance index to be minimized (e.g.
deployment time, which is the length of Te, energy, etc.),
‖‖ represents the Euclidean norm, and η > 0 a pre-
scribed bound. Remark that now the system in (8) is non-
autonomous because λe(t) is time varying. Additional in-
equality constraints, such as quasi-stationarity constraints,
i.e. ‖ ẋd(t) ‖≤ δ, where δ is a small positive scalar, or
collision avoidance constraints can be considered, or the
index I can be ignored altogether to simplify the problem
(see Sultan [2007] for a detailed discussion of this prob-
lem). Khalil’s results using Lyapunov functions on slowly
varying systems (see Khalil [2002]) easily lead to a set of
conditions that guarantee arbitrarily small η, of which the
most important conditions are that f(x, λ) is sufficiently
smooth, the equilibrium branch is exponentially stable
uniformly in λ for the frozen system, and the controls
variation is sufficiently smooth and slow (this was the idea
pursued, for example, in Sultan [2007]). In Sultan [2008]
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conditions for arbitrarily small η as well as arbitrarily
small δ were sought after, avoiding Lyapunov functions in
order to reduce conservatism. Using only basic concepts
from topology and mathematical analysis less stringent
conditions were proved (e.g. the controls can be piecewise
constant and not smooth, exponential stability can be
replaced by asymptotical stability, etc.). In these proofs
enforcing the controls to vary only along the equilibrium
curve is crucial whereas the results from slowly varying
systems theory (Khalil [2002]) are not limited to this kind
of parameterization.

3.2 Control in the Periodic Solutions Branch Region

In the region of periodic solutions branch the problem is
much more complex. Let λa denote a value of the control
in this region, λH < λa < λf . For graceful evolution
the control law must be computed such that for any λa

there exists a point on the corresponding periodic solution
which is sufficiently close to the system’s trajectory. In
a controlled transition λ varies in time, i.e. λ = λ(t)
and when t reaches tf then λ(t) reaches λf and the
control is fixed at λf . If the corresponding point on the
system’s trajectory belongs to the basin of attraction of
the corresponding periodic solution, xf (s), the system’s
trajectory will settle down, asymptotically in time to xf (s)
so the desired, final periodic solution will be achieved.

This is definitely a much more difficult problem than
maintaining the system’s trajectory close to a branch
of equilibrium solutions and needs to be theoretically
explored in future research to derive conditions for the
system’s trajectory to be sufficiently/arbitrarily close to
the periodic solutions branch.

In the following, to illustrate the concept and clarify ideas,
we shall use a simple example of a system exhibiting a
supercritical Hopf bifurcation at λH = 0, namely

ẋ1 = x1λ− x2 − x3
1 − x1x

2
2 (10)

ẋ2 = x1 + x2λ− x2x
2
1 − x3

2. (11)

Clearly x1 = x2 = 0 is a branch of exponentially stable
equilibria for λ < 0. At λ = λH = 0 this branch losses its
stability in a transverse manner and a branch of asymp-
totically stable periodic solutions emerges for λ > λH . For
the analysis of these periodic solutions transformation to
polar coordinates is recommended, yielding (after obvious
simplification through R 6= 0),

Ṙ = R(λ−R2) (12)

ϕ̇ = 1 (13)

which will be used to illustrate our methodology. Note
that, for fixed λ, the initial condition problem (i.e. given
R0 for t = t0) for (12) can be solved yielding

R2 = λ
1

1 − R2

0
−λ

R2

0

e−2λ(t−t0)
. (14)

From now on the periodic solutions (obtained for λ >
λH = 0) are of interest. The amplitude of the limit cycle

generated through the Hopf bifurcation scales as
√
λ. Since

the equations are uncoupled we will focus our attention on
the Ṙ = R(λ−R2) equation with initial condition

R(0) = R0 << 1. (15)

A control law λ(t) is sought such that the evolution in this
region is graceful. Let R(t) be the solution to this initial
condition problem (note that now, unlike for (14), λ is not
a fixed number but a time varying function). For graceful
evolution we want to find λ(t) to solve

min
λ(t)

sup
t∈[0 tf ]

‖R(t) −
√

λ(t)‖

subject to

λ(0) = 0, λ(tf ) = λf =
√
A. (16)

where A is the amplitude of the desired, final periodic
solution (corresponding to λ(tf )).

Introducing the nondimensional scales

t̃ = t/tf , r = R/A (17)

and the auxiliary function κ
(

t̃
)

=

√

λ(t̃)
A

, the above
problem is rewritten as

min
κ(t̃)

sup
t̃∈[0 1]

∥

∥r
(

t̃
)

− κ
(

t̃
)
∥

∥ (18)

subject to

r′ = A2tfr
(

κ2 − r2
)

, r (0) =
R0

A
(19)

κ (0) = 0, κ (1) = 1, (20)

Here ′ denotes differentiation with respect to t̃.

In the following we consider A = 1, so λf =
√
A = 1.

The simplest function for κ
(

t̃
)

which verifies the boundary
conditions and one might be tempted to try out is the
linear one,

κ
(

t̃
)

= t̃. (21)

Fig. 1 shows the resulting ”Error Function”, defined as
κ

(

t̃
)

−r(t̃), for r0 = 0.01 and tf = 50, 150, 250, 350, 450, 550,

in terms of the ”Normalized Time”, t̃. Fig. 2 shows the
system’s trajectory together with the Hopf surface (i.e.
the surface generated by the limit cycles in the x, y, λ)
space for tf = 50. It is clear that the evolution is not
graceful, especially for small tf and small λ, when the
error is large and the trajectory is rather far from the Hopf
surface (2). Lengthening the time of deployment, tf (i.e.
using slower time varying control), somewhat alleviates
the large error but not as dramatically as one would be
tempted to believe. This was also remarked in Sultan
[2007] using a different system exhibiting Hopf bifurcation.
It has actually been ascertained previously Holden [1993]
that the transition from oscillatory states to steady states
through a supercritical Hopf bifurcation (i.e. the reverse
of the process considered here) is also delayed even if the
rate of change of the control is extremelly small. In order
to further reduce the error a more complex control law is
designed next.
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Fig. 1. Error function time variation for linear control
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Fig. 2. Pictorial representation of the Hopf surface and
system’s trajectory for tf = 50 and linear control

4. POLYNOMIAL APPROXIMATION OF THE
CONTROLS

The simplest class of functions to satisfy the boundary
conditions for κ

(

t̃
)

are polynomials. Admissible polyno-

mials κ
(

t̃
)

consist of two parts, the base polynomial and
the perturbing polynomial:

κ
(

t̃
)

= κ0(t̃) + ∆κ(t̃). (22)

The base polynomial κ0(t̃) satisfies the boundary con-
ditions, while the perturbing polynomial ∆κ(t̃) and its
derivatives up to the required order vanish on the bound-

aries (higher order smoothness might be required to reduce
mode excitation).

The perturbing polynomial is selected as a weighted sum
of polynomials whose values and necessary derivatives
vanish at both ends of the time interval and therefore
do not affect the boundary conditions. These are the so-
called trim-constrained splines. The perturbing polynomial
∆κ(t̃) is herein written as a product of two parts: one
which constrains the desired boundary conditions of ∆κ(t̃)
to be zero, and a weighted sum of basis polynomials

∆κ(t̃) = Q(t̃)
N

∑

i=1

aiψi(t̃). (23)

Here Q(t̃) is a polynomial, {ψi(t̃)} is a set of basis
polynomials, and ai are the weighting coefficients.

To ensure that the boundary conditions of κ0(t̃) are not
changed with the addition of ∆κ(t̃), Q(t̃) is selected as

Q(t̃) = t̃α(1 − t̃)β , (24)

where α > 0 , β > 0 are natural numbers. Since the first
α − 1 and β − 1 derivatives of Q(t̃) are zero at the initial
and final times (0 and 1) the same will be true for any
polynomial resulting from the multiplication of Q(t̃) and
another polynomial.

With this form for Q(t̃), the set of functions {ψi(t̃)} can be
chosen to be any polynomial basis set. The combination of
each ψi(t̃) with Q(t̃) forms a new set of trim-constrained
splines, {φi(t̃)},

φi(t̃) = Q(t̃)ψi(t̃). (25)

For the boundary conditions in (20) the simplest base
polynomial is, clearly, κ0(t̃) = t̃ and the corresponding
simplest Q(t̃) is

Q(t̃) = t̃(1 − t̃). (26)

Of course if higher order derivatives are desired zero at the
end points, higher order polynomials should be considered.

Then the function

κ(t̃) = t̃+

N
∑

i=1

aiφi(t̃) (27)

with φi(t̃) given by (25) matches the specified boundary
conditions. The next step is to determine the coefficients
ai.

Once the number of basis functions N has been selected
the previous infinite dimensional, functional optimization
problem (18)-(20), reduces to a finite dimensional, param-
eter optimization problem over ai for which many reliable
solution algorithms exist. While tf can represent an opti-
mization parameter also, here it has been set to tf = 550.
In the following we provide the results for a simple example
in which {ψi(t̃)} = {1, t̃, t̃2, ...}, N = 3, and with the
additional constraints that ai ∈ [−2, 2]. The minimum
error is achieved by the choice a0 = −0.4, a1 = a2 = −1.6
and it is substantially reduced compared to the linear
control case (see Fig. (3) which shows the variation of
the error with λ). Fig. (4) shows the corresponding polar
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radius, R, for this optimal trajectory and the radius of
the limit cycles generated via the Hopf bifurcation as a
function of λ. Clearly this optimal trajectory is very close
to the branch of periodic solutions of interest.
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Fig. 3. Error function variation with λ for optimal control
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CONCLUSIONS

The main motivation for conducting the passage of a
nonlinear system of ODEs through a Hopf bifurcation in
a graceful manner is the fault tolerance of the transition
process with respect to unexpected events (e.g. power
loss) which might result in freezing controls. If such a
situation occurs, due to the close proximity of the system’s
trajectory to asymptotically stable equilibria or periodic
solutions, the system settles down to predictable, asymp-
totically stable behaviour (equilibrium or limit cycle de-
pending on the frozen control value). The idea is further
explored and illustrated, with a focus on the branch of
periodic solutions, using a very simple system exhibiting
Hopf bifurcation. An optimization control problem is for-
mulated and solved to ensure proximity of the system’s
trajectory to the branch of periodic solutions.
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