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Abstract: We present a novel filtering approach to determine the position and velocity information of
mobile agents which essentially employs a recently developed linear robust estimation idea as the core
approach. Prominent problems engulfing implementations of this nature also include data association and
missing information and we directly addressed these and provide a generalized solution to the overall
problem. A coherent argument for the realistic usage of robust linear filtering over data collected by a
linear phase array is aimed at presenting a generic approach for multiple agent tracking. The underlying
system uses Doppler radar measurements and accurately estimate the position and velocity of the mobile
agent progressively while addressing the issues of data association and missing information.
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1. INTRODUCTION

Accurate tracking and localization of a mobile agent is useful
in many defence and commercial applications ranging from
urban warfare to diaster and rescue operations, i.e Lin and Ling
(2006a,b); Bishop and Pathirana (2007). As the cost of many
Radio Frequency(RF) gear has come down significantly in the
recent past, many commercial systems particularly aimed at
indoor close range applications can be benefited with the use
of such hardware. Through-the-Wall Radar Imaging(TWRI)
has recently been considered for number of applications, see
Bodenstein et al. (1994).

Continuous Wave (CW) radar systems have attracted widespread
attention due to its relative simplicity in design and imple-
mentation. Single frequency CW radar can measure Doppler
frequency shifts with greater accuracy. However, this method
is less commonly used for range measurements as more so-
phisticated systems derived from CW radar are preferred for
such applications. These systems are generally expensive, not
user friendly and require complex and dedicated hardware in
the implementation. Also, CW radar characteristically mitigate
clutter and hence can effectively be used in detecting moving
agents. Frequency Modulated CW (FMCW) radar and pulsed
Doppler radar both have evolved from the CW radar technol-
ogy. Despite their capability to detect range, CW radar is prone
to clutter which needs to be suppressed. CW single frequency
radar consisting of two antenna elements can be used to find
the Angle of Arrival (AoA),i.e Lin and Ling (2006a), using
the phase difference of reflected waves arriving at the receiving
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antennas. In the case of Doppler, the frequency separations cor-
responding to the moving agents should be sufficiently large for
this system to track multiple agents accurately. In Lin and Ling
(2006b), only the location information of the agents could be
obtained. For such systems, the location information of agents
are acquired and the time derivatives of displacement is used
to deduce the velocities of agents. This results in a time lag in
velocity estimation particularly in more dynamic settings, and
more prone to errors as the position estimation errors are di-
rectly translated into velocity deductions. In our Doppler radar
approach, two receiving elements are kept half a wave length
apart and the other two receiving elements are also placed with
the same distance apart. These two sets are placed apart from
each other, in a line, facing the mobile agents. We refer to the
two elements as a sensor. The bearing of an agent with respect
to a particular set of elements can be found by measuring the
phase difference of the reflected waves within a single sensor.
Similarly, the agents bearing with respect to the other two set
of receiving elements can be found in the same manner. Using
these parameters, the agents location can be tracked. The agents
velocity can be derived by the Doppler shifts subtended by the
agent in the direction of sensors. In many cases, multiple mobile
agents give rise to different Doppler shifts and creates the prob-
lem of data association. The different frequency components
and the phase differences for AoA measurements need to be
assigned to the appropriate agent and this needs to be done
across the two elements. This essentially poses the so called
data association problem.

Another important scenario to consider is the similar radial
velocities from two or more agents being modulated at the
same sensor causing indistinguishable Doppler frequencies. We
consider this problem as a missing information problem. In
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such instances, the same Doppler frequencies are modulated
by the respective agents at that sensor elements causing the
discrimination of distinctive frequencies impossible. Then the
location and velocity estimation of the agents cannot be re-
covered. When the number of mobile agents increases, the
probability of such occurrences also increases.

2. TRACKING MULTIPLE AGENTS

Tracking multiple agents using a single linear array of sensors
are considered. As the number of sensors in the linear array
for effective tracking directly affect the physical dimensions of
the antenna, obtaining the minimal sensor configuration plays a
crucial role in enhancing the versatility of the antenna. Firstly,
we investigate the number of sensors in a linear array that is
required to successfully track a given number of mobile agents.
The two main aspects that need to be considered are:

(1) Identical Doppler frequencies modulated at a sensors due
to two distinct mobile agents.

(2) The presence of ghost nodes, See Bishop and Pathirana
(2007).

A sensor receiving two signals at the same frequency but
in different phases, is unable to distinguish the two signals.
Instead, it is seen as a signal at the same frequency in a phase
which is different to the phases of the two incoming signals.
Hence, resolving the AoA of the signal is impossible. Consider
a set S of mobile agents and a linear phase array with a set of
K distinct elements. Let | · | denote the cardinality of a set.
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Fig. 1. Angle and Doppler velocity estimation

Proposition 1. Let U ⊆ S modulate the same frequency on
L ⊂ K . Then |U | = 2 ⇒ |L| ≤ 3.

Proof 1. This will be provided in a longer version of this paper.

Proposition 2. The following is a necessary and sufficient con-

dition to track S mobiles agents |L| ≥ 3|S|C2 + |S| + 1

Proof 2. The proof directly follows from the proposition 1 and
the ghost elimination results given in Bishop and Pathirana
(2007).

Typically, each frequency bin associated with the respective
sensor contains S number of frequencies. From the first propo-

sition, a maximum of 3|S|C2 number of sensors are need to
be discarded in order to guarantee that no remaining sensor
contains the same frequency due to two distinct agents. Further
|S| + 1 sensors are needed to ensure the eradication of ghost
nodes. Therefore, the data association problem is solved with

3|S|C2 + |S| + 1 number of sensors in the linear array with no
ambiguity resulting for any mobile agent trajectory.

For many practical applications, the unprecedented increase in
the number of sensors in a linear array when tracking multiple

agents causes problems. The enlarged array prevents more
modern applications in close range or indoor tracking being
realized. Therefore we look at the problem of multiple agent
tracking with only two sensor array.

3. MOBILE AND TRACKER DYNAMIC MODEL

In the kinematic modelling of a mobile agent and a receiver
sensory (linear) array in cartesian coordinate, the resulting
dynamic system is linear. A comprehensive survey of dual body
kinematic modelling is presented in Li and Jilkov (2003) and
a basic principal approach is given in Savkin et al. (2003)
where only the translational kinematics were considered. For
certain applications, rotational motion has been considered and
the resulting non-linear dynamic models have been used, i.e
kinematic parameter estimation in Broida et al. (1990). For
the case of radar based tracking, it is suffice to consider only
the translational effects and the corresponding linear model
(see Li and Jilkov (2003)) as no antenna motion is considered
in the plane. In this paper, we consider a stationary receiver
array(tracker).

Let the position of the ith mobile agent in each of the tra-
ditionally denoted x, y directions with respect to the phase
array based coordinate system, be [xi

1
xi

2
]⊤ ∈ R

2 with ⊤
denoting transposition. Let the velocity component in each tra-
ditionally denoted x, y direction be [xi

3
xi

4
]⊤ ∈ R

2 and the
acceleration be [xi

5
, xi

6
]⊤ ∈ R

2. Hence, we can define xi =
[xi

1 xi
2 xi

3 xi
4 xi

5 xi
6]

⊤ ∈ R
6, and the x = [x1 · · · xN ]⊤ ∈ R

6N

such that the state evolves according to,

x(k) = Ax(k − 1) + Bw(k), (1)

where A and B are suitably defined transition matrices (see Li
and Jilkov (2003)) given by

A = Diag[Φ · · ·Φ],

B = Diag[Ψ · · ·Ψ],

where,

Φ =




I2 ksI2

k2
s

2
I2

O2 I2 ksI2

O2 O2 I2



 , Ψ =




k2

s

2
I2

ksI2

I2



 . (2)

Notice here, I2 and O2 indicate Identity and zero matrices of
2 × 2 dimensions respectively.

Also w(k) ∈ R
2N is an uncertainty parameter that encom-

passes the target’s maneuvers and ks is the sampling time. Our
subsequent estimation algorithm is derived quite generally and
permits a large class of linear dynamic models to be employed.
Figure 1 depicts the modulation of doppler velocities and bear-
ing measurements in R

2.

Remark 1. Without loss of generality, the coordinate system is
chosen with sensor 1 at the origin and sensor 2 is positioned at
distance d > 0 away on the positive x1-axis.

Here we consider a point target (or N number of point features)
that obeys a linear dynamic model such as those described in Li
and Jilkov (2003). Any arbitrary number of point targets can
be included in this model and object rigidity is not required
since each point is tracked independently. However, the data
association problem (also known as the feature point associa-
tion problem) Bar-Shalom and Li (1993) exists in practice for
tracking multiple point targets.
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4. LINEAR ROBUST FILTERING WITH NONLINEAR
DOPPLER RADAR

Now we outline the measurement model and the subsequent
measurement conversion technique along with the robust linear
filter which we derive as the state estimator. Assume the asso-
ciated frequency bin of each of the two sensors contains fd

1 and
fd
2

modulated by the ith mobile agent. Let the corresponding
Doppler velocities and the AoA signals modulated by the agent

on the two sensors be v̂1, v̂2 and θ̂1, θ̂2 respectively. We can
state the measurement model for the ith agent as follows.

Let ŷ denote the true values of the measured doppler velocities
and the angles at the two sensors with νi and εi for i = [1, 2]
denoting the corresponding measurement noise.

ŷ(k) =





v̂1(k)
v̂2(k)

θ̂1

θ̂2



 =





−xi
3
xi

1
− xi

2
xi

4√(
xi

1

)2
+
(
xi

2

)2 + ν1

xi
3

(
d − xi

1

)
− xi

2
xi

4√(
d − xi

1

)2
+
(
xi

2

)2 + ν2

arcsin

(
xi

2√
(xi

1
)2 + (xi

2
)2

)
+ ε1

arcsin

(
xi

2√
(d − xi

1
)2 + (xi

2
)2

)
+ ε2





Now we can write the noisy locations of (xi
1
, xi

2
) and the direc-

tional velocities (xi
3, x

i
4) in the following converted measure-

ment form (m) :

m , [ x̂1 x̂2 x̂3 x̂4 ]
⊤

=




−
d sin (θ2 + ε2) cos (θ1 + ε1)

sin (θ1 − θ2 + ε1 − ε2)

d sin (θ1 + ε1) sin (θ2 + ε2)

sin (θ1 − θ2 + ε1 − ε2)

−(v1 + ν1) sin(θ2 + ε2) + (v2 + ν2) sin(θ1 + ε1)

sin(θ1 − θ2 + ε1 − ε2)

−(v1 + ν1) cos(θ2 + ε2) + (v2 + ν2) cos(θ1 + ε1)

sin(θ1 − θ2 + ε1 − ε2)





(3)

Here, the x̂1 = x1(noisy)− d. Assume the angle measurement
error is bounded. i.e ‖εi‖ ≤ |α| for i = 1, 2 and ‖νi‖ ≤ γ‖vi‖
for i = 1, 2.





x̂1

x̂2

x̂3

x̂4



 =





−d
ω1ω2 sin (θ2) cos (θ1)

ω3 sin (θ1 − θ2)

d
ω1ω2 sin (θ1) sin (θ2)

ω3 sin (θ1 − θ2)
−(v1 + ν1)ω2 sin(θ1) + (v2 + ν2)ω1 sin(θ1)

ω3 sin (θ1 − θ2)
−(v1 + ν1)ω2 cos(θ1) + (v2 + ν2)ω1 cos(θ1)

ω3 sin (θ1 − θ2)





(4)

with the following condition

√
1 − sin2 τα ≤ ωi ≤

1√
1 − sin2 τα

satisfied where

τ =

{
1 i = 1, 2
2 i = 3

}
. (5)

Remark 2. We have used the same variable i.e ωi, to represent
both sin and cos terms as the error variation is identical in
either case(This will be illustrated in an extended version of
this paper).

[x̂1 x̂2 x̂3 x̂4]
′ provides a well-defined system of measurement

equations with associated noise tolerances for the measure-
ments. Now assume that the target motion is described by the
system in equation(1) where the matrix A is non-singular. Let
0 < p0 ≤ 1, α ∈ [0, 2π] and 0 ≤ γ < 1 be given constants
and suppose that the system initial condition x(0), noise w(k)
and the actual measurement noise νi and εi ∀i ∈ {1, 2} satisfy
the following assumption.

Assumption 1. The following inequalities simultaneously hold
with probability p0 :

|εi| ≤ |α|, |νi| ≤ γ|vi| ∀i ∈ {1, 2},

(x(0) − x0)
⊤N(x(0) − x0) +

T−1∑

0

w(k)′Q(k)w(k) ≤ τ.(6)

Here x0 is a given initial state estimate vector, N = N⊤ and
Q = Q⊤ are given positive definite weighting matrices, τ > 0
is a given constant associated with the system and T > 0 is a
given terminal time.

Our solution to the state estimation problem involves the fol-
lowing Riccati difference equation,

F(k + 1) = B̂
[
B̂⊤S(k)B̂ + Q

]−1

B̂⊤S(k)Â,

S(k + 1) = Â⊤S(k)
[
Â− F(k + 1)

]
+ C⊤U(k + 1)C

−K⊤K, S(0) = N. (7)

where Â , A−1 and B̂ , A−1B. We also define

C ,





β1 0 0 0 0 0
0 β1 0 0 0 0
0 0 β2 0 0 0
0 0 0 β2 0 0



 , K ,





γ1 0 0 0 0 0
0 γ1 0 0 0 0
0 0 γ2 0 0 0
0 0 0 γ2 0 0



 ,(8)

where β1 =
cos 2α

(
1 + cos4 α

)

2 cos2 α
,

β2 =
(1 + γ)

2 cos 2α cosα
+

(1 − γ) cosα cos 2α

2

γ1 =
cos 2α

(
1 − cos4 α

)

2 cos2 α
,

γ2 =
(1 + γ)

2 cos 2α cosα
−

(1 − γ) cosα cos 2α

2
.

We now consider a set of state equations of the form

η(k + 1) =
[
Â − F(k + 1)

]⊤
η(k)

+C⊤V (k + 1)m(k + 1), η(0) = Nx0

g(k + 1) = g(k) + m(k + 1)⊤W (k + 1)m(k + 1)

−η(k)⊤B̂
[
B̂⊤S(k)B̂ + Q(k)

]−1

B̂⊤
η(k),

g(0) = x⊤
0
Nx0.
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Notice that the matrices U, V, W are appropriately defined to
account for the missing information case considered subse-
quently. For the full information case, the matrices are evalu-
ated to be identity matrices.

The above state equations (9) and Riccati equations (7) can
simply be thought of as a robust implementation of the standard
linear Kalman Filter for uncertainties obeying Assumption 1,
e.g. see Anderson and Moore (1979); Savkin and Petersen
(1998). Now we are in a position to present the main result of
this section.

Theorem 1. Let 0 < p0 ≤ 1 be given, and suppose that
Assumption 1 holds. Then the state x(T ) of the system (1) with
probability p ≥ p0 belongs to the ellipsoid

ET ,






xT ∈ Rn :

‖(S(T )
1

2 xT − S(T )−
1

2 η(T ))‖2

≤ ρ + τ




 (9)

where ρ , η(T )⊤S(T )−1
η(T ) − g(T )

and η(T ) and g(T ) are defined by the equations (9). Also, we
require ρ + τ ≥ 0.

Proof 3. This will be presented in a longer version of the paper

A point value state estimate can be obtained from the bounded
ellipsoidal set’s center and is given by x̂ = S(k)−1

η(k).
We have thus proved that our algorithm’s estimation error is
bounded in a probabilistic sense when the relevant uncertainties
obey Assumption 1. The sum quadratic constraint given in
Assumption 1 accommodates a large class of non-linear and
dynamic process noise characteristics. As the Gaussian noise is
bounded within the first standard deviation with a probability
p0 ≈ 0.68 and within two standard deviations with probability
p0 ≈ 0.95 etc, we lose no generality by considering uncer-
tainties satisfying Assumption 1. That is, Gaussian distributed
measurement, process and initial condition errors form special
case of Assumption 1 which defines a larger class of uncertain-
ties. We solve the problem in the linear domain and our algo-
rithm permits very large initial errors. No similar proofs exist
for the extended Kalman filter (EKF) or the majority of other
approaches that employ some form of a Taylor-series based
approximation. Indeed, the fact that we can prove bounded
tracking performance with arbitrarily large initial condition er-
rors is a novel contribution.

5. LINEAR ARRAY WITH TWO SENSORS

Reduction of the number of sensors in the linear array to obtain
more practical physical dimensions for many applications intro-
duces the problem of data association. We look at this problem
under two scenarios as below :

• Complete information : There is no overlapping of fre-
quencies in either frequency bin as in figure 2 (for four
mobile agents).

• Incomplete information : At least one frequency bin con-
tains less than S frequencies. If any of the two or more
frequency(in figure 2) components coincided to an in-
distinguishable level, then we are unable to recover the
respective velocity components.
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Fig. 2. Instantaneous frequency and the phase distribution at the
two sensors

5.1 Data association with complete information

Here we assume that each sensor receives all the (N) mea-
surements distinctively. That is the frequencies are easier
to distinguish at each sensor node. Let the measurement

at receiver 1 and 2 be L1 = {(v̂1
1 , θ̂

1
1), · · · , (v̂N

1 , θ̂N
1 )},

L2 = {(v̂1

2
, θ̂1

2
), · · · , (v̂N

2
, θ̂N

2
)}. Define the set S = {χ =

[χ1
1 χ1

2 χ1
3 χ1

4, · · · , χi
1 χi

2 χi
3 χi

4, · · · , χN
1 χN

2 χN
3 χN

4 ]⊤ :
(χi

1
, χi

3
) ∈ L1 and (χi

2
, χi

4
) ∈ L2, {χ

i
1

χi
2

χi
3

χi
4
} 6=

{χj
1
χ

j
2
χ

j
3
χ

j
4
} ∀ i, j ∈ [1, · · · , N ]}. Notice that the cardinality,

|S| = N !

Remark 3. The doppler velocities and the corresponding AoA
signal measurements are related to the doppler frequency at the
receiver. The measurements are modelled so that the first set of
measurement is obtained from the first receiver. Only one of the
combinations actually corresponds to the actual physical distri-
bution of the mobile agents. The other combinations consists of
ghost node combinations.

Let χ = [χ1

1
χ1

2
χ1

3
χ1

4
, · · · , χi

1
χi

2
χi

3
χi

4
, · · · , χN

1
χN

2
χN

3
χN

4
]⊤

∈ S and let [Y i
1

Y i
2

Y i
3

Y i
4
]⊤ = f(χi

1
, χi

2
, χi

3
, χi

4
), where f

denotes the measurement conversion function implemented in
equation 3. Therefore χ ↔ Y = [Y 1

1
Y 1

2
Y 1

3
Y 1

4
· · ·Y i

1
Y i

2
Y i

3
Y i

4

· · ·Y N
1

Y N
2

Y N
3

Y N
4

]⊤ is a one-to-one mapping. Let

Ei =

[
Y i

1
(k)

Y i
2
(k)

]
−

[
Y i

1
(k − 1) + ksY

i
3

Y i
2
(k − 1) + ksY

i
4

]
. (10)

Then χ : min
χ∈S

N∑

i=1

‖Ei‖, (11)

should corresponds to the combination of the actual mobile
agents positions and hence exclude all the ghost nodes. That is
the two consecutive state estimates(converted measurements)
are closest for the case of actual mobile agents. i.e Only real
agents behave according to the estimated dynamics and not the
ghost nodes.

It is also a crucial practical measure to maintain the same order
of measurements in the filtering implementations. This can be
explained graphically as given in figure 2. When the doppler
frequencies are sufficiently apart and the order is maintained,
the ordering(of Y ) for the filter is maintained with no intricacies
arise. If the frequency components overlap, then the scenario
described as missing information exists as the Doppler veloc-
ities and the corresponding angles are not available. Indeed
the problem becomes intricate when the frequency components
cross each other due to the respective mobile agent motion
denying the maintenance of the order of the states correspond-
ing to the agents in the filtering process.

Assume χo corresponds to the optimal combination given
by equation 11 and the corresponding converted measure-
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ment vector be Y o = [Y 1

1 Y 1

2 Y 1

3 Y 1

4 · · ·Y i
1 Y i

2 Y i
3 Y i

4 · · ·
Y N

1
Y N

2
Y N

3
Y N

4
]⊤. Let T = {Z = [Z1

1
Z1

2
Z1

3
Z1

4
· · ·Zi

1
Zi

2
Zi

3

Zi
4
· · ·ZN

1
ZN

2
ZN

3
ZN

4
]⊤ : {Zj

1
Z

j
2

Z
j
3

Z
j
4
} ⊂ Y o ∀j ∈

[1, · · · , N ], {Zj
1

Z
j
2

Z
j
3

Z
j
4
} 6= {Zk

1
Zk

2
Zk

3
Zk

4
} ∀j 6= k}

Then, z : minz∈T ‖z − x̂(k − 1)‖, will provide the relevant
order of the measurement vector to be used in the robust linear
filter. Here x̂(k − 1) indicates the previous state estimate of the
robust filter.

5.2 Data association with incomplete information

The reduction in the number of sensor elements inevitably
increases the probability of instances where two or more mobile
agents modulate the same frequency at any one of the two
sensors. This results in inaccurate information. That is, y(k)
is incomplete or not available for certain time t. Let M(t) =
[M1(t) · · · M4(t)]⊤ be a given vector for t = 1, 2, · · · , T
such that Mi ∈ {0, 1}, for i = 1, · · · , 4. Then the matrix

M , [M(1) · · ·M(T )]⊤, is referred as the incomplete matrix.
Together with, M, define two sequences of matrices :

E(t) = Diag[M1(t) M2(t) · · · M4(t)]

Ê(t) = [M̃1(t) M̃2(t) · · · M̃4(t)]⊤ (12)

where Mi(t)+M̃i(t) = 1. In the Riccati equation (7) and (9),
U, V and W is defined to account for the missing information.

U = EWE, V = EW, W = I − Ê(Ê⊤Ê)−1Ê⊤. (13)

Remark 4. For the case of no missing information, Ê is the zero
vector and E is the identity matrix. This ensures that the U, V
and W are evaluated as identity matrices.

6. ILLUSTRATIVE EXAMPLES

In this section, we look at a simulation scenario where the loca-
tion of four agents were tracked using doppler measurements.
The simulation parameters are given in Table 1. Both filters
are initialized with Gaussian distributed values about the true
initial state with σ = 5% of the true initial values. The EKF is
known to be potentially unstable without correct initialization.

The true initial state is [−100 250 1 − 1 0.0001 0.0001]
⊤

. The

Table 1. Simulation Parameters

Input Value Comments

w1 [−1 2]′ sin(2πt) Agent 1 Accel. Input

w2 [1 − 2]′ sin(2πt) Agent 2 Accel. Input

w3 [−1 1]′ sin(2πt) Agent 3 Accel. Input

w4 [−1 1]′ sin(2πt) Agent 4 Accel. Input

vi, i ∈ 1, 2 σvi = 0.005 Gaussian Meas. Noise 1

εi, i ∈ 1, 2 σvi = 0.005 Gaussian Meas. Noise 2

[NR, QR] [10−4I6, 10−9I2] · I Robust Filter Parameters

[RE , QE ] [105I2, 10−10] · I EKF Uncertainty

T @ ts 12s @ 0.1s Track Duration, Periodicity

EKF parameters, i.e. QE and RE were tuned fairly accurately.
The initial covariance of the EKF is also tuned assuming the
initial error statistics known to the tracking system. That is,
for the EKF parameters we assumed perfect knowledge of all
the relevant error statistics and tuned around these true values
in order to get the best performance. On the other hand, for
the robust filter we simply used the identity matrix for both the
initial and process noise weightings. For the robust filter, α is

taken as two times the first standard deviations of the Gaussian
measurement noise. We plot the accurate tracking performed by
the robust linear filter in figure 3 where the actual trajectories of
the four agents are accurately estimated. The significant error in
the initial condition(position and velocity) is corrected faster as
depicted in figure 4 where a clear advantage of using the robust
filter is evident in terms of convergence and accuracy against
the Extended Kalman Filter(EKF). Even though the EKF veloc-
ity estimate converges when tracking maneuverable targets, it
is evident that the prominent difference in the convergence rate
is primarily due to the underlying linear formulation. The pro-
posed linear robust filter fundamentally uses the measurement
conversion technique which is essentially a computation of 2D
coordinates of an agent in a closed-form fashion. Therefore,
our robust estimator exhibits superior performance. In contrast,
the EKF does not contain any computation of 2D coordinates
of a target and is based on linearization and Taylor series ap-
proximations. It causes the accumulation of errors resulting in
divergence for large uncertainties.
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Fig. 3. Actual and estimated trajectories of four mobile agents

0 2 4 6 8 10 12
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Time (s)

E
s
ti
m

a
ti
o

n
 E

rr
o

r 
(M

S
E

)

 

 

Robust Linear Filter

Extended Kalman Filter

Fig. 4. The estimation error of the agents using EKF and LRF

0 20 40 60 80 100 120
10

−8

10
−6

10
−4

10
−2

10
0

10
2

Time

T
ra

c
k
in

g
 E

rr
o

r(
lo

g
a

ri
th

m
ic

 s
c
a

le
)

Error Variation Vs Time with and without Missing Information Correction

 

 

Without Correction

With Correction

Fig. 5. Linear Robust Filtering with missing information

Figure 5 shows the performance of the modified form of the
linear robust filter for the case of missing information. In a
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doppler radar application with multiple agents, missing certain
measurements in the time series can be a common occurrence.
Here we use the modified version of the linear filter in com-
parison to the proceeding case of full information(using the
previous measurement for the missing instance) development
and demonstrate the superior adaptation of the modified version
directly aimed at mitigating the effect due to missing informa-
tion.

6.1 Real Experimental Data

We setup a Doppler information acquisition system consisting
of two sensors (receivers) and obtain data from a person moving
in a well defined path in an indoor setting. The receiving sensors
(one sensor composed of two antennas kept 6cm apart) are
kept 0.5m apart on the x axis as shown in the figure 7. The
signal generator is set to transmit 2.4GHz continuous wave RF
at 12dBm. The person moved in a marked path on the ground
and the reflected RF waves form the moving person is captured
by the antennas and was feed into AD8347 direct conversion
quadrature demodulator. Then the consequent output was feed
in to the NI USB-6009 for analog to digital conversion. Next
the digitized data are collected by the computer and FFT is
performed to find the frequencies and corresponding phase
differences to measure the angle of arrival(AoA) of the object
at consecutive time step.

Experimental setup depicted in figure 6 is used to estimate
position of a person via Doppler based measurements and the
actual physical measurements based path is shown in figure 7.
The estimation error with and without the filter is shown in
figure 8.
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Fig. 6. The experimental setup for tracking a person
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7. CONCLUSION

In this paper we derived a linear state estimator with provable
performance limits for doppler radar based tracking of multiple
agents. We use a novel measurement conversion approach that
does not use Taylor-series approximations and allows us to
derive a new algorithm exploiting the strength of fundamentally
strong approach of linear filtering. A significant contribution
of this technique is the mathematically rigorous proof of the
boundedness of the filtering error. No such results are known for
the extended Kalman filter. We considered the case of a minimal
structure for the receiver antenna with merely two sensors as
well as addressing the practical issue of missing information.
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