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Abstract: The optimization problem for a 6DOF satellite equipped with constant specific impulse 
thrusters is addressed in terms of fuel consumption. The vehicle is assumed to move in Low Earth Orbit: 
the Keplerian motion around the Earth is perturbed both by the molecular air impingement (aerodynamic 
drag) and by the gravitational field disturbance known as J2 effect. Further results are achieved by 
simplifying the environmental model and by assuming that the spacecraft is modeled as a point mass. 
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1. INTRODUCTION 

The analytical study herein presented addresses the optimal 
path planning problem for 6DOF spacecraft moving in Low 
Earth Orbit (LEO) between fixed endpoints over an assigned 
time interval [ ]1 2,t t ⊂  in terms of fuel consumption. 

The nonlinear methods available to tackle the trajectory 
optimization problem range from energy matching (Yang, 
Yang, Kapila, & de Queiroz 2000) to purely geometrical 
approaches (Faller, Bender, Hall, Hils, & Vincent, 1984), as 
well as from classical optimal control theory (Ross, 2006) to 
random search methods (Sarma, 1990) and stochastic 
optimization (Engelhardt, & Chien, 2000). The case of 
vehicles modelled as 6DOF rigid bodies in semi-realistic 
environmental conditions commonly need purely numerical 
approaches to be tackled. These methods, which are often 
reliable, are plagued by two main issues: singularities, which 
characterize the fuel optimization problem (Anselmo, & al., 
2005), and difficulty to prove whether results satisfy 
necessary and sufficient conditions needed for the 
optimization of the assigned cost index (Sultan, Seereram, & 
Mehra, 2007). Fundamental analytical results for spacecraft 
modelled as 3DOF point masses have been achieved by the 
primer vector theory (PVT) (Lawden, 1963) under the 
assumption that environmental forces are function of the 
spacecraft position only. The present work extends the 
fundamental results of PVT to 6DOF by assuming that the 
external forces are function of the spacecraft position and 
velocity. Specifically, spacecraft are subject to Keplerian 
forces, aerodynamic drag (i.e. molecular air impingement), 
and the gravitational field perturbation known as J2 effect. 

The fuel consumption is herein optimized by applying 
Pontryagin’s Principle (PP) in the formulation of Theorem 8 
(Pontryagin, Boltyasnskii, Gamkrelidze, & Mishchenko, 
1963) with assigned initial and final states over a fixed time 
interval. Originally PVT was developed by casting the 
optimization problem as a problem of Mayer (Bliss, 1968) 

but PP is more advantageous as it allows to formally assume 
that the control vector ( ) [ ] 6

1 2: ,t t⋅ ⊂ → Γ ⊂u  is an 
integrable function and Γ  a closed set. The vector u 
represents the translational and the rotational acceleration 
provided by the Attitude and Orbit Control Subsystem 
(AOCS). 

To model the fuel consumption of spacecraft equipped with 
constant specific impulse (CSI) thrusters for translational and 
rotational control, the fuel consumption is modelled as  

( ) ( )
2

1

2
: .

t

F
t

J t dt⋅ =⎡ ⎤⎣ ⎦ ∫u u  (1) 

Theoretical results achieved herein are also verified by 
numerical simulations. 

2. PHYSICAL BACKGROUND 

The spacecraft herein discussed is schematized as 6DOF rigid 
body of constant mass m and matrix of inertia Iin. Fixed an 
inertial reference frame, define the spacecraft position vector ( ) [ ] 3

1 2: ,t t⋅ →r , the velocity vector ( ) ( ):t d t dt=v r , and 

the acceleration vector ( ) ( ):t d t dt=a v . Furthermore, let 

( ) [ ] 3
1 2: ,t t⋅ →σ  define the spacecraft attitude in modified 

Rodrigues parameters and let ( )⋅ω  be the angular velocity 
vector in a principal body reference frame. The superposition 
principle holds and, under Keplerian hypothesis, the vehicle 
moves in a radial gravitational field generated by the Earth. 
Assuming that the inertial reference frame coincides with the 
Earth centric reference frame, the spacecraft experiences both 
a gravitational acceleration ( ) 3

2
:g μ= −a r r r , where μ  is 

the gravitational constant, and a perturbing acceleration 

( ) ( )( )( )
2

32
2 2: 3cos 1

2J
J Rμ

ϕ∂ ⎡ ⎤= − −⎣ ⎦∂
a r r r

r
 due to the zonal 
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coefficient J2, where ( ) ( ]3: ,ϕ π π⋅ → − ⊂  is the 
colatittude of its argument. Furthermore aerodynamic 
perturbing accelerations acting on the spacecraft are modelled 

as ( ) 2

2
ˆ:a Dk= −a v v v , with 

2
D

D
SC

k
m

ρ
= , ρ the molecular air 

density, S the reference area, CD the drag coefficient, and v̂  
the velocity unit vector. Let cpr  be the position of the centre 
of pressure of the spacecraft in a body reference frame. Then 

( ) ( )2

2
ˆ:a D cpmk= ∧M v v v r  is the aerodynamic disturbance 

moment (Larson, & Wertz, 2005). Here the notation ∧  
denotes the cross product between vectors. 

Let 1 :
TT T⎡ ⎤= ⎣ ⎦x r v , 2 :

TT T⎡ ⎤= ⎣ ⎦x σ ω , and define 1 2:
TT T⎡ ⎤= ⎣ ⎦x x x  

as the state vector. The dynamic equations are therefore  

( ) ( ) ( )2'

1

0 0
0

0 0
0

g J a
s u

rod

in in a

I
R

II Iω− ×

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ +⎢ ⎥ ⎢ ⎥= + = +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥− + ⎣ ⎦⎣ ⎦

v
a a a

x u f x f u
σ ω

ω Ω

 (2) 

where 0 and I are the zero and the identity matrices in 3  
respectively, rodR  and ω×  are matrices provided in Appendix 

A, and 1:a in aI −=Ω M . The boundary conditions (BC) for (2) 
are ( )i it =r r , ( )i it =v v , ( )i it =σ σ , and ( )i it =ω ω , 

{ }1, 2i ∈ , where the vectors ri, vi, σi, and ωi are given. 

Assume that ( ) ( ) ( )1 2:
TT T⎡ ⎤⋅ = ⋅ ⋅⎣ ⎦u u u ,  where 1u  and 2u  are 

the translational and the rotational control vectors, and 
( ) [ ] 3

1 2: ,i it t⋅ ⊂ → Γ ⊂u , { }1, 2i ∈ . Given the non-
negative real constants 1ρ , 2ρ , 3ρ , 4ρ , we define the sets 

{ } { }1 1 1 1 2 32
: : ρ ρΓ = ≤ ≤ ∪u u 0 , { } { }2 2 3 2 4 32

: : ρ ρΓ = ≤ ≤ ∪u u 0 , 

where 30  is the zero vector. 

The controllability of the system is always assumed. Finally, 
to avoid singularities, impose that 2 0≠v  and 2 0≠ω .  

In the apex (’) denotes the first derivative with respect to the 
independent variable, t. 

3. FUEL CONSUMPTION OPTIMIZATION 

Lemma 1: Optimal solutions u for (1) subject to (2) satisfy 

( ) ( )

( ) ( ) ( ) ( )

'

2 4 0 2

0 0 0

0
0 0 0

0 0 T
rod
TT T

I
t t

R

t t t tλ

⎧ +⎡ ⎤
⎪⎢ ⎥
⎪⎢ ⎥ = −⎪⎢ ⎥⎪ Θ
⎨⎢ ⎥
⎪⎢ ⎥⎣ ⎦⎪
⎪⎡ ⎤ = −⎪⎣ ⎦⎩

λ λ

λ λ u u

G J

Ð Ð

M
 (3) 

with arbitrary BC on ( )itλ , { }1, 2i ∈ . Furthermore the 
problem is normal, i.e. 0 0λ > . The costates are 

( ) ( ) ( ) ( ) ( )1 2 3 4:
TT T T T⎡ ⎤⋅ = ⋅ ⋅ ⋅ ⋅⎣ ⎦λ λ λ λ λ  and 0λ . 

The matrices Θ , G , J , Ð , Ð , M , and their eigenpairs, 
if needed, are in Appendix A. 

Proof: The Hamiltonian function is 

( ) '
0 2

, .TH λ= +x u u λ x  (4) 

By imposing that ( )'TH t∂ ∂ = −x λ  and that 6
TH∂ ∂ =u 0 , (3) 

is achieved. Assume 0 0λ = , then from (3) it follows that 

6≡λ 0 , which is in contradiction with PP, hence the problem 
is normal and therefore from PP it follows that 0 0λ >  □. 

With negligible lack of rigour, because of the normality of 
the problem, it is hereafter assumed that 0 1λ = . 

The invertible symmetric matrix G  accounts for the 
gravitational acceleration, J  for the gravitational perturbing 
acceleration, Ð , symmetric negative definite, and Ð  for the 
aerodynamic perturbing effects, and finally M  for the 
attitude dynamics. It is worth to stress that, if iI  and iω  are 
the i-th moment of inertia in the principal body reference 
frame and the i-th component of the angular velocity vector 
respectively, M  is invertible for i jω ω≠  and i jI I≠ , 

( ) { }2, 1, 2,3i j ∈ , i j≠ . 

Lemma 2: Candidate optimal u’s for (1) subject to (2) are: 

Table 1. 1 2u  and 2 2u  as functions of 2 2λ  and 4 2λ  

 2 2λ  4 2λ  

> 1 1 22 ρ=u  2 42 ρ=u  

= 1 
Any 1 2u  so that 

1 2 12 ∈ Γu λ   

Any 2 2u  so that 

2 4 22 ∈Γu λ  

< 1 1 2 0=u  2 2 0=u  

 
Proof: According to PP, one needs to minimize (4) with 
respect to u. Note that ( )2 1 4 22

T T T
sH = + + +u λ u λ u λ f x . 

The minimum for 2 1
Tλ u  is 2 12 2− λ u  and is achieved 

when the two vectors are collinear. Similarly 
2

4 2min T =
u

λ u  

4 22 2= − λ u . Because 1 22 2 2≤ +u u u , one can write 

( ) ( ) ( )min 2 1 4 22 2 2 21 1 T
sH ≤ − + − +λ u λ u λ f x . Thus, if 

2 2 1>λ , then minH  could be minimized for 1 22 ρ=u ; if 

2 2 1<λ , then minH  could be minimized for 1 2 0=u ; 
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finally if 2 2 1=λ , then 1 2u  can assume any value such 

that 1 1∈ Γu . Table 1 is completed by applying the same 

reasoning to 4 2λ  □. 

It is worth to note that Lemma 2 is proven without 
accounting for any of the conditions of Lemma 1. Both these 
lemmae lead to the following relevant result: 

Theorem 1: Candidate optimal u for (1) subject to (2) are 
such that 

Table 2. 1 2u  and 2 2u  as functions of 2 2λ  

If Then 

2 2 1=λ   
Any 1 2u  so that 

1 2 12 ∈ Γu λ ; 2 2 0=u  

2 2 0=λ  
Any 2 2u  so that 

2 4 22 ∈Γu λ ; 1 2 0=u  

2 20 1< <λ  1 22 2 0= =u u  

 
Proof: According to PP both 2λ  and 4λ  are real vector 

functions. Hence from Lemma 1 it follows that [ ]2 2 0,1∈λ  

and 2 2
4 22 21= −λ λ . As a consequence, the first row of 

Table 1 does not hold and Table 2 is obtained. 

From the second of (3) it follows that 1 2 2= −u λ u  and 

2 4 2= −u λ u . By substituting these values in (4), the 

Hamiltonian evaluated along a candidate optimal trajectory is  
( )T

sH = λ f x . It is relevant to notice that this value is 

independent of u. By substituting in (4) the control laws 1u  

and 2u  given in Table 2, it yields that ( )T
sH = λ f x . Hence 

the control law given in Table 2 is candidate optimal 
according to PP □. 

Remark 1: The vectors 2−λ  and 4−λ  extend the concept of 
primer vector and therefore they are herein defined as the 
translational and the rotational primer vectors respectively. 
As a matter of fact, if the spacecraft is modelled as a point 
mass with 3DOF, then 2−λ  reduces to the primer vector 
introduced in (Lawden, 1963). Moreover, according to PP, λ  
is continuous and from (3) it follows that also 'λ  is 
continuous, hence ( )1

1 2,C t t∈λ . 

It is relevant to notice that one major advantage of applying 
the control law of Table 2 is its practicality: most thrusters 
onboard some spacecraft provide “switching controls”, which 
provide constant control forces over finite time intervals. 

Theorem 2:: If 1 22 2 0= =u u , then there exist a constant 

c ∈  such that 'T c=λ x  on ( )1 2,t t . 

Proof: According to the Weierstrass – Erdmann condition, on 

an optimal trajectory it holds that dH H
dt t

∂
=

∂
, for ( )1 2,t t t∈ . 

It is herein assumed that H does not explicitly depend on t, 

hence 0H
t

∂
=

∂
, and there exists a first integral H const=  □. 

Theorem 3: Assume that the spacecraft is equipped with 
impulsive thrusters, then translational impulses u1 occur in 
the direction of 2−λ  when 2 2 1=λ . Similarly, rotational 

impulses u2 occur in the direction of 4−λ  when 2 2 0=λ . 

Proof: This is a direct consequence of Theorem 2 □. 

Theorem 4: Assume that the spacecraft is equipped with 
impulsive thrusters. If the spacecraft moves along an optimal 
trajectory, there exists a constant α ∈  such that 

1 2 3 4 0T Tα + =λ λ λ λ  for all ( )1 2,t t t∈ . 

Proof: It holds that dH H
dt t

∂
=

∂
, for ( )1 2,t t t∈ . Integrating 

both sides of this equality over the infinitesimal duration of 
an impulsive thrust, since the right hand side remains finite 
throughout this time interval, one obtains that 0H H+ −− =  
on an optimal trajectory. The superscripts (+) and (–) indicate 
some values immediately before and after an impulse. Thus 
H is continuous throughout the impulse. When the thrusters 
are not active, it holds that ' '

1 2 3 4
T T T TH = + + +λ v λ a λ σ λ ω . 

According to PP λ  is continuous on ( )1 2,t t  and, by the 

environmental conditions of par. 2, both a and 'ω . Hence 
'

1 3
T T+λ v λ σ  must be continuous across the impulse, i.e. 

( ) ( )' '
1 3 0T T+ − + −− + − =λ v v λ σ σ . Since the direction of an 

impulse is collinear with the corresponding primer vector 
(Theorem 3), i.e. + −−v v  is parallel to 2λ  and ' '+ −−σ σ  is 
parallel to 4λ , then there exist two constants ( ) 2

1 2,α α ++∈  

so that 1 1 2 2 3 4 0T Tα α+ =λ λ λ λ  □. 

By specifying the environmental model according to par. 2, 
further results can be achieved. 

Corollary 1: Assume 2 3J ≡a 0 , 3cp =r 0 , 2 3≡u 0 , and 

( )1 3t =ω 0 , then along an optimal trajectory 

3'
2 1 1 22

0 and 2 .T > ≤λ λ λ r  (5) 

Proof: Since 1 1 22 = −u u λ , from Lemma 1 it follows that 

2 2 1=λ . As ( )'
2 2 0T =λ λ , 2 2 2 1

T T= −λ λ λ λÐ  and '
2 2 0T =λ λ . 

As Ð  is negative definite, then 2 1 0T >λ λ . Furthermore, 
under these assumptions 0≡J . Taking the Euclidean norm 
of '

1λ , from the definition of matrix induced norm it follows 
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that ( )'
1 max2

ς≤λ G , where ( )maxς ⋅  denotes the largest 

singular value of a matrix. As the singular values of G  are 

equal to 3
22 r , the proof is concluded □. 

Corollary 2: In addition to the hypothesis of Corollary 1, 
assume that 0Dk =  and ( )2

2 1 2,C t t∈λ . Then along an 
optimal trajectory it holds that 

2 4
212 2

3 1 2
2

2 1 and 
3

l
+

≤ ≤
r λ

λ
r

 (6) 

with ( ) [ ]1 2: ,il t t⋅ → , { }1, 2,3i ∈ , the i-th component of 
the 2λ  in a principal reference frame in the space of 2λ . 

Proof: Under these assumptions ( )t const=σ  and then from 
Lemma 1 it follows that 

( ) ( )

'' '
2 2 2 1

1 1 2 1 22

,
, ,  arbitrary.t t

⎧ = = −⎪
⎨

= −⎪⎩

λ λ λ λ
u u λ λ λ

G
 (7) 

Since 2 2 1T =λ λ  [ ]1 2,t t t∀ ∈ , then 
2

''
2 2 2 22
T Td

dt
= +λ λ λ λ  

' '
2 2 0T+ =λ λ  and from (7) we have 

{ 2 2 1 1 2 2; 1.T T T= − =λ λ λ λ λ λG  (8) 

Diagonalizing G  and accounting for its eigenpairs, 
2 4

12 22 2
2 3

2
3

l l
+

= −
r λ

, 
2 4

12 2 2
1

1
3

l
−

=
r λ

 □. 

Having 1l , 2l , and 3l , it is possible to deduce the vector 2λ , 
hence 1 1 2u u  from (7). This result also applies in the 
context of the classical PVT. 

Remark 4: For spacecraft one can assume that 2

2
1r . 

Consequently 1 0l ≈ , 2 0l ≈ , and ( )3 1l t ≈  and therefore the 

direction of 1u  is then given by  

[ ]3
2 3 1 1 2

2

Tr
l r r r= −λ

r
 (9) 

where ir , { }1, 2,3i ∈ , is the i-th component of r. 

4. ANALYSIS ON 1∂Γ  AND 2∂Γ  

Lemma 3: Assume that 1 2g J= + +a u a a , 0Dk ≡ , and that 

( )2
1 2,C t t∈u , then any candidate optimal solution u  for (1) 

subject to (2) verifies the following relations: 

( )

( )

41
22

2 21 ' '
2 2 32 2 22

,

T T
rodR

−

−

⎧ + ≤
⎪
⎨

⎡ ⎤⎪ + + ≤⎣ ⎦⎩

Λ u

u u u u u u λ u

G J

M
 (10) 

with the vector ( ) ( )3 2' '
2 12 2 2: 2 2T ⎡ ⎤= + − − +⎢ ⎥⎣ ⎦

Λ u u u u u u u  

( )2 '' '' ' '
1 12 2

T T⎡ ⎤+ + +⎣ ⎦u u u u u u u u . 

Proof (brief): Eq. (10) is achieved from (3) by noticing that 
=Ð Ð =0, that 3a ≡a 0 , and by exploiting '

iλ , { }2, 4i ∈ , as 
function of u □. 

Lemma 3 can be specialized for 1 1∈ ∂Γu  and 2 2∈ ∂Γu : 

Theorem 5: On an optimal trajectory it holds that 

( )

( )

1 ''
2

2

1 '
3 4

2

1

1T
rodR

−

−

⎧ + ≤
⎪
⎨
⎪ − ≤
⎩

λ

λ λ

G J

M
 (11) 

Proof : From Theorem 1 it follows that, if 2 20 1< <λ , then 
(10) become two identities. Both Λ  and the second of (10) 
can be specialized for 2 2 1=λ  and 2 2 0=λ . By noticing 

that, if 22i iρ ⋅=u , { }1, 2i ∈ , then iu  lays upon a sphere or 

radius 2 iρ ⋅  centred in 30 , (11) can be achieved □.  

5. NUMERICAL SIMULATIONS 

Consider a spacecraft in a geocentric equatorial reference 
frame that needs to perform in 40 min a manoeuvre from 
[ ]6900 0 450 T− km to [ ]6500 150 660 T− km. Impose that the 
initial and the final velocities are such that the spacecraft 
leaves from the perigee of an orbit of eccentricity 0.6 and 
reaches at the apogee an orbit of eccentricity 0.8 whose major 
axes coincide. The vector 1u  at the initial and final positions 
is chosen parallel to the velocity vector. The spacecraft is 
modelled as a parallelepiped of 100 kg whose volume is 
2 2 2× ×  m3. It is assumed that the vector normal to one of 
the surfaces of the spacecraft has initially a radial direction 
with respect to the Earth and that at the end of the manoeuvre 
it is rotated of 3 2π  around the intermediate inertial axis 
with a rest to rest manoeuvre. It is imposed that 

[ ]210 1 1 1 T
cp

−=r m in the principal body reference frame. 

Finally it is assumed that 2 4 215 m
s

ρ ρ= = , that the system is 

controllable, and that impulsive thrusters are mounted on the 
vehicle. By applying Theorem 1 the optimal trajectory shown 
in Fig. 1 is achieved. The Earth is scaled for clarity. The plots 
of 2λ  and 4λ  are in Fig 2. 
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Fig. 1. Optimal trajectory for the given mission scenario. 

 

Fig. 2. Plots of 2λ  and 4λ . 

6. CONCLUSIONS 

The fuel consumption problem for a 6DOF rigid spacecraft 
moving between fixed endpoints over an assigned time 
interval has been herein tackled. A realistic model of the Low 
Earth Orbit space environment has been considered, as well 
as more schematic ones. This study led to several necessary 
conditions to identify the optimal control vector and to verify 
results achieved by numerical integration. 

Some results of Lawden’s primer vector theory have been 
extended to 6DOF vehicles subject to external forces 
depending on the spacecraft position and velocity. 
Pontryagin’s principle has been employed as it allows 
formally discussing integrable control vector functions and 
arbitrarily constrained control sets. Numerical simulations 
presented verify the analytical results proven. 
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Appendix A. MATRICES 

Let the subscript ( ),i j  determine the element on the i-th row 
and j-th column of a matrix and let the single subscript k be 
the k-th component of a vector, with ( ) { }3, , 1, 2,3i j k ∈ . 

 ( )( ) ( )1 1 2 2
4

T T
rodR t I σ ×⎡ ⎤= − + +

⎣ ⎦
σ σ σ σσ  

 ( )
( ) ( )

( ) ( )
( ) ( )

3 2

3 1

2 1

0
0 .

0

t t
t t t

t t

σ σ
σ σ σ

σ σ

×

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

( )( ) ( ) ( )

1 2 2 1 3 1 3 3 1 2

1 2 2 1 3 3 2 2 3 1

1 3 3 1 2 3 2 2 3 1

1
2

0
1 0
2

0

Tt t t I

ω σ ω σ ω ω σ ω σ ω
ω σ ω σ ω ω σ ω σ ω
ω σ ω σ ω ω σ ω σ ω

Θ = +

− + + − − +⎡ ⎤
⎢ ⎥+ − − − +⎢ ⎥
⎢ ⎥+ − − + −⎣ ⎦

σ σ ω

 

( )( )
( ) ( )

( ) ( )
( ) ( )

2 3

1 3

1 2

0
0

0

Y P

Y R

P R

t I t I
t t I t I

t I t I

ω ω
ω ω
ω ω

⎡ ⎤− −
⎢ ⎥

= − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

ωM  

with ( )1 P Y RI I I I= − , ( )2 R Y PI I I I= − , ( )3 P R YI I I I= − , 

/ /R P YI  and / /R P Yω  the moments of inertia and the angular 
velocity unit vectors respectively along the first, second, and 
third axis of the principal body reference frame. 
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 ( )
( ) ( )

( ) ( )
( ) ( )

0
0 .

0

Y P

Y R

P R

t t
t t t

t t

ω ω
ω ω ω

ω ω

×

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 ( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )

22
, 2 2

, 2

D ii i

D i ji j

t k v t t t

t k v t v t t

= − +

= −

v v v

v v

Ð

Ð
 

The eigenvalues of Ð  are [ ]2
1 1 2 T− v . The 

eigenvectors [ ]2 1 1 0 Tv v− , [ ]3 1 0 1 Tv v− , and v  
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