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Abstract: In this paper, an analytical off-line multi-point trajectory generation scheme is presented
for differentially flat systems. For control of dynamical systems along a given set of control points,
multi-point trajectory generation is required when input and state constraints exist. It is assumed that
differential constraints for flat coordinates can be formulated explicitly. The trajectory scheme is based
on analytically solving a set of polynomial equations to parameterize n-times continuously differentiable
segmented transition polynomials, that approximate time optimal trajectories. The computational effort
for determining valid trajectories is low in comparison to numerical optimization. As an example, a
multi-point trajectory generation problem for a 3-DOF gantry crane is presented.
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1. INTRODUCTION

Feedforward control is widely used in control applications as
an extension of feedback control to separately design tracking
performance by the feedforward part and closed-loop stability
and robustness by the feedback part.

A key element in feedforward control is the trajectory generator
Σ∗ (Fig. 1) providing continuously differentiable trajectories
along given points. Based on the task specification, motion
planning requires either planning a temporal trajectory along
a predefined path or planning both a path and a trajectory.
While a path is specified by points in Cartesian space (or in
joint space) describing a spatial evolution of an end-effector
(or joints), a trajectory is a curve in state space describing
the system evolution in time (Craig, 1989). In this field, a
large variety of geometric path planning and dynamic trajectory
generation methods have been developed (Choset et al., 2005).
The issue of including system dynamics in the path planning
process lead to dynamic trajectory planning methods usually
referred to as kinodynamic planning (Canny et al., 1991; Don-
ald et al., 1993) as part of motion planning for systems with
differential constraints (Fortune and Wilfong, 1988). Over the
last decade, apart from solutions by numerical optimization,
especially algebraic and trigonometric spline based approaches
showed good results (Sciavicco and Siciliano, 2005; Visioli,
2001). However, as soon as constraints for higher time deriva-
tives of the trajectories are included in the trajectory planning,
common methods based on algebraic or trigonometric splines
must be supported by numerical optimization.

In this paper, it is assumed that a suitable path planning method
for finding valid transition points P j in a configuration space

U
N ∈ R

N has been performed already, e.g. by methods
described in Latombe (1991) and Lozano-Pérez and Wesley
(1979). Geometric preprocessing methods for defining syn-
chronous and asynchronous path segments along given transi-

−
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Fig. 1. Structure of the two-degree-of-freedom control scheme
with systems Σ, feedback control ΣFB , feedforward con-
trol ΣFF , and trajectory generator Σ∗.

tion points P j under consideration of geometric constraints can
be found in Ruppel et al. (2008).

In general, independent of the considered system, trajectory
generation problems can be reduced to transitions between sta-
tionary or non-stationary setpoints within a finite time interval
usually including state and input constraints. Mathematically,
finding a finite-time transition between stationary setpoints re-
sults in a boundary value problem (BVP). The solution of BVPs
can either be derived by direct or indirect numerical methods
(Keller, 1976; von Stryk and Bulirsch, 1992) or by analyti-
cal approaches (Barrère and Carmasol, 1995). This paper will
introduce a new set of segmented transition polynomials for
solving multi-point boundary value problems analytically. The
considered dynamical systems are supposed to be differentially
flat (Fliess et al., 1995) such that purely analytical trajectory
planning methods can be performed (Graichen et al., 2005).
Special attention is drawn to flexibility and scalability of the
used ansatz functions to generate n-times continuously differ-
entiable trajectories, where n is a parameter of the trajectory set
by the system order. The presented method is focused on off-
line trajectory planning that usually occurs for driving mechan-
ical systems including e.g. coordinate measurement machines,
multi-axes cranes, or nano-positioning systems.

The outline of this paper is as follows: 1) The system class of
differentially flat systems and explicit output constraints are de-
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fined. 2) The segmented transition polynomials are derived and
scalability is discussed. 3) Methods for time synchronization
and implementation for discrete time systems are addressed.
4) The multi-point trajectory generation is presented for the
movement of a 3-DOF gantry crane.

2. SYSTEM CLASS

In the following, the multi-axes path planning problem is as-
sumed to be decoupled to independent controllable orthogonal
coordinates. This assumption is usually fulfilled for mechanical
systems with independently controlled linear axes or appro-
priately decoupled robotic manipulators. For each controllable
axis, the following nonlinear SISO system is considered 1 :

Σ : ẋ(t) = f(x(t), u(t)) , t > 0 , x(0) = x0 ∈ R
n

y(t) = h(x(t)), t ≥ 0 (1)

with time t ∈ R
+, state x ∈ R

n, control input u ∈ R, and
output y ∈ R. The vector field f : R

n × R → R
n and the

function h : R
n → R are assumed to be sufficiently smooth.

2.1 Transformation to input-output normal form

System (1) can be transformed into the nonlinear input-output
normal form Isidori (1995)

y(r) = α(y, ẏ, . . . , y(r−1),η, u), (2)

η̇ = β(y, ẏ, . . . , y(r−1),η, u), (3)

with α(·) = Lr
fh ◦ φ−1 and βi(·) = Lfφη,i ◦ φ−1. Here, the

relative degree r is defined as

∂

∂u
Li

fh = 0, i ∈ {0, . . . , r − 1},
∂

∂u
Lr

fh 6= 0, (4)

with the Lie derivative Lf along the vector field f . Moreover,
the diffeomorphisms

(y, ẏ, . . . , y(r−1),η) = φ(x) with η = φη(x) ∈ R
n−r,

y(i) = Li
fh(x) = φi+1(x), i = 0, . . . , r − 1. (5)

are used. For the special case of r = n, y is a linearizing or
flat output of the system (1) and no internal dynamics exist
Fliess et al. (1995). Then, the chain of integrators (2) forms
the nonlinear controller normal form

ΣNF : y(n) = α(y, ẏ, . . . , y(n−1), u). (6)

This structure enables a purely algebraic solution of the transi-
tion problem since the feedforward control

Σ−1 : u∗ = α−1(y∗, ẏ∗, . . . , y∗(n)) (7)

can be determined directly in dependence of the desired output
trajectory y∗ and its first n time derivatives without integration
of differential equations. Due to the flatness of system (1), the
inverse function α−1 exists at least locally and (7) describes the
relation between the input and the flat output in terms of the
inverse system Σ−1, which is used for the implementation of
the feedforward control ΣFF = Σ−1 in Fig. 1.

1 For improved readability, the indices for independent axes are omitted

y∗

P 0

P 1
P 2

P M

T1 T2 Tf t0

I II

Fig. 2. Desired output trajectory y∗(t) for a transition between
multiple target points P j within the time intervals tj ∈
[Tj−1, Tj ]

2.2 Explicit output constraints

For the special case of a maximum relative degree r = n, the
integrator chain (2) consists of n integrators. It is assumed that
the output constraints for system (1) or (2), respectively, can be
expressed in terms of upper bounds for each integrator as

‖
di

dti
y∗(t)‖∞ ≤ ci ,

{
c ∈ R

n+, i = 1, . . . , n, t ∈ [0, Tf ]
}

.

(8)
The first three output constraints in (8) are equivalent to re-
quirements for a limitation of velocity, acceleration, and jerk
(n = 3) of the output trajectory y∗(t) in robotic applications.
By use of (7), an upper bound for u∗(t) and upper bounds for
time derivatives of u∗(t) can be included implicitly. Constraints
on the absolute values of y∗(t) can be included implicitly. For
example, y∗(t) ∈ [y∗

0 , y∗

f ] ∀t ∈ [0, Tf ] is guaranteed by the

chosen ansatz function in Section 3.1.

3. TRAJECTORY PLANNING

In order to fulfill the given constraints (8) for the output tra-
jectory y∗(t) and its time derivatives, a time optimal trajectory
between boundary conditions P j using segmented transition
polynomials is desired. As shown in Fig. 2, the task is to
generate a sufficiently smooth trajectory y∗(t) driving system
(1) along given target points Pj = {yj , ẏj , ÿj , 0, . . . , 0}, j =
0 . . . M under consideration of output constraints (8) in mini-
mal time Tf . Typically, one would expect to set ẏj = ÿj = 0
and solve a boundary value problem for a setpoint change
yj → yj+1 of system (1) Graichen et al. (2005). However,
especially in the field of robotics and aeronautics, it is desirable
to track a system along recorded points P j coming from teach-
in operation or waypoint specifications. Limiting ẏj = ÿj = 0
in P j would prolong the overall traveling time and reduce the
energy efficiency of the trajectory. In the course of this paper,
it will be shown that an inclusion of ẏj 6= 0 and ÿj 6= 0 leads
to an algebraic multi-point boundary value problem that can be
solved via suitable ansatz functions.

Due to the linear structure of the integrator chain (2), a time
optimal solution for a Cn trajectory under output constraints
results in switching behavior of the n-th time derivative of
y∗(t) Sonneborn and Van Vleck (1964). Planning such trajec-
tories usually leads to numerical optimization of the n-th time
derivative of y∗(t), including numerical integration and a strong
dependency on the chosen time discretization.

Therefore, it is a common technique to describe the output
function y∗(t) by polynomial or trigonometric splines of the
form
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s(t) =

2n+1∑

j=1

ajΞj(t), {aj ∈ R, t ∈ [0, Tf ]} (9)

with a suitable set of coefficients aj and basis functions Ξj(t)
that fulfill the boundary conditions P j . Higher order time
derivatives of s(t) can be determined explicitly, but finding a
sufficient transition time Tf leads to a set of nonlinear inequal-
ities of the form

‖
di

dti
s(t)‖∞ ≤ ci ,

{
c ∈ R

n+, i = 1, . . . , n, t ∈ [0, Tf ]
}

.

(10)
with unknown Tf . Clearly, finding a suitable transition time Tf

for arbitrary ansatz functions Ξj(t) in (9) and (10) can only be

performed numerically since the maximum value of di

dti s(t) can
not be derived directly.

3.1 Segmented transition polynomials

As a new description for the transition function (9), a set
of segmented polynomials with a time optimized transition
profile for each transition phase P j → P j+1 (see Fig. 2) is
proposed. The key element in this approach is segmentation
since it allows for a purely analytical solution of the transition
problem under consideration of output constrains (10). Based
on a transition profile described in Ruppel et al. (2008), the
proposed segmented transition profile consists of three major
stages as shown in Figure 3. The stages are geared to time
efficient trajectories for the connection of two stationary or non-
stationary setpoints [P j ,P j+1] including:

(1) a stage of constant ÿ∗(t) (acceleration) under considera-
tion of differential constraints (I in Fig. 3),

(2) a stage of constant ẏ∗(t) (velocity) with ÿ∗(t) = 0
(c in Fig. 3),

(3) a stage of constant ÿ∗(t) (deceleration) under considera-
tion of differential constraints (II in Fig. 3).

The layout and length of each phase depend on the chosen
boundary conditions [P j ,P j+1], and the considered system
order n (x ∈ R

n).

To achieve n-times differentiable trajectories, the phases of
constant ÿ∗(t) (I.c, c, II.c) are connected by smooth transition
polynomials Piazzi and Visioli (2001) for ÿ∗(t) {y∗ ∈ Cn,
n ≥ 3} of the form

ÿ∗

I1(t) = ÿ∗

0 + (ÿ∗

c1 − ÿ∗

0) · Ψ(t, T1v1) (11a)

ÿ∗

I2(t) = ÿ∗

c1 + (ÿ∗

c − ÿ∗

c1) · Ψ(t, T1v2) (11b)

ÿ∗

II1(t) = ÿ∗

c + (ÿ∗

c2 − ÿ∗

c ) · Ψ(t, T2v1) (11c)

ÿ∗

II2(t) = ÿ∗

c22 + (ÿ∗

f − ÿ∗

c2) · Ψ(t, T2v2) (11d)

with the transition polynomial

Ψ(t, τ) =







0 if t ≤ 0,

(2k + 1)!

k!τ2k+1

k∑

i=0

(−1)k−i

i!(k − i)!(2k − i + 1)
τ it2k−i+1

if 0 ≤ t ≤ τ
0 if t ≥ τ.

,

(12)
and summation parameter k = n − 2. For simplicity, in the
following explanation each trajectory segment starts at t = 0
and ends at t = τ 2 . The free parameters in Equations (11a)-
(11d) are ÿ∗

c1, ÿ
∗

c2, T1c, Tc, and T2c. The parameters ÿ∗

0 and ÿ∗

f

2 For a real implementation, a time shift at the corresponding switching points

in the trajectory segments must be performed.

0

I C IIÿ∗

t

11 22 cc

ÿ∗
0

ÿ∗c1

ÿ∗c2

ÿ∗c

ÿ∗f

time

ac
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ra

ti
o
n

T1v1 T1c T1v2 Tc T2v1 T2c T2v2

Fig. 3. Segmented transition profile ÿ∗(t) with boundary condi-
tions ÿ∗(0) = ÿ∗

0 , ÿ∗(tf ) = ÿ∗

f .

are predefined by the boundary values ẏj and ẏj+1 in P j and
P j+1, respectively. The transition times T1v1, T1v2, T2v1, T2v2

are determined such that all differential output constraints for
n ≥ 3 are satisfied. Hereby, the symmetric layout of Ψ(t, τ)
allows for an analytical solution of multiples of τ at which
dj

dtj Ψ(t, τ) = 0, {j = 3 . . . (n − 1)}. Certainly, one would
choose the transition times T1v1, . . . , T2v2 such that one of the
differential constraints is reached. Thus, an analytical determi-
nation of T1v1, . . . , T2v2 only depends on the output constraints
given in (8).

For instance, the transition polynomial for n = 4 reads

Ψ(t, τ) =

(

3

(
t

τ

)2

− 2

(
t

τ

)3
)

. (13)

With (12) and (11a), it follows

Ψ̈(t, T1v1) = 0 for t = 0.5T1v1,

y
(3)∗
I1 (0.5T1v1) =

(ÿ∗

c1 − ÿ∗

0)

T1v1
Ψ̇(0.5T1v1, T1v1)
︸ ︷︷ ︸

=0.5

!
≤ c3, (14)

T1v1 =
2(ÿ∗

c1 − ÿ∗

0)

c3
, with ‖y

(3)∗
I1 (t)‖∞ ≤ c3.

The inclusion of output constraints for ÿ∗ ≤ c2 is achieved by
limiting |ÿ∗

c1| ≤ c2 and |ÿ∗

c2| ≤ c2, respectively.

The determination of T1c, T2c and the fulfillment of boundary
conditions for ẏj and ẏj+1 in P j and P j+1 require an exami-

nation of the integrals of ÿ∗(t) reading:

ẏ∗

I1(t) = ẏ∗

0 + ÿ∗

0 t + (ÿ∗

c1 − ÿ∗

0) ·

∫ t

0

Ψ (t, T1v1) dt (15a)

ẏ∗

Ic(t) = ẏ∗

I1(T1v1) + ÿ∗

c1t (15b)

ẏ∗

I2(t) = ẏ∗

Ic(T1c) + ÿ∗

0 t + (ÿ∗

c − ÿ∗

c1) ·

∫ t

0

Ψ (t, T1v2) dt (15c)

ẏ∗

c (t) = ẏ∗

I2(T1v2) (15d)

ẏ∗

II1(t) = ẏ∗

c (Tc) + ÿ∗

c t + (ÿ∗

c2 − ÿ∗

c ) ·

∫ t

0

Ψ(t, T2v1) dt (15e)

ẏ∗

IIc(t) = ẏ∗

II1(T2v1) + ÿ∗

c2t (15f)

ẏ∗

II2(t) = ẏ∗

IIc(T2c) + ÿ∗

0 t + (ÿ∗

c − ÿ∗

c1) ·

∫ t

0

Ψ (t, T2v2) dt (15g)

Note that the integral
∫ τ

0
Ψ(t, τ)dt is a constant value only

depending on the system order n. Thereby, a determination of
free parameters in (15a)-(15g) is greatly simplified. Through
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(15a)-(15c), it is possible to determine T1c such that ‖ẏ∗

c‖∞ ≤
c1.

The transition time T2c results from the right boundary con-
dition at P j+1 with ẏ∗

II2 = ẏ∗

f including (15e)-(15g). The

determination of the last transition time Tc can be performed by
integration of (15a)-(15g) under consideration of the boundary
conditions yj and yj+1 in P j and P j+1, respectively. However,
only if the output constraint for ẏ∗ can be reached during the
transition P j → P j+1, it is possible to determine Tc analyti-
cally. If the maximum velocity ‖ẏ∗(t)‖∞ < c1, it is necessary
to find a valid value for ẏ∗

c numerically because in this case
(15a)-(15g) can not be solved analytically anymore.

3.2 Scalability and Application to Discrete Time Systems

Scalability of transition polynomials is required if a synchro-
nization of multiple trajectories (e.g. driving individual robot
axes at the same time) and inclusion of path constraints must be
achieved. For example, driving a robot manipulator along given
points in its configuration space with two or more involved
actuators, it is necessary to synchronize either the individual
traveling time of all actuators or their dynamic behavior, or
both. In this paper, only the general case of equalization of
traveling times for multiple trajectories shall be addressed since
planning of synchronized dynamic behavior of multiple syn-
chronous trajectories can be reduced to planning of a single
trajectory and use of linear projection techniques as described
in Ruppel et al. (2008).

It is assumed that all transition times T1v1, . . . , T2v2 of y∗(t)
(see Fig. 2) are known for a valid transition P j → P j+1

under consideration of output constraints (8) by methods de-
scribed in Section 3.1. For scaling y∗(t) it is necessary to set
the overall traveling time Tf = T1v1 + . . . + T2v2 of the
transition P j → P j+1 to a required transition time Tr > Tf .
However, compliance with given output constraints has to be
assured. Therefore, it is proposed to scale all transition times
T1v1, . . . , T2v2 by factor Tr/Tf . A prolongation of all tran-
sition times leads to new values for ÿ∗

c1 and ÿ∗

c2, which can
be calculated through (15a)-(15g) and integrals of (15a)-(15g)
by inclusion of the boundary conditions at P j and P j+1. By
this seemingly simple method it is possible to adjust multiple
trajectories with multiple differential constraints and varying
composition of phase segments I , c, and II (see Fig. 2) to the
same desired overall traveling time Tr.

Especially in the field of discrete time systems, it can be nec-
essary to account for arbitrary sampling times ∆t. These re-
quirements arise when input planning methods as described in
Section 3 are used and the control input u(t) in (1) has to be
computed directly. However, by planning the flat output trajec-
tory y∗(t) in (7) no numerical integration of the system dynam-
ics is required and thereby no consideration of sampling times
is necessary. As a result, the switching times T1v1, . . . , T2v2 do
not have to be multiples of the sampling time ∆t and only if
desired the overall traveling time can be prolonged to a multiple
of the sampling time by scaling methods described above.

4. MULTI-POINT TRAJECTORY GENERATION FOR A
3-DOF GANTRY CRANE

To show the applicability of multi-point trajectory generation
for differentially flat systems, the movement of a payload in the
x-y-plane of a 3-DOF gantry crane is considered. At first, the

(a) View on experimental setup

in x−direction.

y

x

rope drum

winch drive

angular
encoders

pulley

j
y

j
x

(b) Close up of trolley and car-

dan joint.

Fig. 4. The setup of an experimental 3-DOF gantry crane.

model of a 3-DOF gantry crane is derived and the flat output is
introduced. Afterwards, the feedforward control law is defined
and a multi-point trajectory with given boundary conditions
along three points is calculated. Finally, experimental results
of the payload and trolley transition are presented.

4.1 Model of a 3-DOF Gantry Crane

An experimental 3-DOF gantry crane is available at the Institute
for Systemdynamics (ISYS) Zimmert et al. (2006) (Fig. 4).
The gantry crane consists of a moving bridge of mass mb and
a trolley of mass mt. The trolley is mounted on the bridge
and can be moved along the x-direction, whereas the bridge
can be moved along the y-direction. The configuration allows
for a movement of the trolley within the x − y plane. A
payload with mass mp is connected to the trolley by a rope
suspended by a cardan joint. The length of the rope l(t) can
be varied by a winch mounted on the trolley. Thereby, the
load can be moved in all three dimensions x-y-z. In addition
to the measurement of trolley positions xt(t) and yt(t), the
experimental setup is equipped with encoders to measure the
cardan joint angles ϕx(t) and ϕy(t) (Figure 4(b)). A schematic
view of the experimental gantry crane setup is given in Figure
5.

The kinematics of the cardan joint lead to the positions of the
load

xp(t) = xt(t) + l(t) sin (ϕx(t)) (16a)

yp(t) = yt(t) − l(t) cos (ϕx(t)) sin (ϕy(t)) (16b)

zp(t) = −l(t) cos (ϕx(t)) cos (ϕy(t)) . (16c)

Neglecting the rope mass and assuming a point mass payload,
the kinetic and potential energy of the system reads

[xt, yt, zt]

[xp, yp, zp]

x

y
z

l

g

mb

mt

mp

Fig. 5. Schematics of the 3D bridge crane.
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T =
mp

2

(
ẋ2

p(t) + ẏ2
p(t) + ż2

p(t)
)

+
mt

2

(
ẋ2

t (t) + ẏ2
t (t)

)
+

mb

2
ẋ2

t (t) (17a)

V = gmpzp(t), (17b)

where g denotes the gravity. The inputs to the system are the
force Fy(t) applied to the trolley, the force Fx(t) applied to the
bridge, and the rope force Fl(t), induced by the winch drive,
which results in the virtual work

Q(t) = Fy(t)δyt(t) + Fx(t)δxt(t) + Fl(t)δl(t). (18)

Introducing the generalized coordinates

q(t) = [xt(t), yt(t), l(t), ϕx(t), ϕy(t)]
T

, (19)

substituting (16) in (17), and using the Lagrangian L = T −V ,
the nonlinear second order differential equation

d

dt

(
∂L

∂q̇i(t)

)

−
∂V

∂qi(t)
=

∂Q

∂(δqi(t))
, (20)

can be resolved for q̈(t) and written as a first order ODE

with the state vector x(t) = [q(t), q̇(t)]
T

and the vector of

input forces u(t) = [Fx(t), Fy(t), Fl(t)]
T

in form (1). Due to
space limitations, the explicit outline of f(·) is omitted here.
Furthermore, it can be shown that the positions of the payload

y =

[
xp

yp

zp

]

=

[
hx(x)
hy(x)
hz(x)

]

. (21)

are the flat output of system (16).

4.2 Feed Forward Control

Calculating the Lie-Derivatives Isidori (1995) of the flat output
y yields a vectorial relative degree of

r = {rx = 4, ry = 4, rz = 2}

and the three ODEs

x(4)
p = f

x
(4)
p

(x, Fx), (22a)

y(4)
p = f

y
(4)
p

(x, Fy), (22b)

z(2)
p = f

z
(2)
p

(x, Fl), (22c)

which can be solved analytically for Fx, Fy and Fl. Similar
results are already presented by Fliess et al. (1991) for the 2D-
case. The diffeomorphism φ(x(t)), transforming the physical
coordinates x into flat coordinates z of the gantry, crane yields

z = φ(x) =

















hx(x)
hy(x)
hz(x)

ḣx(x)

ḣy(x)

ḣz(x)

h
(2)
x (x)

h
(2)
y (x)

h
(3)
x (x)

h
(3)
y (x)

















. (23)

From (23), the inverse diffeomorphism φ−1(z) can be deter-
mined symbolically.

4.3 Trajectory Planning

In order to demonstrate the proposed methods for analytical
multi-point trajectory planning, three intersection points for a
movement of the load in the x − y plane of the gantry crane

with boundary conditions introduced in Section 3 of the form
Pjz = [zj , żj , z̈j ] are chosen as

P 1x = [0.0, 0, 0] P 1y = [0.0, 0, 0]
P 2x = [0.07, 0.2, 0.34] P 2y = [0.055, 0.17, 0.27]
P 3x = [1.0, 0, 0] P 3y = [0.8, 0, 0].

(24)

Since the load position (21) is a flat output, explicit dynamic
constraints for the movement in x- and y-direction of the form

cz = {ż∗max, z̈∗max, . . . , z
(n)∗
max} (8) are formulated as

cx = {1, 1, 1} cy = {0.4, 0.5, 0.5}.

The numerical values are chosen such that existing physical
constraints of the experimental gantry crane are kept and the
introduced trajectory layout in the resulting feedforward trajec-
tories can be verified easily.

The elements of the vectorial relative degree {rx = 4, ry = 4}
allow for a choice of n = 4 as smoothness parameters for the
transition polynomials in (12).

Using the trajectory generation methods described in Section
3 for the intersection points (24) under consideration of the
dynamic constraints (4.3), the trajectories presented in Figure
6 are achieved. Hereby, the overall traveling time of the x-axis
was prolonged to the traveling time of the y-axis to achieve
a synchronous movement in both directions. Note that due to
the chosen boundary conditions in (24) the two segmented
trajectories between P 1 → P 2 and P 2 → P 3 consist of
only phase {I.1} and {I.2, c, II.1, II.2}, respectively. The
transition times T1c and T2c are equal to zero in both transition
profiles.

4.4 Measurment results

Substituting the state vector in the inverse functions of (22) by
the reference trajectories shown in Figure 6, the feedforward
input vector uff = [Fx Fy Fz] can be computed. Measure-
ment results of the corresponding trolley force Fx(t) and the
resulting load position xp(t) are shown in Figure 7. In the
experimental setup, the gantry crane is equipped with frequency
converted asynchronous motors operating in a speed regulated
mode. Therefore, the computed feedforward trolley velocities
ẋ∗

t (t) and ẏ∗

t (t) as well as the rate of change of the rope length

l̇∗(t) are used as set values for the underlying motor controllers.
In addition a load sway damping state feedback controller
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Fig. 6. Computed trajectories x∗

p(t) and y∗

p(t) with correspond-
ing second order time derivatives for a three-point transi-
tion including two stages of segmented transition polyno-
mials.
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Fig. 7. Resulting feedforward force Fx(t) and measured load
position xp(t) (for visualization purposes the force was
scaled by factor 1/4).

∆u = K(x(t)) is used to achieve trajectory tracking to the
desired multi-point trajectories x∗

p(t) and y∗

p(t) under external
disturbances.

5. CONCLUSIONS AND FUTURE WORKS

Even though the theory presented in this paper is applicable to
a more general structure of dynamical systems, for the special
class of flat systems near time optimal trajectories can be com-
puted analytically including explicit output constraints. By us-
ing a design parameter n, the smoothness of the trajectories can
be adjusted to be n-times continuously differentiable. Both time
scaling methods and applicability to discrete time systems are
given such that segmented transition polynomials can be used
in a wide field of control application. The flatness based feed-
forward control with segmented transition polynomials shows
good results for an experimental 3-DOF gantry crane. For the
movement of the crane load, a 4-times continuously differen-
tiable trajectory is derived for two involved axes with different
output constraints. Using time scaling methods derived in this
paper, a synchronous movement along the computed trajecto-
ries is achieved.

In the current setup, an appropriate choice of boundary condi-
tions P j is assumed. However, including geometric constraints
of the path planning process, the trajectory generation is ef-
fected. Further work on how to determine practical boundary
conditions for use with segmented transition polynomials can
lead to geometric path planning based on segmented polynomi-
als in multiple dimensions.
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