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Abstract: Reinforcement learning is an attractive solution for deriving an optimal control policy
by on-line exploration of the control task. Shaping aims to accelerate reinforcement learning by
starting from easy tasks and gradually increasing the complexity, until the original task is solved.
In this paper, we consider the essential decision on when to transfer learning from an easier task
to a more difficult one, so that the total learning time is reduced. We propose two transfer
criteria for making this decision, based on the agent’s performance. The first criterion measures
the agent’s performance by the distance between its current solution and the optimal one, and
the second by the empirical return obtained. We investigate the learning time gains achieved
by using these criteria in a classical gridworld navigation benchmark. This numerical study also
serves to compare several major shaping techniques.
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1. INTRODUCTION

Reinforcement learning (RL) (Sutton and Barto, 1998) is
a highly active research area in artificial intelligence and
control. At each step, a RL agent receives the current state
of the environment and chooses an action. The action
changes the state of the environment, and the value of
this transition is communicated to the agent through a
scalar reward. The goal is to maximize the return, i.e.,
the cumulative long-term reward received while interacting
with the environment.

In practice, as the task becomes more complex, conven-
tional RL methods may take too long or even fail to find
a good solution. Shaping is a class of techniques that aim
to tackle this problem by starting from an easier version
of the task and gradually increasing the complexity, until
the original task is solved. The idea of shaping (Skinner,
1938) is inspired from human learning, which often exploits
the same principle to solve complex tasks. Unfortunately,
data about how – and to what extent – the various types
of shaping improve the learning speed and performance
are scarce in the literature, while the manner in which
results are reported is not always satisfactory. In partic-
ular, the time spent on solving the easier task(s) is often
disregarded, and acceleration is claimed after comparing
the learning time in the original task after shaping, with
solving the original task from scratch – as also noticed by
Taylor and Stone (2009).

In this paper, we take the stance that shaping tech-
niques must reduce the total learning time, including the
time spent in the easy task(s). From this standpoint, we
provide a twofold contribution. Firstly, we propose two
performance-based transfer criteria for making the essen-
tial decision on when to transfer knowledge from an easier
task to a more difficult one (or when to stop learning in

final tasks). If the parameters in these criteria are properly
set, transfer happens after a suitable amount of training
has been performed in the easy task, without spending
too much time on fine-tuning the solution to an accuracy
that is not needed to accelerate learning in the original
task. The first criterion evaluates the performance by the
distance between the current solution and the optimal
one. While this criterion is useful to analyze what shaping
can achieve, it is restrictive as it requires knowledge of
the optimal solution. The second criterion is much more
general, and relies on the empirical return from a set of
representative states.

Our second contribution is an introduction and numerical
comparison, in terms of total learning time, of four rep-
resentative shaping techniques. These techniques simplify
the task by modifying, respectively: (i) the dynamics, (ii)
the reward function, (iii) the action space, and (iv) the
initial state and the state space size (Erez and Smart,
2008). The example used in the numerical study is a clas-
sical gridworld (GW) navigation benchmark, and our two
novel criteria are employed to decide when to transfer or
stop learning. Thus, this study doubles as an experimental
evaluation of the new criteria.

After describing the necessary background on RL and the
GW problem in Section 2, we discuss shaping methods in
Section 3. In Section 4, we propose the novel transfer crite-
ria, while Section 5 presents the results of our simulations.
Finally, Section 6 concludes the paper.

2. REINFORCEMENT LEARNING PRELIMINARIES

Consider a Markov decision process defined by the tuple
M = (S,A, P,R, γ), where S is the state space, A is the
action space, P is the transition probability function, R is
the reward function, and γ ∈ [0, 1) is the discount factor.
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At each time step t, the agent receives the current state
st and takes an action at, which causes a transition to the
next state st+1; the probability of reaching a given next
state s′ is P (st, at, s

′). A reward rt+1 = R(st, at, st+1) is
received that assesses the quality of the transition. The
agent then receives the new state and the whole cycle
repeats. The goal is to find an optimal policy π∗ : S → A
that maximizes the expected discounted return for any
initial state s0. This type of return is the sum of the
infinite-horizon reward sequence, exponentially weighted
using the discount factor:

R(s0) =

∞
∑

k=0

γkrk+1 (1)

In online RL, the optimal policy must be obtained without
using knowledge of the environment (i.e., of P and R).
Instead, the agent must learn by interacting online with
its environment. A well-known online RL algorithm is Q-
learning (Watkins and Dayan, 1992; Sutton and Barto,
1998), which in its simplest form is given by:

Q(st, at)← (1−α)Q(st, at)+α[rt+1+γ max
a

Q(st+1, a)] (2)

where the Q-function approximates returns obtained start-
ing from each state-action pair. Under appropriate condi-
tions, Q-learning asymptotically converges to the optimal
Q-function Q∗, which can be used to act optimally with:

π∗(s) = arg max
a

Q∗(s, a)

A crucial convergence condition is that the algorithm keeps
selecting every action with non-zero probability. This is
called exploration, and in this paper, we use the classical
ε-greedy exploration, which at each step selects actions
according to:

at =

{

a random action with probability ε

arg max
a

Q(st, a) with probability 1− ε
(3)

Example: Gridworld Navigation. Gridworld (GW) exam-
ples are commonly used in RL. Despite their simplicity,
GWs are useful abstractions of a variety of real-world
tasks, such as robot navigation. They can in principle also
be used to approximate general nonlinear systems, using
discretization.

We consider here the 5 × 5 GW shown in Figure 1.
The agent is located in one of the cells, and its position
constitutes the discrete state signal. At each step, it can
move one cell into any of the four cardinal directions,
leading to four possible actions. If a move leads into a
wall, it fails and the agent stays put. The aim is to find
the goal state (sgoal) in a minimum number of steps. This
state is terminal, so after reaching it the trial finishes and
the agent is reset to a random initial state.

The reward function:

R(st, at, st+1) =







10 if st+1 = sgoal

−5 if st+1 = st

−1 otherwise

(4)

outputs a large positive reward upon reaching the goal
state, a negative reward (penalty) upon hitting a wall, and
a smaller negative reward for any other step; this latter
term enforces the RL algorithm to search for a minimum-
time / minimum-distance solution. 2

G

Fig. 1. GW schematic showing the agent (bottom-left) and
the goal state (top-right).

3. SHAPING

In general, the shaping process starts by giving the agent a
series of relatively easy problems building up to the harder
problem of ultimate interest. However, shaping does not
always need to return to solving the original task after
solving the easy version. Two ways of performing shaping
can therefore be identified:

• Temporarily simplifying the task, solving it, and then
transferring the knowledge to the original task. There
may be a single simplified task, or a sequence of tasks
gradually increasing in complexity.

• Permanently simplifying the task. If the complexities
removed are redundant, the optimal policy in the easy
task is the same as in the original task, and thus the
original task need not be explicitly solved. Instead,
the policy found in the easy task can be used directly.

In this paper we focus on 4 major shaping methods:
(i) dynamics shaping, (ii) reward shaping, (iii) action
shaping, and (iv) state shaping. As their names imply,
these methods modify, respectively, (i) the dynamics, (ii)
the reward function, (iii) the action space, and (iv) the
initial state, possibly together with the state space size
(Erez and Smart, 2008). Below, we briefly describe each of
the four methods, and exemplify how they can be used in
the GW example introduced in Section 2. Under certain
conditions, methods (ii) and (iii) can be used to modify
the task permanently, as we will detail below.

Dynamics Shaping. In some problems, the physical
properties of the system can be changed to simplify the
task (Randløv, 2000). Changing the physical properties
corresponds to changes in the transition probabilities. Of
course, such a change will not always be possible.

Example: Dynamics Shaping for the GW. Consider the
5 × 5 GW, which – for the purposes of this example –
now includes several obstacles in the way of the agent,
see Figure 2 (left). For the purposes of shaping, the
obstacle near the goal can be removed (Figure 2, right),
and the resulting easier problem can be solved. Then, the
knowledge gained is transferred to the harder, original
problem with all the obstacles included. 2

Reward Shaping. One of the most popular shaping
techniques replaces the original reward function R by
a shaping reward function R′ , which guides the agent
toward learning a good policy faster (Singh, 1992; Dorigo
and Colombetti, 1998; Ng et al., 1999). Usually, R′ is
derived from R, e.g., by adding shaping rewards in certain
situations. For example, the so-called progress indicators
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Fig. 2. Dynamics shaping for the GW. The original prob-
lem (left) is simplified by removing the obstacle near
the goal (right).

(Matarić, 1997) are associated with specific goals and
provide a metric of improvement relative to those goals.
Under appropriate conditions, the optimal policy remains
the same when using R′, so the change can be permanent
(Ng et al., 1999).

The weak points associated with reward shaping are that
it requires significant design effort, it results in less au-
tonomous agents, and if done improperly it may lead to
unexpected (and undesirable) behavior.

Example: Reward Shaping for the GW: One progress
indicator that can be used in the GW of Figure 1 is a
direction-based reward. If the agent moves towards (away
from) the goal state, it receives a positive (negative)
additional reward:

R′(st, at, st+1) = R(st, at, st+1)+






6 if at =up or right, and st+1 6= st

−15 if st+1 = st

−9 if at=down or left

(5)

Note that collisions are also penalized more (second
branch), to prevent the agent from learning to prefer colli-
sions instead of going down or left. The reward change can
be permanent, since the optimal solution with R′ remains
the same as with R (go right along the upper edges of
GW; go up along the right edge; otherwise go either right
or up). 2

Action Shaping. Agents learning to reach a certain goal
by trial-and-error normally require a slow and laborious
search through the space of possible actions. Thus, con-
straining the initial size of the action space can signif-
icantly reduce the learning time and effort (Schlesinger
et al., 2000; Vereijken et al., 1992). Additionally, if the
actions removed do not appear at all in the optimal policy,
the simplification can be permanent. Note that removing
actions is not possible when all the actions are needed to
obtain a good policy.

Example: Action Shaping for the GW. Since the goal state
is in the upper-right corner of the GW (see Figure 1),
removing the actions ‘left’ and ‘down’ has no negative
effect, as we are sure that these actions do not occur along
the optimal paths (they are not in the optimal policy).
For the same reason, the simplification can be permanent.
Removing these two actions halves the action space. 2

State Shaping. In many goal-based tasks (i.e., tasks hav-
ing a goal state or region that must be reached), learning
is simpler closer to the goal, and becomes progressively

harder farther away from the goal (Boyan and Moore,
1995). This happens because the shorter paths to the
goal reduce the risk of prolonged fruitless exploration.
To accelerate learning in such tasks, learning can initially
start from a close neighborhood of the goal state, which
is then increased in size. The optimal solution is learned
by ‘growing’ it out from the goal state toward the rest of
state space.

Example: State Shaping for the GW. The initial position of
the agent can be moved closer to the goal, and the GW size
(the state space region that the agent can move in) can be
reduced at the same time. Without reducing the GW size,
learning may not be accelerated as much, because for any
initial state, exploration may drive the agent throughout
a large portion of the state space.

Meaningful GW sizes range from 2 × 2 to the original
5 × 5. The smaller GWs always contain the goal state at
their upper-right corner, see Figure 3. Two scenarios can
be considered: one-step transfer, and diagonally extending
the GW. For one-step transfer, a single smaller GW is
picked, and then the transfer to the original task is made.
For diagonally extending the GW, the size is gradually
increased, starting from the 2 × 2 GW until the original
5× 5 GW. 2

G

2x2

3x3

4x4

5x5

Fig. 3. State shaping for the GW. Each sub-GW is ren-
dered in a different style and color.

4. TRANSFER CRITERIA

If the task cannot be permanently modified, an essential
decision in shaping is to decide when to transfer learning
from an easier task to a more difficult one. In this section,
we propose two transfer criteria based on the agent’s
performance. The first criterion is based on the distance
between the current solution and the optimal one, while
the second criterion employs the empirical return from a
set of representative states. Learning is transferred when
the performance of the agent reaches an acceptable level
and no longer changes significantly.

Even when shaping is permanent and no transfer is needed,
the criteria developed are useful to decide when to stop
learning, and then judge whether shaping has accelerated
learning in comparison to starting from scratch.

4.1 Distance to the Optimum Criterion

The first criterion that we use relies on the distance be-
tween the current and the optimal solution. The distance is
measured using the number of time steps needed to reach
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the goal, making this criterion specific to minimum-time
goal-based tasks common in RL, such as GW navigation.

At the end of each trial k, the agent is initialized in
simulation in every feasible state and left to follow the
policy found at the end of the trial, keeping learning and
exploration turned off. Then, a (positive) trial score is
computed using:

Jdist
k =

1

card(S)

∑

s0∈S

(Tk(s0)− T ∗(s0)) (6)

where card denotes set cardinality, Tk(s0) is the number of
steps taken by the policy to reach the goal state starting
from s0, and T ∗(s0) is the optimal number of steps.
Learning is transferred when the trial score drops below a
threshold δdist for d consecutive trials:

Jdist
k′ < δdist, for k′ = k − d + 1, . . . , k − 1, k (7)

Note the criterion is only used after k ≥ d trials have
elapsed. Testing for d successive trials ensures that the
decrease is not accidental, but remains steady.

If convergence to the exact optimal solution is required,
then δdist = 0. However, this is not always desirable in
shaping, since a rough, suboptimal solution may still speed
up the learning in the original problem, without requiring
fine-tuning until it becomes optimal. In this case, δdist > 0,
and a good value will depend on the problem at hand.

Since this criterion guarantees the solution found is as close
to optimal as desired, it is very useful in the analysis of
shaping for minimum-time, goal-based tasks. However, it is
of limited use in general, also because it requires knowledge
of the optimal solution. Next, we provide a more general
criterion that works in any type of problem and does not
require prior knowledge.

4.2 Empirical Return Criterion

Similarly to the distance to the optimum criterion, for
the empirical return criterion the agent follows, after each
trial, its current policy from a set of initial states, keeping
learning and exploration turned off. However, this time
the number of steps or the optimal solution is not used;
instead, only the empirical return accumulated along the
trajectory is computed, leading to the trial score:

J ret
k =

1

card(S0)

∑

s0∈S0

R(s0) (8)

Rather than requiring good performance across the entire
state space, a smaller set S0 of representative initial states
can be employed. This is useful to focus the criterion on
interesting parts of the state space. Note that R(s0) can
be estimated with arbitrary accuracy even if there are
no terminal states, by using the fact that the return is

bounded by ‖R‖∞

(1−γ) , where ‖R‖∞ is the maximum absolute

reward. To ensure an accuracy εR > 0, a T -steps long

trajectory is sufficient, where T = ⌈logγ
εR(1−γ)
‖R‖∞

⌉.

Learning is transferred when the trial score no longer
changes significantly:

|J ret
k′ − J ret

k′−1| < δret, for k′ = k − d + 1, . . . , k − 1, k (9)

The criterion is only used after k > d trials have elapsed.

Like for the distance to the optimum, the threshold δret

is very important and a good value for it will depend on

the problem. A general guideline can be given, however,
by using the already mentioned bound on the return.
In particular, the difference between the scores of two

consecutive trials is – conservatively – at most 2‖R‖∞

(1−γ) , so

δret can be chosen as:

δret = β · 2
‖R‖∞
(1− γ)

(10)

where β is a small positive constant that (a) accounts for
the conservativeness of the bound, and (b) imposes how
stable the solution should be. Note that this criterion easily
generalizes to continuous-variable tasks.

5. SIMULATION RESULTS

In this section we investigate the effects of using the
two transfer criteria in shaping RL, for the GW problem
and the shaping techniques considered. In particular, we
compare the number of trials required to learn with and
without shaping, exploiting the proposed criteria to decide
when to transfer learning (as well as when to stop learning
in the original task, and in the shaped task when shaping
is permanent).

Throughout all the experiments, the transferred knowl-
edge is represented by the Q-table. This is a choice, and in
general (parts of) other RL elements could be transferred,
such as the policy or a learned model of the environment.
To more easily identify the various variants of tasks in
these experiments, the following naming convention will
be used: an easy task is a simplified version of the original
task, used during shaping; the shaped task is the original
task, solved at the end of the shaping process; and the
unshaped task is the original task, but solved from scratch,
without using shaping. When shaping is permanent, the
easy task is the same as the shaped task, and we use the
latter name.

Q-learning (2) with ε-greedy exploration (3) is used
throughout, with a constant learning rate α = 0.9 and
a constant exploration rate ε = 0.1. The discount factor
γ is 0.95. In each task (easy, shaped, or unshaped) the
maximum number of trials for which learning is allowed
to run is 200, and the maximum number of steps in each
trial is 300.

All four shaping methods are applied, using the GW
examples described in Section 3. Due to space limitations,
we will only discuss in detail two of the experiments:
modifying the action space (permanently simplifying the
task), and modifying the initial state, the second scenario,
i.e., gradually extending the GW (temporarily simplifying
the task). Table 1, given at the end of this section,
summarizes the results of all the experiments.

5.1 Results for the Distance to the Optimum Criterion

The parameters of the distance to the optimum criterion
are d = 10, δdist = 0, which means the solution must
be optimal for 10 consecutive trials. The 0 value for δdist

was chosen because it gives the strictest criterion, and in
this sense provides a lower bound on the improvement in
performance that shaping can achieve.

First, action shaping is discussed. Figure 4 compares the
results when the problem is solved from scratch (left), to
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those obtained by solving the problem with shaping, after
permanently removing the actions ‘down’ and ‘left’ (right).
In each graph, the line represents the mean performance
across 30 independent runs of the experiment, while the
shaded region represents the 95% confidence intervals
on this mean. 1 Removing the two actions significantly
increases the learning speed: the performance index of the
original task converges at trial 148 while for the shaped
task it converges at trial 48. 2

Fig. 4. Distance to the optimum: action shaping. Unshaped
task (left), shaped task (right).

For state shaping, we consider the second scenario of the
example in Section 3, i.e., gradually increasing the size of
the GW from 2×2 to 5×5. The results are shown in Figure
5. For the 2×2 GW, learning converges at trial 25, for the
3× 3 GW at trial 43, for the 4× 4 at trial 65, and for the
5 × 5 GW converge at trial 41. Adding all these numbers
together, shaping RL requires 174 trials, which is larger
than starting form scratch (148, see Figure 4, left). Note
that the experiments are left to run for a longer number
of trials just to illustrate that they have indeed converged,
but learning is in fact transferred as soon as the transfer
criterion is satisfied.

Fig. 5. Distance to the optimum: state shaping. The easy
tasks are 2× 2 GW (top left), 3× 3 GW (top right),
4× 4 GW (bottom left), and the shaped, final task is
the 5× 5 GW (bottom right).

1 In all the figures, solid line and blue shade are used for the
unshaped task, dashed line and green shade are used for the easy
task (not appearing in this particular figure), and dashed-dotted line
and pink shade are used for the shaped task. The linestyle can be
used to identify the graphs in grayscale print.
2 A mean value for the number of trials to convergence is reported,
by considering that the algorithm has converged d trials after the
mean distance becomes equal or less than the threshold δdist.

5.2 The Empirical Return Criterion

For the empirical return criterion, we only consider one
representative initial state (S0 is a singleton consisting
of this state), making this criterion less strict than the
distance to the optimum. This initial state is the lower-
left corner of the GW, and is representative because it
is the furthest from the goal. As for the distance to the
optimum, we use d = 10 and δret = 0, which means the
score obtained must be constant for 10 consecutive trials.

Like before, we first consider action shaping. Figure 6
shows the results for the unshaped task (left) and the
shaped task (right). The empirical return of the shaped
task becomes constant at trial 32, while for the unshaped
task it becomes constant at trial 89, so action shaping has
significantly improved the learning speed.

Fig. 6. Empirical return: action shaping. Unshaped task
(left), shaped task (right).

Figure 7 shows the results for state shaping, the second sce-
nario (gradually increasing the GW). As the figure shows,
the empirical return for the 2×2 GW becomes constant at
trial 17. The empirical return becomes constant at trials
17, 25, and 31, respectively for the 3× 3, 4× 4, and 5× 5
GW. The total number of trials is 90, 1 trial more than
starting from scratch.

Fig. 7. Empirical return: state shaping. The easy tasks are
2× 2 GW (top left), 3× 3 GW (top right), 4× 4 GW
(bottom left), and the shaped, final task is the 5× 5
GW (bottom right).

5.3 Discussion and Conclusions

Table 1 summarizes the results for all the four shaping
methods and both transfer criteria. The dynamics and
reward shaping experiments were constructed as in the
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Table 1. Summary of the results.
‘State shaping I’ is the one-step scenario for state shaping, while ‘state shaping II’ is the gradual-
increase scenario. For one-step state shaping, the size of the easy task is mentioned, e.g., 3× 3.

Criterion: Distance to the optimum Empirical return

Learning speed ⇒

⇓ Type of shaping
Unshaped
[no. of trials]

Easy+shaped
[no. of trials]

Improvement
[percent]

Unshaped
[no. of trials]

Easy+shaped
[no. of trials]

Improvement
[percent]

Dynamics shaping 153 148 3.26 96 95 1.04

Reward shaping 148 93 37.16 89 55 38.2

Action shaping 148 48 67.56 89 32 64.04

State shaping I 2× 2 148 171 -15.54 89 88 1.12

State shaping I 3× 3 148 164 -10.81 89 72 19.10

State shaping I 4× 4 148 153 -3.37 89 68 23.59

State shaping II 148 174 -17.56 89 90 -1.12

examples of Section 3 (their results are not reported in
figures).

The first important conclusion is that with both perfor-
mance indices, the best shaping method is modifying the
action space, followed by reward shaping. Removing two
actions gives the largest gain because it effectively halves
the space of solutions the agent must explore (and many
of the remaining solutions are optimal, as the difference
between going up and going right is only relevant at the
edges of the domain). Reward shaping works well because
it adds significant information about the desired solution
to the reward function, see (5). Dynamics shaping provides
minimal gains, and state shaping can even lead to an
increase in total learning time.

In particular, state shaping is detrimental when the dis-
tance to the optimum criterion is used, while it can offer
benefits with the empirical return criterion. This latter
outcome illustrates that with the zero threshold we chose,
the distance to the optimum criterion provides a lower
bound on the benefits of shaping, being for instance much
stricter than the empirical return criterion.

A critical point to be considered when analyzing the num-
bers in Table 1 is that they represent the largest number
of trials to solve a certain task over 30 experiments. Thus,
these numbers show the worse case number of trials. The
results show that even in the most conservative way shap-
ing can improve the speed of learning. It is also important
to note that shaping is not guaranteed to always increase
the learning speed – indeed, it can sometimes decrease it.
Finally, we mention that the characteristics of the problem
determine which shaping methods are applicable to it.

6. SUMMARY AND FUTURE WORK

In this paper, we proposed two novel criteria to decide
when to transfer learning from easier to more difficult
tasks, in the context of shaping RL. We used these cri-
teria to study how several types of shaping influence the
learning speed, for a GW navigation example. Unlike in
most of the results reported in the literature, we considered
the total learning time, including the time spent in the
easy task(s), when assessing the benefits of shaping. In
additional studies, not reported here, we confirmed the
efficiency of the empirical return criterion for a more
complex, elevator control problem.

We measured the learning speed by the number of trials
needed to achieve a certain level of performance. Other

measures of the learning speed are possible, such as the
total number of steps that the agent takes until reaching a
given performance level. The overall effects of shaping may
change when different measures of learning speed are used,
although the transfer criterion itself remains unaffected.
Another interesting question is whether it could sometimes
be useful to return to easier tasks if performance in
the more complex tasks does not sufficiently improve.
Moreover, there is considerable room – and need – for more
theoretical work in shaping RL. A possible theoretical
direction is to formally characterize which ‘easy’ tasks can
improve the learning speed in a given original task.
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