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Abstract: Drowsiness is a serious problem, which causes a large number of car crashes every
year.This paper presents an original drowsiness detection method based on the fuzzy merging
of several eye blinking features extracted from an electrooculogram (EOG). These features
are computed each second using a sliding window. This method is compared to two supervised
learning classifiers: a prototype nearest neighbours and a multilayer perceptron. The comparison
has been carried out on a substantial database containing 60 hours of driving data from 20
different drivers. The method proposed reaches very good performances with 82% of true
detections and 13% of false alarms on 20 different drivers without tuning any parameters.
The best results obtained by the supervised learning classification methods are only 72% of true
detection and 26% of false alarms, which is far worse than the fuzzy method. It is shown that
the fuzzy method overtakes the other methods because it is able to take into account the fact
that drowsiness symptoms occur simultaneously and in a repetitive way on the different features
during the epoch to classify, which is of importance in the drowsiness decision-making process.

Keywords: Fuzzy expert systems, Supervised learning, Drowsiness detection, Monitoring
systems, EOG

1. INTRODUCTION

Drowsiness is a serious concern for drivers. The National
Highway Traffic Safety Administration (NHTSA) has in-
deed enlightened that driver drowsiness is responsible for
about 100,000 car crashes every year. This is the reason
why more and more researches are made to build auto-
matic detectors of this dangerous state.

It has been shown (Caffier et al. (2003); Galley et al.
(2004)) that several features can be extracted from eye-
blinking analysis in order to evaluate drowsiness. Elec-
trooculogram (EOG) is the measurement of the eye elec-
trical activity using a set of electrodes placed on the skin.
It is the most reliable technique to study blinking activity
and evaluate drowsiness. Indeed, expert doctors use EOG
to manually evaluate drowsiness by slices of 20s (Gillberg
et al. (1996); Muzet et al. (2003)). However, for obvious
reasons, the research community has also focused on using
video cameras to monitor drowsiness through the study of
blinking (Ji and Yang (2002); Bergasa et al. (2006)).

Several multivariable techniques have been proposed to
monitor drowsiness in an automatic way. These techniques
attempt to copy the expert doctor decisions mechanism by
merging several blinking features on a fixed time-window.
Thus, techniques such as Hidden Markov Model (Noguchi
et al. (2007)), clustering k-mean (Ohsuga et al. (2007)),
multiple regression analysis (Omi et al. (2008)), Fuzzy
Expert System (Damousis et al. (2009)) and Support Vec-

tor Machines (Hu and Zheng (2009)) have been recently
explored to monitor drowsiness.

In this paper, a method to monitor drowsiness using EOG
blinking features is presented. It consists in merging a
selection of blinking features using fuzzy logic on a sliding
window. A comparison between this technique and two
other supervised classification methods on a large dataset
of 60 hours recorded on drowsy drivers is carried out. The
purpose of this comparison is to study the relevancy of the
fuzzy approach in the case of drowsiness monitoring.

The outline of this paper is the following. The dataset
used for the comparison, the EOG features and the fuzzy
method are described in section 2. In section 3, the results
obtained on the same database by the fuzzy method
and by a prototype nearest neighbours and a multilayer
perceptron are presented. These results are compared and
discussed in section 4, where a comparison with the results
from the literature review is also achieved.

2. MATERIAL AND METHOD

2.1 Material

The database used in this study includes 60 hours of
driving data from 20 different drivers. Each subject was
recorded while driving on a simulator for 90 minutes, a
first time perfectly rested and a second time suffering from
sleep deprivation (the subject had slept for 4 hours only).

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

Copyright by the
International Federation of Automatic Control (IFAC)

14283



Each recording includes four EEG channels and one EOG
channel. Only the EOG channel is used in this paper. The
EOG is recorded at 250Hz. Data acquisition was performed
by the CEPA (Centre d’Études de Physiologie Appliquée),
Strasbourg, FR.

Objective sleepiness was evaluated every 20s (named
epoch) on each recording by an expert doctor using the
scale described in Muzet et al. (2003). The level of drowsi-
ness is assessed depending on the number of long blink-
ing events present during the epoch. This scale has been
converted into a two-levels scale [awake; drowsy]. This
represents 6461 epochs classified as “awake” and 1096 as
“drowsy”.This database is randomly split in two databases
in order to have a similar number of “awake” and “drowsy”
epochs in both databases. The first half (dataset 1 ) is used
to design the fuzzy functions and to train the supervised
methods. The other half (dataset 2 ) is used to test the
different methods.

2.2 Feature extraction

Several features can be extracted from blinking detected
on EOG. A recent study of Picot et al. (2009) has shown
that some blinking features can be extracted with a
similar accuracy from a high frame-rate video analysis
than from EOG analysis. These features are the duration
at 50% (D50 )), measured by the time between the half
rise amplitude to half fall amplitude, the percentage of
eye closure at 80% (P80 )), which is the percentage of
time where the eyes were closed at least 80%, the blinking
frequency (F ) and the ratio between the amplitude of
the blinking and the peak closing velocity, which is the
maximum speed during the closing period calculated on
the same blinking, (A/PCV ). As the video solution is
more practical for the driver, this paper focuses on these
particular features.

All these features are depicted in Fig. 1. It shows an
example of EOG signal measured when a blink is occurring
and an illustration of the EOG derivative (velocity).

Figure 1. EOG signal during a blink, its corresponding
derivative and the features considered.

These blinking features were semi-automatically detected
on EOG using the detection algorithm described in
Jammes et al. (2008). The mean value of each feature is
computed on a sliding window at each second i. Several
lengths of sliding windows were tested on dataset 1 : 5s,
10s, 20s, 40s and 60s. The mean value of D50, P80, F and
A/PCV at time i are respectively noted D50(i), P80(i),
F (i) and A/PCV (i).

Blinking features generally increase with drowsiness.
When a driver is drowsy, he tends to blink more frequently
and the duration of each blinking increases. Thus, each
feature can be seen as a drowsiness indicator where the
driver is considered as “drowsy” if the value of the feature
is larger than a given threshold. For each feature, the
ability of various threshold values to discriminate between
drowsy and not drowsy states is evaluated on dataset 1.
The threshold obtaining the best results is selected and
named sF . The results are presented in section 3.1.

2.3 Fuzzy drowsiness detector

To increase the relevancy of the drowsiness detection, the
different features are first converted into fuzzy drowsiness
indicators then merged into a global fuzzy indicator. Each
feature is transformed into a fuzzy variable whose value
is between 0 and 1. The fuzzy variable is defined as the
membership degree to the “drowsy” state: the closer to 1
the value of the variable, the higher the likelihood of being
drowsy. The features are transformed into fuzzy variables
thanks to a membership function described by equation
(1).

Coefficients a and b are defined by equations (2) depending
on the optimal threshold sF presented in section 3.1.
The values −0.25 and +0.25 were chosen to centre the
membership function around the considered threshold sF .

µ(x) =


0 if x ≤ a

x− a
b− a

if a ≤ x ≤ b
1 if x ≥ b

(1)

a = sF − 0, 25 · sF and b = sF + 0, 25 · sF (2)

Then, the fuzzy variables are merged at each time i using
equation (3).

µf (i) =
1

4

∑
F

µ(F (i)), F ∈ {D50, P80, F,A/PCV } (3)

µf is a global drowsiness indicator. Its value varies between
0 and 1: the closer to 1 µf , the more drowsy the ob-
served driver. Actually, equation (3) makes a compromise
between the drowsy indicators provided by the different
features. To make the decision crisp, the driver is finally
considered as drowsy if µf is larger than 0,5. Else, he is
awake. A crisp decision is then made every second.

The evaluation of drowsiness by the expert doctor is made
on epochs of 20s. The final drowsiness decision of the
system must therefore be made every 20s, to be compared
to the evaluation made by the expert doctor. So, the
driver is considered as “drowsy” on the epoch of 20s if the
decision “drowsy” is made during at least 10s in the epoch.
The decision is noted D(ep(j)) where ep(j) corresponds to
the jth epoch. It is computed according to equation (4).

D(ep(j)) =

{
1 if card i∈ ep(j){µf (i) > 0, 5} ≥ 10
0 otherwise

(4)

2.4 Supervised learning algorithms

In order to compare the results obtained with the method
proposed, several supervised learning methods algorithm
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were tested on the database: a Prototype Nearest Neighbor
(PNN ) algorithm and a Multi-Layer Perceptron (MLP).

A PNN is processed by first building kernels (prototypes)
off-line using a clustering algorithm. A class membership
is then affected to each kernel. Any new instance is
affected to the class of its nearest prototype (Hastie et al.
(2001)). In this study, the number of kernels was equal
to ten. The Mahalanobis distance is used to compute the
distance to each kernel. A MLP is a feedforward artificial
neural network model that maps a set of input data
to a set of appropriate outputs. Here, the MLP has 15
neurons in the hidden layer with four input data (the four
features) and only one output which is the drowsy decision.
The activation function used is a sigmoid function. Both
algorithms were trained and tuned on dataset 1, using two
sub-sets : a learning set and a validation set, to select the
right number of kernels and the architecture of the MLP.
The results presented below are obtained on dataset 2.
Both algorithms were built using the free data mining
software TANAGRA (Rakotomalala (2005))

Since it is not possible for supervised method to extract
the blinking features directly with a sliding window as
in the method proposed, several strategies have been
implemented to avoid this problem.

The first one is to compute the average of each feature
on each epoch of 20s. Blinking are detected during the 20
seconds corresponding to the epoch analysed, D50, P80, F
and A/PCV are calculated for each blink and the average
value are calculated. The inputs of the two classifiers are
then the average value of each four features calculated on
a fixed window of 20 seconds corresponding to the epoch.
This strategy is named snapshot.

The other strategy consists in computing the average of
each feature on a 20s sliding window every second, as for
the fuzzy method proposed. The features extracted are
D50(i), P80(i) F(i) and A/PCV(i) presented in section 2.2.
The features are then summed up during the 20 seconds
epoch analysed in one single value by computing either the
corresponding mean, median or the 90th percentile (90th

pct). The 90th pct is the value below which 90 percent of
the observations may be found. It provides an estimation
of the maximal value, robust to the presence of outliers.

A strategy using a temporal granularity of 1s is also tested.
In this case, a decision is taken depending on the values of
each feature every second.

3. RESULTS

The results are compared using Receiver Operating
Characteristic (ROC) curves, plotting true positive rate
(TPrate) in function of the false positive rate (FPrate). The
TPrate is calculated as the percentage of true detections
ie the percentage of “drowsy” epochs correctly classified
as “drowsy”. The FPrate is computed as the percentage of
false alarms ie the percentage of “awake” epochs wrongly
classified as “drowsy” by the system.

3.1 Fuzzy detector

The results obtained on dataset 1 using different sliding
window lengths and different drowsiness thresholds, as

proposed in section 2.2, are shown in Fig. 2. In this figure,
the threshold values are varying in a coherent range for
each feature. For a selected feature, the results on the
upper right are obtained with lower threshold values (more
true detections but more false alarms) and the ones on the
lower left are obtained with higher threshold values (less
false alarms but less true detections).

D50 P80

F A/PCV

Figure 2. Results obtained with the different features

It can be seen on Fig. 2 that the number of true detections
increases with the length of the sliding window. In the
same time, the number of false alarms increases too. It
can also be seen on this figure that too short a window
length (≤ 10s) may increase the number of false alarms. A
window length of 20s seems then the best compromise to
have a large number (around 80%) of true detections while
limiting the number of false alarms according to the visual
inspection of Fig. 2. Table 1 shows the results optained
with what we considered as the optimal threshold and a
sliding window of 20s for each feature. We considered the
results as optimal when they represent a good compromise
between a large number of true detections (around 80%)
and a low number of false detections (around 20%).

Table 1. The best results and the correspond-
ing threshold obtained for each feature

Feature Results Threshold

D50
TPrate = 81, 4%

sF = 130ms
FPrate = 24, 9%

P80
TPrate = 84, 2%

sF = 0, 75%
FPrate = 22, 3%

F
TPrate = 78, 3%

sF = 0, 1Hz
FPrate = 18, 6%

A/PCV
TPrate = 78, 5%

sF = 17, 25
FPrate = 25, 3%

The optimal thresholds obtained on dataset 1 are used
to design the membership functions for each feature as
described in section 2.3. The results obtained on dataset 2
with the fuzzy method proposed are presented in table 2.
The results obtained by each feature individually (mono-
variable detection) are also presented in the table.

The results obtained on dataset 2 using one feature
only are very similar to those obtained on dataset 1,
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which proves the robustness of the selected threshold. The
method is indeed independent of the driver since the same
thresholds give good results on 20 different drivers. The
impact of each driver is indeed really low in the learning
dataset since the data from a high number of drivers are
mixed together. So, even if the datasets used do not fit
the criteria “no data from the same people in the learning
and the testing dataset”, the results are representative of
future performance. Meanwhile, a cross-validation could
be considered to confirm these results.

Moreover, the FPrate significantly decreases when features
are merged using fuzzy logic while the TPrate is equivalent
to the best one obtained with one feature only. This
means that the false alarms obtained with the different
features do not occur at the same time. Thus, when the
different features are merged, the false alarms produced
by one of the features are cancelled by the others which
explains the decrease of the FPrate. On the contrary, true
detections occur concomitantly on most features and are
not eliminated during the fusion process.

3.2 Supervised learning algorithms

In order to compare the results presented in section 3.1,
the results obtained using a PNN algorithm and those
obtained with a MLP algorithm are presented in this
section.

Classification results using a temporal granularity of 1
second The features used are D50, P80,F and A/PCV,
computed each second on a 20s sliding window, in the
same way as in section 2.2. The data were labelled by the
expert doctor by epochs of 20s. To compare the results of
the supervised algorithms with the expert classification,
each second is labelled as the epoch to which it belongs.
The results obtained on dataset 2 with PNN and MPL
methods are depicted in table 3.

It is obvious from table 3 that results are worse than
those obtain with the fuzzy method (cf. table 2). It can
be explained by the fact that if a 20s epoch is labelled as
“drowsy”, it does not mean that every single second from
this epoch can be labelled as “drowsy”. Indeed, expert
classification is made depending on the blinking features
the expert observes during the epoch analysed (frequency,
blinking length ). Blinking are very short (less than 1s).
If each second is labelled as the 20s epoch it belongs to,

Table 2. Results of the drowsiness detection

Fuzzy
D50 P80 F A/PCV

logic

TPrate 81,7% 80,7% 82,8% 77,0% 78,6%

FPrate 13,4% 25,1% 21,4% 19,3% 23,9%

Table 3. Results of supervised method on fea-
tures computed each second

PNN MLP

TPrate 67,5% 38,1%

FPrate 42,2% 5,2%

the scatters of points forming the two classes are likely
to overlap. This is what happens for the results in table
3. Numerous true detections are made with PNN (67.5%)
but with a very high rate of false alarms (42,2%). MLP
produces only a few false alarms (5,2%) but it is not
accurate to detect drowsiness (only 38,1% true detections).
It is indeed difficult to separate the two classes in both
cases because the classes are dispersed.

Classification results using a temporal granularity of 1
epoch The two supervised algorithms were trained on
dataset 1. The results obtained on dataset 2 with both
supervised methods are shown in table 4. The algorithms
are tested for each feature computing strategy presented
in section 2.4. In order to study the impact of the way
the features are computed, the results obtained by the
fuzzy method proposed with the different features com-
puting strategies are also displayed in table 4. For each
feature, each computed value (snapshot, mean, median,
or 90th pct) is fuzzified using equation (1) and the four
corresponding fuzzy indicators are merged using equation
(3). The decision between “drowsy” and “awake” is made
by thresholding the resulting µf . The same optimal thresh-
olds sF presented in table 1 are used.

Table 4. Results obtained with the supervised
learning classifiers and the fuzzy classifier

Fuzzy
PNN MLP

logic

snapshot
TPrate = 68% TPrate = 61% TPrate = 52%
FPrate = 27% FPrate = 23% FPrate = 11%

average
TPrate = 72% TPrate = 65% TPrate = 65%
FPrate = 26% FPrate = 22% FPrate = 16%

median
TPrate = 72% TPrate = 64% TPrate = 52%
FPrate = 27% FPrate = 22% FPrate = 11%

90th pct
TPrate = 80% TPrate = 64% TPrate = 53%
FPrate = 39% FPrate = 21% FPrate = 12%

4. DISCUSSION

4.1 Comparison between the supervised algorithms and the
fuzzy detector

Firstly, a comparison between table 3 and table 4 shows
that better results are obtained when only one value per
epoch is used for training PNN and MLP. It can be
explained by the fact that when only one value by epoch
is used for each feature, there is no classes dispersion
during the learning. The classification obtained is then
more accurate.

Secondly, it can be observed from table 4 that the fuzzy ap-
proach, combined to the same computing features strate-
gies, give similar results than PNN or MLP. Results ob-
tained with MLP are slightly less good than the other two
techniques. It also appears that the fuzzy method proposed
in section 2.3 obtains better results (TPrate = 81, 7% and
FPrate = 13, 4%, see table 2) than those obtained with
the supervised techniques. This tends to prove that the
way features are computed plays an important part in the
quality of the results.

Finally, the way the different features values are summed
up during the epoch analysed seems not to have any
influence since using the mean, the median or the 90th
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pct provide similar results. So, the better results obtained
by the proposed method seem to be due the fact that it is
possible to process the features second by second without
dispersing the classes with the fuzzy method.

The results presented in section 3.2 have enlightened some
problems linked to the way information is processed on
the 20s epoch. An epoch labelled as “drowsy” means
that some symptoms of drowsiness appear during the
“20s”. It does not mean that symptoms of drowsiness
are present in every single second of the epoch. When
using supervised techniques such as PNN or MLP, two
solutions are possible: to process the information second
by second which leads to a dispersion in the classes or to
process the information globally which leads to a loss in
the localisation of the information.

When the information is processed every second in order
to keep a precise temporal granularity, the classes are dis-
persed during the learning phase. An accurate drowsiness
detection is then not possible as shown in table 3. It is
therefore necessary to make a preliminary processing on
each feature (mean, median...) in order to have only one
value per feature on each epoch before starting the learning
process. In this way, two major pieces of information are
lost. The first one is whether symptoms of drowsiness
occur several times during the epoch. The second one is
whether drowsiness symptoms occur simultaneously on the
different features.

The fuzzy method proposed makes it possible to process
information with a fine temporal granularity. The fact
that drowsiness symptoms occur concomitantly on the
different features can thus be taken into account in the
decision. This is illustrated by the drop in the number
of false alarms when merging the different features with
the method proposed while the number of good detection
remains high (cf. section 3.1). As decisions are made every
second, it is possible to strengthen detections where the
same decisions are made at the same time on the different
features. It is also possible to decrease the number of false
alarms as they do not occur at the same time on the
different features. When a false alarm is produced by one
feature, it is suppressed by the other features.

The fact that relevant drowsiness symptoms appear several
times during the epoch is also taken into account in
the decision. Indeed, drowsiness is detected if at least
10 seconds out of 20 are classified as drowsy. This is
similar to the way the expert reaches his decision. He
looks for drowsiness symptoms on the EOG signal and
make the decision “drowsy” if their number is significant.
This is not possible to do with supervised techniques where
information has to be summed up into one single value for
the whole epoch before making any decision.

Finally, results of section 4.1 have shown that the fuzzy
classification method, which may seem “naive” because
possible correlations between the features are not taken
into account, gives as good results as some more elaborate
supervised techniques, in this context of drowsiness detec-
tion. Moreover, the technique proposed, based on a pre-
treatment of the features using a sliding window followed
by a fuzzyfication of the features and a fuzzy merging
phase, gives much better results than those obtained with
the two supervised methods carried out, mainly because of

its ability to take into account the repetition of symptoms
during one epoch and the simultaneity of their occurrence
on the different features. Another advantage of the method
is that it is easy to use. It was trained once to find the
appropriate thresholds to design membership functions.
These thresholds can now be used on any new driver. This
is shown by the fact that very good results were obtained
on the validation set composed of 20 different drivers

4.2 Literature comparison

Some studies have focused on the possibility of merg-
ing different features to increase the relevancy of drowsi-
ness detection. Omi et al. (2008) got good performances
(TPrate = 84% and FPrate = 9%) by using a multiple
regression model on a dozen blinking features. However,
their system was tested on only five drivers, whereas
our method was tested on twenty different drivers. Sim-
ilar results have been obtained by Hu and Zheng (2009)
who merged the features with a Support Vector Machine
(SVM) algorithm. They obtained 81% correct detections
and 17% false alarms. Recently, a fuzzy expert system was
proposed by Damousis et al. (2009) to monitor drowsiness
through the duration, the frequency and the intervals of
driver blinking. They obtained 90% of correct detections
which is slightly better than our results. Nevertheless, they
also had 30% of false alarms which is worse than the
FPrate obtained by the proposed method. This means that
the features used in this article for drowsiness detection are
more relevant. All these results are summarized in table 5.

Table 5. Synthesis of the different results for
drowsiness detection from visual signs.

Authors
TPrate Technique
FPrate

Picot et al., 81,4% Fuzzy fusion of D50,
2010 13,1% P80, F and A/PCV features

Omi et al., 84% Multiple regression on
2008 9% about ten features

Hu & Zheng, 81% SVM on about ten
2009 17% features

Damousis et 90% Fuzzy fusion duration, frequency
al., 2009 30% and blink intervals

The results presented in this paper are very good compared
to those found in the literature. However, it is necessary to
remain somewhat reserved, since all these results were not
obtained on the same database. Yet, the database used
in this study is large enough (60 hours of driving time
from 20 different drivers) to make a correct assessment of
the performance of the system. In addition to the good
performances obtained, the method proposed does not
need to be tuned for each driver.

The advantage of the method proposed is that it is
independent from the driver. The use of fuzzy function
on the different features makes the system robust to
inter-individual differences as the good performance has
been obtained on 20 different drivers without tuning
any parameters. Merging the different features allows a
decrease in the number of false alarms which occur when
only one feature is used. Even the earliest stages of
drowsiness classified by the medical expert were detected
by the system.
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5. CONCLUSION

An original method of drowsiness detection using eye
blink features extracted from EOG has been presented in
this paper. This method is based on the fuzzy merging
of several blinking features computed every second on a
20s sliding window. This method has been tested on a
substantial database of 60 hours of driving EOG data from
20 different drivers and reaches good performances with
81,7% correct detections and 13,1% false alarms.

The comparison of this method to supervised learning
methods such as a prototype nearest neighbour classi-
fier and a multilayer perceptron algorithm on the same
database allowed the advantages of the method to be
enlightened. This comparison has pointed out the impor-
tance to make a decision with a fine temporal granularity.
Indeed, the fact that drowsiness symptoms appear simul-
taneously and in a repetitive way on the different features
is of importance in the drowsiness decision. The use of
fuzzy logic makes it possible to process the features second
by second and to obtain good classification performances,
which is not possible to do with the two classification
methods tested. The best results obtained by the su-
pervised learning classification methods are 72% of true
detection with 26% of false alarms, which is worse than
the results obtained with the fuzzy method. Moreover, the
fuzzy method proposed reaches good results compared to
literature. One major advantage of the method is that
the method is independent from the driver. It reached
very good performances on 20 different drivers without
tuning any parameters. So, the use of fuzzy logic to merge
different features in order to monitor drowsiness seems to
be a good solution as it is independent from the driver and
it allows a good temporal granularity of the features which
make the drowsiness detection more reliable.

Finally, one advantage of the method is that it uses eye
blinking features that can be extracted with the same
accuracy from a high frame video that from EOG. This
was shown in (Picot et al. (2009)). The next step of this
work would be the design and validation of a video-based
drowiness detector.

ACKNOWLEDGEMENTS

The authors are grateful to the Centre d’Études de Physi-
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