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Abstract: We show that explicit model predictive control (EMPC) laws, or more generally
continuous piecewise affine control (PWA) laws on polyhedra, can be represented by multiway
trees with two important features: (i) Their height can be reduced arbitrarily by increasing
their order m (i.e. the number of binary tree nodes hidden in each multiway node). (ii)
A multiway node can be evaluated as fast as a binary node with a simple but massively
concurrent (or “parallel”) procedure for m ≫ 1. As a result the control law evaluation can be
evaluated considerably faster than with a binary tree. Furthermore, we show that a multiway
tree representation of an EMPC control law can be derived from the corresponding binary tree
representation with a simple algorithm. Finally, we demonstrate that programmable logic devices
are ideally suited for an implementation. First tests show that EMPC control laws with several
thousand hyperplanes can be evaluated in a few clock cycles on compact, low-cost, low-power
programmable logic devices.
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1. INTRODUCTION

Model predictive control (MPC) has been acclaimed for its
ability to handle constrained multivariable systems. MPC
generally is computationally demanding, however. The
number of potential applications of MPC has increased
ever since it has been shown that MPC control laws
can be computed explicitly for large classes of problems
(Bemporad et al., 2002a,b). Once available, an EMPC
control law can be evaluated in two simple steps: (1)
searching for the polyhedron that contains the current
state of the system, and (2) evaluating the affine function
that applies on this polyhedron. While algorithmically
simpler than online MPC, step (1) still turns out to
be computationally demanding whenever the number of
polyhedra is large.

Tøndel and Johansen (2002) and Tøndel et al. (2003) pro-
posed to arrange the hyperplanes that define the polyhedra
in a binary search tree. Since the height h of a height-
balanced binary tree T with Nint internal nodes is bounded
above by h ≤ 1.4404 log2(Nint+1)+1 (Adelson-Velskii and
Landis, 1962), the time needed to search the valid polyhe-
dron grows logarithmically in the number of hyperplanes.
Notice that the binary tree needs to be height-balanced for
this bound to hold. Other tree-based approaches have been
proposed for approximate EMPC (Johansen, 2004) and
recently for the more general problem of PWA functions
on regular grids (Oliveri et al., 2009; Storace and Poggi,
2009). These tree-based representations of EMPC control
laws and PWA functions have successfully been used in
implementations on programmable logic devices (Oliveri
et al., 2009; Storace and Poggi, 2009; Johansen et al.,
2007).
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The purpose of the present paper is twofold. We show that
EMPC control laws, or more generally PWA functions
on polytopes, can be represented by a multiway tree
TM that has a smaller height hM than the binary tree.
More specifically, hM ≤ 1.4404 logm+1(Nint + 1) + 1,
where m is the order of the multiway tree, i.e. (m + 1)
is the maximum number of children of a node in the
new tree, which is assumed to be a natural power of
2 for simplicity (see Sect. 3). As a consequence of the
smaller height, the search for the valid polyhedron requires
fewer steps. Secondly, we show that the nodes of the
multiway tree TM can be evaluated as fast as a node of
the binary tree T even for m ≫ 1 with a simple, massively
concurrent circuit. We claim that EMPC control laws with
a dozen to several thousand hyperplanes can be evaluated
in a few (< 10) clock cycles on compact, low-cost, low-
power programmable logic devices. Since current field
programmable gate arrays (FPGA) have clock frequencies
of about 1GHz, EMPC on the nanosecond time scale will
soon be feasible.

2. BACKGROUND AND NOTATION

We consider LTI systems of the form

x(t + 1) = Ax(t) + Bu(t),
y(t) = Cx(t),

(1)

where the constraints ymin ≤ y(t) ≤ ymax, umin ≤ u(t) ≤
umax must be obeyed for t ≥ 0. In Eq. 1 x(t) ∈ X ⊆ R

nx ,
u(t) ∈ U ⊆ R

nu and y(t) ∈ R
ny are state, input and output

variables, and X and U are polyhedra. Assume (A, B) is
stabilizable, and assume we intend to regulate the system
(1) to the origin.

MPC solves, at each sampling time instance t, the follow-
ing optimization problem in U = (uT

t|t, . . . , u
T
t+N−1|t)

T .

min
U

J(U, x(t)) (2)
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s.t. xt+k+1|t = Axt+k|t + But+k|t, k ≥ 0,
yt+k|t = Cxt+k|t, k ≥ 0,
xt|t = x(t),
ut+k|t = Kxt+k|t, hu ≤ k < hy

ymin ≤ yt+k|t ≤ ymax, k = 1, . . . , hc,
umin ≤ ut+k|t ≤ umax, k = 1, . . . , hc,

(3)

where

J(U, x(t)) = xT
t+hy |t P xt+hy|t +

hy−1
∑

k=0

(

xT
t+k|t Q xt+k|t + uT

t+k R ut+k

)

with Q = QT � 0, R = RT ≻ 0, and P = PT �
0. Furthermore, K is a gain matrix, xt+k|t denotes the
predicted state vector at time t+k, and hy, hu ≤ hy, and hc

are the output, input and constraint horizon, respectively.

Bemporad et al. (2002b) show that the solution of the
MPC optimization problem (2), (3) has the following
structure. There exist a finite number nP of nonempty
polytopes Pi of the form

Pi =
{

x ∈ X
∣

∣aT
i1

x + bi1 ≤ 0, aT
i2

x + bi2 ≤ 0, . . .
}

, (4)

where a finite number of at least nx + 1 inequalities occur
for each polytope Pi, and where this number depends on i.
These polytopes have pairwise disjoint interiors, and their
union is X . We refer to equations of the form

hi(x) = aT
i x + bi, (5)

where ai ∈ R
nx , ai 6= 0, and bi ∈ R, as hyperplane

equations, since hi(x) = 0 defines a hyperplane in R
nx .

The control law u : X → U that results from solving (2)
and (3) is continuous and can be stated in the form

u(x) =











F1 x + g1 if x ∈ P1

...
...

FnP
x + gnP

if x ∈ PnP
,

(6)

where Fi ∈ R
nu×nx and gi ∈ R

nu , i = 1, . . . , nP

(Bemporad et al., 2002a).

Polytopes as defined in Eq. (4) can conveniently be rewrit-
ten by using index sets (Tøndel and Johansen, 2002).
Specifically, there exist index sets I−1 , . . . , I−nP

with I−j ⊆
{1, . . . , nh} and I+

1 , . . . , I+
nP

with I+
j ⊆ {1, . . . , nh} for all

j = 1, . . . , nP such that

Pi =
{

x ∈ X
∣

∣hj(x) ≤ 0 ∀j ∈ I−i , hj(x) > 0 ∀j ∈ I+
i

}

, (7)

where nh denotes the number of hyperplanes. This rep-
resentation suggests to evaluate each hyperplane equation
only once for a given x, and to record the sign of the result.
More precisely, let T be a height-balanced binary tree of
the type shown in Fig. 1(a), where each internal node
represented by a filled circle corresponds to a hyperplane
hi(x). Define the mapping πT (x) : X → {0, 1}nh by its
components πT,1(x), . . . , πT,nh

(x) where

πT,i(x) =

{

1, if aT
i x + bi ≤ 0

0, otherwise.
(8)

Then x ∈ Pi if and only if

πT,j(x) =

{

1, if j ∈ I−i
0, if j ∈ I+

i

for all j ∈ I−i ∪ I+
i . (9)

Note that πT,j(x) is defined for all hyperplanes j =
1, . . . , nh, while Eq. (9) involves only j ∈ I−i ∪ I+

i , which

is in general only a small subset of the indices of all
hyperplanes.

3. MULTIWAY TREES FOR CONCURRENT
EVALUATION OF EMPC LAWS

Consider a rooted binary tree T with N nodes. The length
of the path from the root node to a node ni is called the
depth of the node ni, where the depth of the root node is
zero by convention. The height of the tree T refers to the
largest depth that can be found in the tree. The set of all
nodes of a binary tree that share the same depth d is called
the dth level of the tree. A node without children is called
leaf or external node. All other nodes are called internal
nodes. By internal height of T we refer to the height of the
tree T̃ that results by omitting all external nodes from T .
A binary tree is called full if all nodes except for the leaf
nodes have two children. A binary tree is called perfect
if it is full and all leaves are on the same level. A binary
tree is called complete if all its levels except for possibly its
deepest one contain the maximum number of nodes and
all nodes are as far left as possible. A binary tree is called
height-balanced if, for any node, the heights of the left and
right subtree of this node differ by at most one. A binary
tree is called leftist if, for any node, the height of the left
subtree at this node is not smaller than the height of the
right subtree at this node.

As an extension of the binary tree we introduce a multiway
tree with certain properties. A tree is called tree of order
m if its root node has more than one and at most (m + 1)
outgoing edges, all of its internal nodes except the root
node have exactly one ingoing edge and at least one and
up to (m + 1) outgoing edges, and its external nodes have
exactly one ingoing and no outgoing edges. A multiway
node of the form of an internal node is called an m-node
for short. A tree of order m is called height-balanced, if,
for any of its internal nodes, the heights of any two of its
subtrees at this node differ by at most one. The notions of a
leaf, an internal node, and an external node are understood
as in the binary case. We refer to a height-balanced tree
of order m as an M-tree for short.

An M -tree can be constructed from a binary tree by
merging binary nodes into m-nodes. We describe how to
construct an m-node in Alg. 1 and Def. 1. An M -tree can
then be constructed according to Alg. 2.

Algorithm 1. Let T be a height-balanced full leftist
binary tree that represents an EMPC control law, i.e. each
internal node of T represents a hyperplane as defined in
Eq. (5) and each external node of T represents a polytope
as defined in Eq. (4). Assume that T has Nint ≥ 1 internal
nodes. Let m ∈ N, m > 0 be arbitrary. Construct a subtree
S of T by traversing across the internal nodes of T as in
a breadth first search starting at the root node of T until
min(m, Nint) internal nodes of T have been visited. By
λ1, . . . , λk, k ≤ m + 1 refer to the leaves of S, where the
numbering is arbitrary.

Algorithm 1 requires the tree T to be leftist. This condition
is merely added for convenience. Without proof we claim
that for any binary tree T that fulfills the conditions of
Alg. 2 there exists a leftist binary tree T̃ that represents
the same EMPC control law as T . T̃ can be constructed
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from T by inverting the signs of some of its hyperplanes
and interchanging left and right children accordingly.

The subtree S that results from Algorithm 1 is absorbed
into a new type of node.

Definition 1. (m-node and m-subtree) Let T and m be
as in Alg. 1. Apply Alg. 1 to T . We call the resulting
subtree S m-subtree. By m-node we refer to the node of
order m that contains the internal nodes of S and that
has as its outgoing edges the edges that lead to the nodes
λ1, . . . , λk that result from Alg. 1.

Note that by construction the internal nodes of S are
internal nodes of T , while the leaves of S may be internal or
external nodes of T . Algorithm 1 and Def. 1 are illustrated
in Fig. 1.
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Fig. 1. (a) Height-balanced leftist binary tree. (b) Subtree
S which defines an m-node for m = 7 acc. to Def. 1.
(c) Subtree S defines an m-node. (d) Shorthand
notation with m-node. Internal and external nodes
are represented by full and open circles, respectively.

An m-node resp. m-subtree of a height-balanced leftist
binary tree T need not be located at the root node of T .
Since any subtree of T is a heigh-balanced leftist binary
tree, Alg. 1 may be applied to any internal node of T . This
is apparent from Fig. 2.

Based on the notion of an m-node we can now introduce
a simple algorithm for the construction of an M -tree.

Algorithm 2. Let T and m be as in Alg. 1. The following
steps provide an M -tree denoted by TM that represents the
same EMPC control law as T .

0 Let T̃ := T .
1 Apply Alg. 1 to the root node of T̃ . Replace the

resulting subtree S of T̃ by the m-node that is defined
by S according to Def. 1. Let λ1, . . . , λk be as in
Alg. 1.

3 For ν = λ1, . . . , λk, carry out the following steps.
3.1 If ν is an external node of T , skip it and continue

with the next leaf at 3.
3.2 Apply algorithm 2 to the subtree of T̃ that

emanates at root node ν.
4 Set TM := T̃ and return TM .

Algorithm 2 and the M -tree TM are illustrated in Fig. 2.
We claim without proof that TM and T represent the same

control law. This is apparent, since the m-nodes of TM

merely absorb and hide some of the binary nodes of T .

(a)

(b)

Fig. 2. (a) Example for a height-balanced leftist binary
tree with m-nodes for m = 4. (b) M -tree that results
for (a) and m = 4.

3.1 Bound on M-tree height

The height of the binary tree T and the height of the M -
tree that results from applying Alg. 2 to T are related as
stated in Prop. 1 and Cor. 1.

Proposition 1. (upper bound on height of M -tree) Let
T be a height-balanced full binary tree that represents an
EMPC control law, i.e. each internal node of T represents a
hyperplane as defined in Eq. (5) and each external node of
T represents a polytope as defined in Eq. (4). Let m ∈ N,
m > 0 be arbitrary. Assume that T has Nint ≥ 1 internal
nodes. By hint denote the internal height of T . By TM

denote the M -tree that results from applying Alg. 2 to T .
Then the height hM of TM is bounded above according to

hM ≤ hint

floor (log2 (m + 1))
+ 1 =: hmax

M . (10)

A sketch of the proof of Prop. 1 is given in the appendix.

Since the height h of any height-balanced binary tree with
N nodes is bounded above according to Adelson-Velskii
and Landis (1962) by

h ≤ hFib(N) := log2 (N + 1)/log2

(

1 +
√

5

2

)

(11)

we have the following corollary, where we assume m +
1 = 2k, for some k ∈ N for simplicity.

Corollary 1. Let the assumptions and the notation be as
in Prop. 1. By hFib(N) denote the height of the Fibonacci
tree with N nodes as defined in Eq. (11). Assume m + 1
is a natural power of 2. Then

hM ≤ hFib(Nint)

log2 (m + 1)
+ 1 (12)

≤ 1.4404 logm+1 (Nint + 1) + 1. (13)

In Eq. (13) we used 1/ log2(
1+

√
5

2
) ≤ 1.4404.

The bound on hM stated in Prop. 1 is tighter than the
bound stated in Cor. 1. Corollary 1 is stated, however,
because it makes the logarithmic dependency with a basis
m + 1 explicit.

We note that the M -tree and its construction according
to Alg. 2 are reminiscent of the B-tree and its variants
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and their construction by bulk loading. It can be shown
by example, however, that bulk loading does in general
not result in a multiway tree that represents the same
piecewise affine function as the original binary tree.

3.2 Fast evaluation of m-nodes

As anticipated at the beginning of Sect. 3 an m-node
is the key to a speedup of the evaluation of the EMPC
control law. The speedup is obtained by a concurrent (or
“parallel”) evaluation of the m binary nodes contained
in each m-node. In order to introduce the concurrent
approach to evaluating an M -tree TM , we need to relate
the paths from the root node of TM to its leaves to the
mapping π introduced in Sect. 2. This is done in the
following definition.

Definition 2. (path p and mapping σS) Let T be an
arbitrary full binary tree with Nint ≥ m internal nodes
n1, . . . , nNint

and corresponding hyperplanes h1, . . . , hNint

of the form (5), where m ∈ N, m > 0 is arbitrary. Let
S be an m-subtree that results from applying Alg. 1
to T . Denote the nodes of S and the corresponding
hyperplanes by ni1 , . . . , nim

and hi1 , . . . , him
, resp., and

assume without restriction that ni1 is the root of S. By
λ1, . . . , λm+1 denote the leaves of S that result from Alg. 1.
Identify any leaf λk of S with the unique path p from ni1

to λk, or equivalently, with the mapping σS(k) defined by
its m components

σS,j(k) =







1 if nij
and its left child lie on p

0 if nij
and its right child lie on p

−1 otherwise,
(14)

where j = 1, . . . , m.

If σS,j(k) = −1 for a j ∈ {1, . . . , m}, then node nij
and

hyperplane hij
do not play a role for the path p from the

the root ni1 to the leaf λk. It is therefore sufficient to
consider the subsequence of σS,1, . . . , σS,m that contains
only those entries that are either 1 or 0, which can formally
be defined as follows.

Definition 3. (condensed mapping σ̄) Let the assump-
tions and σS be as in Def. 2. Let k ∈ {1, . . . , m} be
arbitrary. By j1, . . . , jm̄ denote the largest subsequence
of 1, . . . , m such that σS,jl

(k) 6= −1 for all l = 1, . . . , m̄.
Define σ̄S(k) by its m̄ components

σ̄S,l(k) = σS,jl
(k), l = 1, . . . , m̄. (15)

As discussed in Sect. 2 the binary search on T can be
represented by πT (x) for any binary tree T that fulfills the
conditions stated in Prop. 1. For the subtree S from Def. 2
this mapping πS(x) is defined on X by the components

πS,j(x) =

{

1 if hij
(x) ≤ 0

0 if hij
(x) > 0,

j = 1, . . . , m. (16)

In analogy to σ̄S we define π̄S by its m̄ components

π̄S,l(x) = πS,jl
(x), l = 1, . . . , m̄, (17)

where j1, . . . , jm̄ and m̄ are as in Def. 2. Then carrying
out a binary search for x ∈ X on S results in the leaf λk

if and only if, for all j = 1, . . . , m with σS,j(k) 6= −1,

σS,j(k) = πS,ij
(x), (18)

or equivalently, if, for all l = 1, . . . , m̄,

σ̄S,l(k) = π̄S,l(x). (19)

Since the l.h.s. of Eqs. (18) and (19) are independent of
x, these terms can be evaluated before the runtime of the
EMPC controller. On the other hand, the components of
πS,ij

that constitute the r.h.s. of Eqs. (18) and (19) are
independent of one another. Therefore, the outcome of the
comparison in Eq. (18) or Eq. (19) does not change if the m
hyperplane equations are evaluated simultaneously instead
of sequentially. This suggests the following algorithm for
the concurrent (or “parallel”) evaluation of an m-node.

Algorithm 3. Let S be an m-subtree of an M -tree TM .
Let the internal nodes ni1 , . . . , nim

of S with corresponding
hyperplanes hi1 , . . . , him

, the leaves λk, k = 1, . . . , m + 1,
and the mapping σS be as in Def. 2. Furthermore, assume
an x ∈ X is given. The following algorithm returns a λk

such that a polytope Pl with x ∈ Pl is a leaf of the subtree
of T with root node λk.

1 For j = 1, . . . , m calculate πS,j(x), simultaneously for
all j, and collect the result in the sequence of m bits
Π = (πS,1(x), . . . , πS,m(x)).

2 For k = 1, . . . , m+1, carry out the following compar-
isons simultaneously for all k:
2.1 Obtain the subsequence

σ̄S(k) = (σ̄S,1(k), . . . , σ̄S,m̄(k)) (20)

from σS according to Def. 3 and the subsequence

π̄S(x) = (π̄S,1(x), . . . , π̄S,m̄(x)) (21)

from πS(x) according to Eq. (17).
2.2 If σ̄S(k) = π̄S(x) return k.

The mappings σS , σ̄S , πS , π̄S and Alg. 3 can be defined
accordingly if the requirement Nint ≥ m is dropped in
Def. 2. We state only the case Nint ≥ m in order to avoid
a too tedious notation.

4. IMPLEMENTATION AND EXAMPLES

Algorithm 3 can efficiently be carried out with the circuit
sketched in Fig. 3. Consider Fig. 3(a) first. Each MULT block
calculates one product aij ,l xl, l ∈ {1, . . . , n}, where x ∈
R

n is the current state space vector. These n independent
multiplications can be carried out with n parallel MULT

blocks as sketched in Fig. 3(a). Subsequently, the SUM

block carries out n − 1 additions to calculate aT
ij

x, and

the LEQ block compares aT
ij

x to bij
to give πS,j as defined

in Eq. (16). The components of πS can be calculated
independently as indicated in Fig. 3(b), where the circuit
from Fig. 3(a) is repeated m times. This concludes step 1
of Alg. 3. The COMP block in Fig. 3(b) implements step 2
of Alg. 3 as a bitwise comparison of the binary numbers
π̄S(k) and σ̄S(k).
Two levels of concurrency (or “parallelism”) are apparent
from Fig. 3. For one, the multiplications necessary to
evaluate a single hyperplane equation (5) can be carried
out simultaneously. Secondly, all m hyperplanes of an m-
node can be treated simultaneously. As a result, an m-
node with m̄ binary nodes and an m-node with m̂ > m̄
nodes can be evaluated in the same period of time, as long
as the hardware resources necessary to implement the m̂-
fold concurrency sketched in Fig. 3(b) are available. In
particular this statement holds for m̄ = 1 and m̂ > 1,
i.e. an m-node can be evaluated as fast as a binary node.
It is stressed, however, that the number of necessary MULT

blocks grows bilinearly in the concurrency m and the state
space dimension nx.
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Fig. 3. Sketch of a simple circuit that implements Alg. 3.
Diagram (a) details the shaded parts of diagram (b).

Examples

The circuit sketched in Fig. 3 can conveniently be im-
plemented on a programmable logic device such as an
field programmable gate array (FPGA) using a hardware
description language, e.g. VHDL or Verilog. Many FPGAs
provide dedicated circuit blocks for fast integer multipli-
cations, which are ideally suited to implement fast MULT

blocks, where we assume that real numbers are represented
by an appropriate fixed point format. The SUM and LEQ

block correspond to simple VHDL or Verilog language
elements. The COMP block can be implemented as a com-
parison of the binary numbers π̄S(k) and σ̄S(k) with a
bitwise NXOR operation.

We considered the following three systems, which we refer
to as Example 1, 2, and 3, respectively. By I we denote
the identity of the appropriate dimension.

A =

[

1 1
0 1

]

, B =

[

1
0.5

]

, C =

[

1 0
0 1

]

,

where Q = I, R = 1, −1 ≤ u ≤ 1;

A =

[

1 1 1
0 1 1
0 0 1

]

, B =

[

1
1

0.5

]

, C =

[

1 0 0
0 1 0
0 0 1

]

,

where Q = I, R = 1, −1 ≤ u ≤ 1; and

A =







1 1 1 1
1 1 1 1
0 0 1 1
0 0 0 1






, B =







1 1 1 1
1 1 1 1
1 1 0.5 0.5

0.5 0.5 0.5 0.5






, C = I,

where Q = I, R = 0.01 · I, (−1,−1,−1,−1)T ≤ u ≤
(1, 1, 1, 1)T . The first example is a double integrator sys-
tem that is frequently considered in the EMPC literature.
Examples 2 and 3 are not related to actual systems but
have merely been chosen to generate EMPC control laws

with a useful number of polytopes. In all calculations the
prediction and control horizon are set equal and denoted
by H .

Test results are summarized in Tab. 1. The symbols hint,
hM , hmax

M , ncyc, ϕ, and emr denote the internal height of
the binary tree that represents the EMPC law, the height
of the M -tree, the upper bound on the height of the M -
tree from Eq. (10), the maximum number of cycles on the
FPGA needed to evaluate the EMPC control law with
the M -tree, the fraction of the FPGA hardware resources
(slices) used, and a measure of the error explained below.
For each of the three examples we increased m until either
m + 1 would have exceeded the hardware resources of the
FPGA (rows 8, 12, 17, 21), or until the tree height cannot
be reduced any further, because an M -tree resulted that
consisted of only a root node (hM = 0, rows 4, 8, 26).

All circuits were defined in VHDL with the tool chain
sketched in Fig. 4 and tested with 104 randomly generated
points x ∈ X . The error emr given in Tab. 1 for example

circuit synthesis 

for simulation

hardware circuit

synthesis

ModelSim

Simulator
FPGA

automatic 

testing

MPC

EMPC binary tree

leftist 

binary tree
M-tree

system

MPT

MATLAB

controller

hardware

MATLAB

VHDL

simulation

automatic 

testing
MATLAB

VHDL

VHDL code

generation

Fig. 4. Toolchain. Circuits are synthesized with Xilinx ISE
Release 12.2 (NT). ModelSim refers to the ModelSim
XE III 6.5c simulator.

1 was calculated by determining the absolute relative
error for each random x between u(x) as calculated by
the circuit proposed here and the result provided by the
MPT toolbox (Kvasnica et al., 2004) with single precision
floating point numbers, and by averaging over all 104

absolute relative errors. Errors reported in Tab. 1 are
within the expected rounding errors that arise due to the
fixed point representation. For all reported results, the
polyhedron determined by the FPGA implementation was
equal to the polydron determined by matlab with the same
fixed point representation.

The circuits for examples 2 and 3 have been tested in
the ModelSim simulator. For 104 random points x ∈
X u(x) as evaluated in ModelSim were equal to u(x)
evaluated with the MPT toolbox, where the same fixed
point representation was used in ModelSim and matlab.

Our results demonstrate that an m-node can be evaluated
in one clock cycle with the circuit architecture sketched
in Fig. 3. Evaluating the r.h.s. of u(x) as defined in
Eq. 6 requires another clock cycle. Note the described
timing is consistent with ncyc = hM + 2 in Tab. 1. While
the FPGA used for testing here is not particularly fast
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(Xilinx Spartan 3-E, 50MHz, i.e. clock cycle time 20ns),
the control action u(x) can be calculated in no more
than 100ns for all the examples treated here with the
respective highest level of concurrency m 1 . We stress
that the number of cycles depends on details such as the
availability of resources such as dedicated multipliers and
memory on the particular hardware.

The examples corroborate the theoretical result on the
tree height reduction and the resulting speedup in EMPC
control law evaluation stated in Prop. 1.

Table 1. Summary of test results.2

# H nP nh hint m hM hmax
M

ncyc ϕ emr

Example 1

1 2 15 19 4 5 2 3 4 11% 0.39%
2 2 15 19 4 10 1 2.3̄ 3 14% 0.37%
4 2 15 19 4 20 0 2 2 25% 0.79%

5 3 19 27 4 5 2 3 4 12% 0.43%
6 3 19 27 4 10 1 2.3̄ 3 15% 0.46%
8 3 19 27 4 27 0 2 2 48% 0.50%

9 4 23 30 5 5 2 3.5 4 12% 0.33%
10 4 23 30 5 10 1 2.6̄ 3 15% 0.66%
12 4 23 30 5 27 1 2.25 3 92% 0.38%

13 5 25 32 5 5 2 3.5 4 12% 0.31%
14 5 25 32 5 10 1 2.6̄ 3 15% 0.41%
17 5 25 32 5 27 1 2.25 3 92% 0.28%

18 10 35 35 6 5 2 4 4 13% 0.37%
19 10 35 35 6 10 1 3 3 16% 0.66%
21 10 35 35 6 27 1 2.5 3 95% 0.23%

Example 2

22 5 129 275 9 5 3 5.5 5 ModelSim
25 5 129 275 9 100 1 2.5 3 ModelSim
26 5 129 275 9 500 0 2.125 2 ModelSim

Example 3

27 5 1657 6667 14 6 5 8 7 ModelSim
28 5 1657 6667 14 100 2 3.333 4 ModelSim

5. CONCLUSIONS

We introduced a multiway tree for the representation of
explicit solutions of MPC problems, and an algorithm for
the construction of such a multiway tree from a EMPC
law binary tree. The height of the proposed multiway tree
of order m is of order logm+1(nh + 1), where nh denotes
the number of hyperplanes in the EMPC control law.

The time needed to evaluate a multiway tree node was
shown not to depend on m. Therefore, an m-node can
be evaluated as fast as a binary node (m = 1), if
computational resources suffice to evaluate m > 1 binary
tree nodes simultaneously. We proposed a simple circuit for
the concurrent evaluation of an m-node with m > 1, which
can conveniently be implemented on a programmable logic
device. The concurrency m is only limited by the resources
that are available on the programmable logic device.

The multiway tree, the algorithm for its construction, and
the circuit for its evaluation were successfully tested for
values of m up to m = 27 in actual hardware circuits,
and up to m = 500 in a commercial VHDL simulator. We
note that the example size is currently only limited due to
memory limitations on the 32bit operating system used for
1 At time of submission (10/2010), the fastest FPGA available were
> 10 times faster and provided a larger number of MULT blocks
than the one used here.
2 all results obtained with Xilinx Spartan 3-E Speed Grade-4
(xc3s500e-4fg320), 50MHz, 18bit fixed point, fraction length 10

circuit synthesis. In all examples we were able to decrease
the number of clock cycles needed to evaluate the EMPC
control law by increasing m as anticipated theoretically.
For the particular systems treated here, for example, this
upper bound was ncyc ≤ 5. At a typical clock frequency of
500MHz of a current FPGA, this corresponds to an upper
bound of 10ns on the EMPC control law evaluation time
for the example size treated here.

The circuits used here are considerably simpler than even
the simplest microprocessor. It is therefore reasonable to
expect that a much higher concurrency can be achieved
with a programmable logic device than with a micropro-
cessor, if the same hardware technology is used for both.
Clearly, the low power consumption of programmable logic
devices and their low cost are additional benefits.

6. APPENDIX

We give a sketch of the proof of Prop. 1. An m-node is called full if it
contains m binary nodes. It is called terminal if none of its children
are m-nodes and called nonterminal otherwise. Without restriction
we assume that T is leftist; see the comment below Alg. 1. It can be
shown that every nonterminal node of an M -tree that results from
Alg. 2 is full by construction. Furthermore, it can be shown that
for any m-subtree S that corresponds to a nonterminal m-node that
results from applying Alg. 2 to T , the length l of any path from the
root node of S to any of its leaves that is an internal node of T is
bounded according to

l ≥ floor(log2(m + 1)). (22)
For a path p from the root node of T to any of its leaves, there exists

a sequence of m-nodes q1, . . . , qk, qk+1 through TM that p passes

through. Since each of them has at least one child that is an m-node,

the nodes q1, . . . , qk are nonterminal, thus full, consequently (22)

applies. This implies lp ≥ k (floor(log2(m + 1))) + 1, for the length

lp of p where the trailing 1 accounts for qk+1, which contains at least

one internal node of T by construction. Substituting lp ≤ hint and

solving for k results in k + 1 ≤ hmax
M

. Since the path p is arbitrary,

this proves the desired result.
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