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Abstract: Dynamic principal component analysis (DPCA) has been widely used in the
monitoring of dynamic multivariate processes. In traditional DPCA, the dynamic relationship
between process variables are implicit and hard to interpret. To extract explicit latent factors
that are dynamically correlated, a new dynamic latent variable model is proposed. The
new structure can improve modeling of dynamic data and enhance the process monitoring
performance. Fault detection indices are developed based on the proposed model. A case study
is given to illustrate the effectiveness of the proposed new dynamic factor model.
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1. INTRODUCTION

Principal component analysis (PCA) and partial least
squares (PLS) are the most important techniques in the
area of statistical process monitoring (Kresta et al., 1991;
Qin, 2003; Bersimis et al., 2007; Macgregor and Kourti,
1995). Static PCA models are suitable for discrete man-
ufacturing processes where the measured variables are
assumed independent and normally distributed. However,
these assumptions do not hold any more for measurements
form most continuous processes due to their dynamic
and nonlinear nature. In these dynamic processes, vari-
ables are often driven by random uncontrollable distur-
bances. Therefore, they show the evident property of auto-
correlation.

In order to deal with auto correlated measurements, time
series models are used to make a prediction and the pre-
diction errors are used for monitoring. However, this ap-
proach is often applied to the univariate process monitor-
ing (Negiz et al., 1994). For multivariate time series with
high cross correlated variables, dynamic factor models are
preferred for process monitoring and prediction.
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In the past twenty years, dynamic multivariate projections
were developed for these cases. Ku et al. proposed a lagged
versions of PCA to process multivariate variables with
dynamic property (Ku et al., 1995), called dynamic PCA
model. Dynamic PCA model is based on conducting sin-
gular value decomposition on an augmented data matrix,
including the time lagged process variables. The use of
time lagged variables is seen in many other models, such
as dynamic nonlinear PLS (Qin and McAvoy, 1996) and
two-dimensional dynamic PCA(Lu et al., 2005). However,
there are limitations for this technique. One issue is that
cross-correlation is not explicitly extracted, the other issue
is that the number of dynamic factors which have nonzero
singular values are not the minimum dimension of a linear
dynamic system.

To solve these problems, some methods based on subspace
modeling were proposed. Negiz and Cinar used a canon-
ical variate (CV) state space model to describe dynamic
processes, which is equivalent to a vector autoregressive
moving-average time-series model (VARMA) (Negiz and
Cinar, 1997, 1998). They used a stochastic realization
based on canonical variate analysis to handle a large num-
ber of variables that are autocorrelated, cross-correlated
and collinear, and constructed a T2 statistic from the
CV state variables for process monitoring. The CV state
variables are linear combinations of the past measurements
which can explain future variability the most. As PLS
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is able to model the relationship between two data sets,
the subspace model identified by PLS algorithm can also
be used for statistical performance monitoring (Simoglou
et al., 2002). The comparison between CVA and PLS
shown that CVA can provide more rapid detection for the
faults. However, due to the sensitivity of small eigenvalues
of the covariance matrix, PLS can obtain more stable
results than the CVA method.

Subspace identification method (SIM) is a different system
modeling scheme from PCA, which identifies a state space
model for the process Qin (2006). PCA can be used to
develop a consistent model estimates under the errors-
in-variables situation (Wang and Qin, 2002). Li and Qin
investigated the relationship between dynamic PCA and
SIM under state space description of dynamic processes
(Li and Qin, 2001). With the presence of process and
measurement noise, they proposed a consistent dynamic
PCA algorithm, namely indirect dynamic PCA (IDPCA)
and established consistency conditions. Recently, Ding
et al. combined SIM and model based fault detection
technologies to propose another fault detection scheme
(Ding et al., 2009). Using the linear dynamic state space
description of processes, the residual generator of the
parity space method after identifying a subspace model is
equivalent to indirect dynamic PCA modeling for normal
data.

However, when a state space model is taken for the
monitoring, only dynamic relationships are focused for
monitoring. In static PCA models, only static correla-
tion between variables at zero lags are extracted. It is
desirable to consider both dynamic auto-correlation and
static cross-correlations for monitoring. In the area of time
series prediction, dynamic factor analysis (DFA) has been
proposed to restrict the dynamic variability in a reduced
subspace. Motivated by DFA, a new dynamic statistical
model is proposed in this paper, called dynamic latent
variable (DLV) model.

The rest of the paper is organized as follows. In Section
2, existing dynamic PCA models and subspace based
methods are reviewed briefly. Then, we propose a new
dynamic latent variable model in Section 3. Following
that, fault detection schemes are developed based on the
proposed model in Section 4. In Section 5, we use a case
study to illustrate the effectiveness of fault detection and
compare it with two existing methods.

2. DYNAMIC PCA AND STATE SPACE MODELING
2.1 Direct modeling

Suppose a sample vector x; € R™ consists of m sensor
measurements at sampling time k. With the effect of dy-
namic processes and closed loop control, different samples
X; are not independent at different k, which indicates
that they can be auto-correlated and cross-correlated. To
capture the dynamic relations inside the variables, dy-

namic PCA performs PCA on the following augmented
data matrix (Ku et al., 1995)

Xk+s Xk+s+1 --- Xktnts
_ Xk+s—1 Xk+s + Xk4n—1+s
Xy = . o : (1)
Xk Xk+1 Xk+n

where s is the lagged number of the data matrix, and
n + s+ 1 is the number of samples used in the modeling.
If measurement noise terms have identical variance, then
we can perform the following singular value decomposition,
and select the largest A singular directions as the principal
components.

1- -

~X,XI'=uDpv” (2)

n
Ku et al. suggested a method to determine the order of
dynamic process (Ku et al., 1995). Let Pp = U(;, 1 :
A), Pp = U(:;A+ 1 : m(s+ 1)). Then, the principal
components are

tp = Pg)_(k (3)
Xp

where X3, =

Xk—s
2.2 Indirect DPCA modeling

If the measurement noise does not have identical variance,
Li and Qin suggested to use an indirect dynamic PCA
algorithm based on SIM to eliminate the effect of noise (Li
and Qin, 2001). The direct modeling of DPCA is referred
as DDPCA in (Li and Qin, 2001). In their work, a SIM
based indirect dynamic PCA is used for extracting the
party vector P;. Their method performs SVD as follows:

%XMXOT = UyD, Vo' (4)
and P; = Uy(;,1 : A), Py = Us(5, A+ 1 : m(s + 1)).
The principal components can be represented similar to
(3). Li and Qin used the Akaike information criterion for
choosing the proper lagged number s (Li and Qin, 2001).
The number of dynamic principal factors A is determined
as the number of diagonal elements of D5 that are zero or
nearest to zero.

2.8 State space modeling

Besides the above indirect dynamic PCA modeling, some
other techniques are used to build a dynamic relationship
between a future data set )_(S+1 and a past data set Xj.
Negiz and Cinar used the CVA technique to build a state
space model for dynamic process monitoring (Negiz and
Cinar, 1997, 1998). It provided the principal directions
of variability of a linear dynamic system through the
canonical variables, which are orthogonal vectors of the
space of the past measurements that are highly correlated
to the space of the future measurements. The objective
of CVA is to search for correlation in the future and past
data set, which has the smallest angle between them:
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max CTXSTHXOW 5)
st [Rorie] = [Row] = 1
The CVA is to perform the following SVD,
(XL X)X X (XTXo) ™2 = UsDg V] (6)
and the CV state (or dynamic factors) is obtained by
t, = DY*VIR,"*%, (7)
where the SVD matrices only include singular values and
vectors corresponding to A canonical variables retained in
the model. Ry = %XgXo means the covariance matrix of
X at zero lag.

Partial least squares (PLS) is conceptually similar to CVA
in building a relationship between future and past data
set (Simoglou et al., 2002). PLS algorithm searches the
following objective:

TRT X
max ¢ X, ;Xow

w,c (8)
st lefl = [Jw]] =1
and the PLS score is obtained by
ty = (WI'P)"'WTx, = RTx, (9)

where W, P and R are the weighting and loading matrices
from the PLS algorithm(Héskuldsson, 1988).

3. DYNAMIC LATENT VARIABLE MODELING

The aforementioned dynamic latent variable models rep-
resent the dynamic linear relations among variables, and
use them for residual generation. The idea guarantees the
modeling residual is time-independent and suitable for sta-
tistical monitoring. However, there are still two problems.
On one hand, there exist static and dynamic correlations,
which should be monitored, respectively. These existing
dynamic latent variable models do not distinguish dynamic
relations and static relations from each other, which re-
duces the detection sensitivity to some tiny faults. On
the other hand, they do not extract the dynamic factors
according to their auto-covariance. In order to describe
the dynamics as well as their static cross-correlations in
process variables, an auto-regressive PCA algorithm is
proposed to extract dynamic principal components from
the original process data .

3.1 Auto-correlation PCA algorithm

We use an auto-regressive PCA algorithm to find the dy-
namic principal component that has most auto-covariance.
Denote Xy = [Xp,Xki1,-.sXkin|’. The proposed algo-
rithm maximizes the following objective:
T~T

mue)xx w X 1 Xow (10)

st. wiw=1
Remark 1. This objective searches the direction of the
largest auto-covariance with s+ 1 delay. If there is no prior
knowledge, the largest auto-covariance usually reaches
with one step, which indicates s=0. It is assumed that
auto-correlation vanishes as delay time increases. Thus,
the auto-covariance with one step delay is a convenient

choice. Since xi, is a stationary time series from a normal
process, this is a reasonable assumption.

Using the Lagrangian multiplier, we derive the following
objective:

J=wIXT Xow+A(1 - w'w)
Taking derivatives with respective to w,
oJ

ow

(11)

= (XL, X0 + X{ X)W — 22w =0 (12)

As w'w = 1, w is the solution of the following eigenvector
problem:

1

§(X5T+1X0 + X X)W = Aw
Noting that w”X7” ; Xow = wI XX, 1w, the optimal
objective can be obtained as

(13)

1
J= EWT(Xz_HXO +XIX o )w=widw =) (14)

The eigenvector in (13) with the largest eigenvalue A0
is the optimal solution of objective (10).

Remark 2. Note that the covariance in (10) may be nega-
tive. If so, we should minimize w” X, ; X,w instead. The
final result is to search the eigenvectors of (14) with respect
to the largest absolute eigenvalues |A|maz-

Then, the dynamic score vector is further calculated as

t= X()W (15)
After that, the loading vector p can be obtained by
p=Xlt/t"t (16)

which generates the residual uncorrelated to dynamic
factors,

E =X, —tp’ (17)
Different from static PCA, the dynamic principal com-
ponents are extracted according to the degree of auto-
covariance. The residuals should be left with very little
auto-covariance, which corresponds to near zero \. The
whole procedure can be summarized as follows:

Algorithm 1 (Auto-correlation PCA)
(1) Let i =1, X{ = X, X", = X1y

(2) Solye the eigenvalue decomposition of (X(()i)TXgl +
Xg{X((f)), then obtain the eigenvector with the
largest absolute eigenvalue, denote it as w;.

(5) Set XV = X{UT — wipl), XUV = X0, (1~
w;pl), i =i+ 1. Return to step 2, until i > A.

—
i
~

The proposed auto-correlation PCA resembles the tra-
ditional partial least squares algorithm in the proce-
dure. Thus, we can describe the structure on X space
which is provided by the auto-correlation PCA algorithm
similar to PLS. Denote W = [wy,wa,...,wu]|,P =
P1,P2,. -, pal, T = [t1,ta,...,t4]. R = W(PTW) L.
We have

T = X,R (18)
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Given a sample of process vector x, the score predictor
and residual are calculated as
ty = ].:{TX;C
X, = Pt = PRTXk
e = (I — PRT)Xk

(19)

With Algorithm 1, it is guaranteed that e has minimum
or no auto-covariance, which is desirable for use in process
monitoring.

3.2 Dynamic modeling of the latent scores

As the latent variables contain most dynamics in the data,
it is certainly auto-correlated. Therefore, it is necessary
to build a dynamic model to reflect the auto-correlation
inside the latent variables. As normal processes are often
stationary which is operating around a set point, it is
possible to describe t; with a vector autoregressive (VAR)
model as follows:

P
ty = Zajtk_j + v = @T(,Dk + Vi
j=1
where v is assumed to be an ¢.i.d. random process
with zero mean and constant variance, representing the
independent driving source of the normal variation, and
«; is the parameter matrix corresponding to score tj_;.
Let © = [ai,...,a,)T, ¢, = [t1 ,,... ,tgfp]T. p is the
model order, which is determined by AIC (De Waele and
Broersen, 2003).

(20)

The parameters of above model can be estimated by a
multivariable least squares algorithm directly as follows
(Ljung, 1999).

-1

p+n p+n
o= > ¢l > it (21)
i=p+1 i=p+1

3.3 Dynamic latent variable modeling procedure

Denoting E = [eq,...,e,]”, then E represents the static
variation in the process data. As E could still contain
large non-auto-correlated variability, it is necessary to
decompose E further by static PCA. The whole procedure
can be summarized as follows:

(1) Initialization. Center the variables to zero mean and
scale them to unit variance.

(2) Use the auto-correlation PCA algorithm (Algorithm
1) to build an outer model of X and extract dynamic
latent variables, represented by (19). Determine the
numbers of components with a criterion.

(3) Use the multivariable LS algorithm to build the inner
model of dynamic latent variables. Determine the
order with AIC.

(4) Perform PCA on residual E, E = T;P; + E,., where
T, contain A; components and A, is determined by
a PCA based method(Valle et al., 1999).

The ultimate space decomposition of X space can be
represented as:

Xy =TP" + T,P, +E, (22)

And for a sample vector x;, the decomposition can be
described as
xp = Pty + Psts o + e g

p
te= Y oyti_j+ Vi
j=1

(23)

We refer to (23) as the dynamic latent variable (DLV)
model. DLV models focus dynamic variation of process
in a low-dimensional latent space, which is beneficial for
process monitoring. Although it omits some static varia-
tions, the DLV model captures the most of the dynamic
variation first, then extracts large static variations. On the
other hand, the DLV model represents dynamic and static
relationships in the process variables explicitly, rather than
implicitly in traditional DPCA.

4. FAULT DETECTION BASED ON DLV

Conventional PCA based fault detection uses squared
prediction error (SPE) and the Hotelling 7 control charts
for monitoring processes. For the DLV model based process
monitoring, scores and residual are calculated first as
follows:

ty = RTXk
24
tor = PT(I-PRY)x, (24)
and
>
Vi = tk — a]-tk,j
— (25)

i=

e, = (I-P,PT)(1I-PR")x,
where t; and vj represent the score and residual in
dynamic part of the process variation, and t,; and X,
represent the score and residual in static part of the
process variation. However, t; is auto regressive in the
time domain which is not suitable for monitoring by a
direct control limit. If one chooses to monitor t; directly,
it would leads to high missed alarm rates. Therefore, we
choose to monitor vy, instead of t; in the dynamic latent
space. Therefore, we construct three indices to monitor the
process based on the DLV model, which is listed in Table
1.

Table 1. Fault detection indices

Statistics Calculation Control limit
2 TA—1 A(n%-1)
T; viA Y n(n_2) Fpon—aa
—1 Asg —1
T2 tTAS s 7n(fﬁAs; Fagn—ag,a
Qr ”erH2 gX;QL o

n: number of training samples, A: number of dynamic principal
components; As: number of static principal components; Ay =
LVTV; A, = L TIT,; V = [vi,...,va]T; For Q,
g = S/2u, h = 2u%/S, u is the sample mean of Q,, and S
is the sample variance of Q,

There are explicit meanings of these detection indices for
statistical process monitoring. 77 represents the statisti-
cally independent information in dynamic principal latent
variables, which contains the dynamic variation in the
data, while T2 reflects the static principal variation, which
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contains the static variation in the data. Subsequently,
Q) measures the variation of unmodelled subspace that is
unexcited normally. In this framework, a DLV model can
be seen as a natural extension of static the PCA model.

5. CASE STUDY ON CSTR

The continuous stirred tank reactor (CSTR) is a dynamic
process, which is widely used to evaluate dynamic con-
trol and monitoring methods. The CSTR process can be
described by the following group of differential equations
(Yoon and MacGregor, 2001):

dC E
714:g(cAf—CA)—koeXp(—i)CA-‘r’Ul

Vv RT
%tT_q(T _T)+_A7Hk ( E)C
TR C, 0 exp(— 1 )Ca (26a)

UA
T.—T
+VpC’p( )+'U2

where Cy4 is outlet concentration, T is reaction tempera-
ture, T, is temperature of cooling water, ¢ is input fluent
velocity of reactant, C'4y is input reactant concentration,
Ty is input reactant temperature, and v;,vp are inde-
pendent system noise process, where v;(k) ~ N(0,02;).
Others are constant parameters for the processes. In the
simulation, C4, T are the controlled output variables, and
T.,q,Tt are input variables. Normally distributed mea-
surement noise is added to all these input and output vari-
ables. The negative feedback inputs are added to [q,7.]T
as in (Li et al., 2010).

After mean-centering all variables and scaling them into
unit variance, we build a DLV model as well as DDPCA
and IDPCA models with 1000 normal samples. Based on
the auto-correlation test, two dynamic factors are kept for
the DLV model, while 7 and 8 state variables are needed
for DDPCA and IDPCA models, respectively. Further, the
order of VAR model is determined as 2 according to AIC.
Two kinds of faults are introduced to this simulation at
300 samples. Fault 1 is a decrease of two percents in input
reactor concentration C4 s, which then affects all variables
via closed loop control. Fault 2 considers a slow scaling
process in the reactor container, which makes the volume
of the reactor smaller from a given time.

For Fault 1, the detection results using different schemes
are shown in Figs. 1-2. In this fault case, it is observed
that DLV based statistics can detect faults in T2 and Q,.,
while only DDPCA based on  manages to detect the
fault. For Fault 2, the detection results are depicted in
Figs. 3-4, which shows that the DLV based detection is
quicker than DDPCA and IDPCA based detection. This
is because DPCA models can not separate static and
dynamic relations, which lowers the detection sensitivity.
Further, the DLV model includes very few dynamic factors,
which is suitable for the interpretation of the abnormal
situation.
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Fig. 1. Fault detection indices of the DLV model for Fault
1
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Fig. 2. Fault detection indices of DDPCA and IDPCA
models for Fault 1

6. CONCLUSIONS

In this paper, a new dynamic latent variable model is
proposed for the dynamic process monitoring. The DLV
model extracts the dynamics in the variable space into
auto-correlated latent factors. An auto-correlation PCA
algorithm is proposed to extract dynamic principal factors
according to their auto-covariance. This step separates
the dynamic part and static part of the process varia-
tions. For the dynamic principal components, a vector AR
model is adopted to extract an innovation-like residual for
monitoring. In addition, PCA decomposition is applied to
the remaining static variation. T2 statistics are used to
monitor the normally excited process variations, while @,
is used for detecting when normal relations are broken. The
DLV model has a clear interpretation in terms of subspace,
which can be used for further diagnosis. A case study on
CSTR shows the effectiveness of the proposed methods.
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