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Abstract: This paper introduces the concept of consistency for continuous-time switched linear
systems having the switching function as a primary control signal to be designed. A state
feedback switching control strategy is strictly consistent whenever it improves performance
compared to the ones of all isolated subsystems. It is proven that a min-type switching strategy is
strictly consistent for the classes of H2 and H∞ performance indexes. This property makes clear
the importance of switching systems control design in both theoretical and practical application
frameworks. Moreover, with this property it is not necessary to assume that all the subsystems
are not stabilizable in order to make a switching strategy design problem well posed. The theory
is illustrated by means of several academic examples.

Keywords: Switched linear systems, Optimality, Stabilization methods, State feedback.

1. INTRODUCTION

Switched dynamical systems and, in particular, switched
linear systems analysis and control design have been the
concern of many researchers in the last decades since their
introduction by Morse and collaborators in the early 70’s,
see the survey papers DeCarlo et al. [2000], Liberzon and
Morse [1999], Lin and Antsaklis [2009], Shorten et al.
[2007], the interesting and useful books Liberzon [2003],
Schaft and Schumacher [2000], Sun and Ge [2005] and
the references therein. For continuous-time switched linear
systems stability analysis many results are available. They
put in evidence the important fact that it is possible to
orchestrate the subsystems through an adequate switching
strategy in order to impose global stability. This property
is valid even though all isolated subsystems are unstable,
see Colaneri et al. [2008], Geromel et al. [2008], Geromel
and Colaneri [2006], Liberzon and Morse [1999] and Zhao
and Hill [2008]. For control design, several results are
also available in two main different contexts. In the first
one, controllers are designed in order to maintain global
stability in the presence of switching viewed as unknown
and arbitrary trajectories, see Hespanha and Morse [2002]
for details. In the other framework the switching function
is a control strategy that is used to improve performance,
see for instance Deaecto and Geromel [2010], Geromel and
Deaecto [2009], Ji et al. [2006], Ji et al. [2005], Savkin
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et al. [1996], Yan and Ozbay [2007], Zhai et al. [2005]
and Zhai et al. [2001] among others. In this paper, the
concept of consistency is introduced. Roughly speaking,
a switching strategy is said to be strictly consistent if it
improves performance when compared to all performances
produced by the isolated subsystems. In other words, a
strictly consistent switching strategy necessarily yields a
performance gain. Clearly, an optimal switching strategy
is consistent, but since it may be difficult to determine, we
think that consistency is a valid certificate for suboptimal
switching strategies quality. The consistency property clar-
ifies the formulation of a switching strategy design problem
in general in the sense that we do not need to assume that
all the subsystems are not stabilizable to make the problem
well posed. We show in this paper how to design a min-
type switching strategy that is strictly consistent as far
as H2 and H∞ performance indexes are adopted. This is
important in the general framework of switched linear sys-
tems and, in particular, when the isolated subsystems can
be made asymptotically stable by means of an additional
feedback control loop. The theory is illustrated by means
of simple examples.

The notation is standard. For square matrices Tr(·) de-
notes the trace function. For real matrices or vectors (′) in-
dicates transpose. For symmetric matrices, the symbol (•)
denotes each of its symmetric blocks. The convex combi-
nation of matrices with the same dimension {J1, · · · , JN}

is denoted by Jλ =
∑N

j=1
λjJj where λ belongs to the

unitary simplex Λ composed by all nonnegative vectors

λ ∈ R
N such that

∑N

j=1
λj = 1. The squared norm of a

trajectory ξ(t) defined for all t ≥ 0, denoted by ‖ξ‖22 is
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equal to ‖ξ‖2
2
=

∫∞

0
ξ(t)′ξ(t)dt. The set of all finite norm

trajectories, such that ‖ξ‖22 < ∞ is denoted by L2.

2. PROBLEM STATEMENT AND PRELIMINARIES

Consider the following switched linear system

ẋ(t) =Aσx(t) +Hw(t) (1)

z(t) =Eσx(t) +Gw(t) (2)

evolving from zero initial condition x(0) = 0. The vectors
x ∈ R

n, w ∈ R
m, and z ∈ R

r are the state, the exogenous
disturbance and the controlled output, respectively. The
switching function denoted by σ(t) selects at each time
instant t ≥ 0 a subsystem among those belonging to
the set K = {1, · · · , N}. The state space realization
of each subsystem is defined by matrices (Ai, H,Ei, G)
of appropriate dimensions for each i ∈ K. Matrices H
and G are supposed to be switching independent but
the possibility to relax this assumption will be discussed
in details afterwards. For a given switching trajectory
σ(t), ∀t ≥ 0, two different performance indexes can be
associated to the switched linear system (1)-(2) depending
on the class of external perturbation w considered. With a
little abuse they are denominatedH2 andH∞ performance
indexes, respectively, and are defined as follows:

• H2 performance: For strictly proper subsystems
(G = 0), the controlled output z(t) associated to
impulsive disturbances of the form w(t) = ekδ(t)
where ek ∈ R

m is the kth column of the identity
matrix provides the index

J2(σ) =

m
∑

k=1

‖zk‖
2

2 (3)

• H∞ performance: The controlled output z(t) as-
sociated to arbitrary square integrable disturbances
w ∈ L2 provides the index

J∞(σ) = sup
w 6=0∈L2

‖z‖22
‖w‖2

2

(4)

The rationale behind these definitions is that whenever the
switching rule is kept constant, that is, σ(t) = i ∈ K for all
t ≥ 0, and matrices Ai, i ∈ K are Hurwitz then the indexes
(3) and (4) equal the standard H2 and H∞ squared norms
of the i-th subsystem transfer function from the input w
to the controlled output z, respectively.

Let us now define the set S that contains all state feedback
switching functions of the form σ(t) = g(x(t)) for some
g : Rn → K ensuring global asymptotic stability of the
origin and the set C that contains only the N time constant
policies σ(t) = i ∈ K for all t ≥ 0. Clearly, C is a subset of
S if and only if all subsystems matrices are Hurwitz. To
ease the notation, in the sequel, α denotes {2,∞}.

Definition 1. A particular switching strategy σα is consis-
tent with respect to the index Jα if it belongs to S and
guarantees that Jα(σα) ≤ Jα(σ), ∀σ ∈ C. If this inequality
is strict the strategy is said strictly consistent.

A switching strategy is consistent whenever it imposes
to the switched linear system a performance that is not
worse than the performance produced by each isolated
subsystem. In other words, a strictly consistent switching

strategy improves performance. Clearly, it is seen that the
optimal state feedback switching strategy provided by

σ∗
α = arg inf

σ∈S
Jα(σ) (5)

is consistent. Indeed, if σ ∈ C also belongs to S then by
definition Jα(σ

∗
α) ≤ Jα(σ). On the contrary, if σ ∈ C but

it does not belong to S then the same inequality holds
because Jα(σ) is unbounded. Since the computation of
the optimal state feedback strategy (5) is a very difficult
task, suboptimal solutions are of great interest but only
if they are strictly consistent. Otherwise, such a switching
strategy does not improve performance when compared to
some strategy of C.

In this paper, our purpose is to provide suboptimal switch-
ing strategies that are strictly consistent with respect to
Jα for both α ∈ {2,∞}. They are formally expressed as
σso(t) = g(x(t)) where

g(x) = argmin
i∈K

x′Pix (6)

with Pi ∈ R
n×n being positive definite matrices for all

i ∈ K that satisfy some conditions to be presented in the
sequel. To this end, we need to introduce the following
matrix sets, see Deaecto and Geromel [2010] and Geromel
and Colaneri [2006]. The first, denoted X2, is composed
by positive definite matrices Pi ∈ R

n×n, i ∈ K and a
Metzler matrix Π = {πij} ∈ R

N×N satisfying the so called
Lyapunov-Metzler inequalities





A′
iPi + PiAi +

∑

j∈K

πjiPj •

Ei −I



 < 0, i ∈ K (7)

whereas the second one denoted X∞ is composed by
positive definite matrices Pi ∈ R

n×n, i ∈ K, a Metzler
matrix Π = {πij} ∈ R

N×N and a positive scalar ρ ∈ R

satisfying the so called Riccati-Metzler inequalities








A′
iPi + PiAi +

∑

j∈K

πjiPj • •

H ′Pi −ρI •
Ei G −I









< 0, i ∈ K (8)

The elements of the Metzler matrices under consideration
are such that πij ≥ 0, ∀i 6= j ∈ K×K and

∑

i∈K

πij = 0, ∀j ∈ K (9)

which implies that πii ≤ 0, ∀i ∈ K. The following are
Metzler matrices of this class: the null matrix Π = 0 and
Π = Θj with null elements except θii = −β and θji = β
for all i = 1, · · ·N, i 6= j, for some j ∈ K and β ≥ 0.
Moreover, the feasibility of the sets Xα does not require
all matrices {A1, · · · , AN} be Hurwitz. Indeed, in Geromel
and Colaneri [2006] it is proven that the inequalities (7)
admit a solution with respect to the matrix variables Pi >
0, i ∈ K and Π satisfying (9) whenever there exists λ ∈ Λ
such that Aλ is Hurwitz. In other words, the convex hull
co{A1, · · · , AN} must contain a Hurwitz matrix. Clearly
the same result holds for the Riccati-Metzler inequalities
(8) because they reduce to the previous ones for ρ → +∞.
Finally, it is simple to verify that for Π fixed, both are
expressed by LMIs with respect to the remaining variables.
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3. MAIN RESULTS

This section is devoted to present conditions to assure that
the switching strategy based on the state feedback func-
tion (6) is strictly consistent. The next theorem provides
conditions for the case of H2 performance, that is α = 2.

Theorem 2. Assume the set X2 is not empty. The optimal
solution of

Jso
2

= inf
{P1,··· ,PN ,Π}∈X2

min
i∈K

Tr(H ′PiH) (10)

provides positive definite matrices Pi, i ∈ K such that
the state feedback switching function σso(t) = g(x(t)) is
strictly consistent.

Proof: Consider the switched system (1)-(2) with zero
input w(t) = 0 and arbitrary initial condition x(0) = x0.
Since X2 is not empty take any {P1, · · · , PN ,Π} ∈ X2

and adopt the Lyapunov function v(x) = mini∈K x′Pix.
Following the same reasoning as in Geromel and Colaneri
[2006] it is seen that ‖z‖2

2
< v(x0) = mini∈K x′

0
Pix0.

Hence, applying this to the switched linear system (1)-
(2) with successive inputs w(t) = ekδ(t) from zero initial
condition, using (3) we get

J2(σso)<

m
∑

k=1

min
i∈K

(Hek)
′Pi(Hek)

<min
i∈K

Tr(H ′PiH) (11)

which enables us to say that the optimal solution of
problem (10) provides the most favorable upper bound to
the H2 performance index, that is J2(σso) < Jso

2
. Consider

now that there exists at least one σ ∈ C that also belongs
to S because otherwise the claim follows immediately
from the fact that J2(σ) is unbounded for all σ ∈ C.
Consequently, we proceed by assuming that matrix Aℓ is
Hurwitz for some ℓ ∈ K in which case it is well known, see
Boyd et al. [1994], that the equality

‖Eℓ(sI −Aℓ)
−1H‖2

2
=

= inf
Qℓ>0

{Tr(H ′QℓH) : A′
ℓQℓ +QℓAℓ + E′

ℓEℓ < 0} (12)

holds. Moreover, taking the Metzler matrix Π = Θℓ the
constraints that define the set X2 are rewritten as

[

A′
iPi + PiAi + β(Pℓ − Pi) •

Ei −I

]

< 0, i ∈ K (13)

making simple to verify that for β > 0 large enough,
matrices Pℓ = Qℓ and Pi > Qℓ arbitrary but fixed for
i = 1, · · · , N , i 6= ℓ are such that {P1, · · · , PN ,Π} ∈ X2,
yielding

Jso
2 = inf

{P1,··· ,PN ,Π}∈X2

min
i∈K

Tr(H ′PiH)

≤Tr(H ′QℓH)

≤ ‖Eℓ(sI −Aℓ)
−1H‖2

2
(14)

Since this is true for every index ℓ ∈ K such that Aℓ is
Hurwitz, the conclusion is that J2(σso) < Jso

2
≤ J2(σ) for

all σ ∈ C and the proof is completed. 2

From the proof of Theorem 2 the following remarks are
important:

Remark 3. It is clear that Jso
2 is only an upper bound to

the true value of the cost J2(σso). Hence, in general, we
have J2(σso) ≪ Jso

2
.

0

0.5

1

1.5

2

0

0.5

1

1.5

2

2

2.5

3

3.5

p q

Fig. 1. Jso
2

cost determination

Remark 4. Theoretically, it may occur that Jso
2

= J2(σ)
for some σ ∈ C and J2(σso) be arbitrarily close to it. In
this situation, switching does not improve performance.

Solving problem (10) is not a simple task because, for
each i ∈ K, we have to handle nonconvex constraints.
Indeed, the Lyapunov-Metzler inequalities are BMIs whose
global solution determination requires the use of powerful
numerical methods based on polynomial optimization.
These aspects are illustrated by means of the next simple
example where the switched linear system (1)-(2) state
space realization is given by

A1 =

[

0 1
−2 −9

]

, A2 =

[

0 1
−2 −2

]

, H =

[

0
10

]

(15)

and E1 = [ 1 0 ] , E2 = [ 0 1 ]. Since matrices A1 and
A2 are Hurwitz, it is immediate to verify that the best
performance that we can obtain with a constant strategy
is by adopting σ(t) = 1, ∀t ≥ 0 with the associated cost

J2(σ) = min
ℓ∈{1,2}

‖Eℓ(sI −Aℓ)
−1H‖2

2
= 2.7778 (16)

In this particular case of only two subsystems, the Metzler
matrix Π ∈ R

2×2, written as

Π =

[

−p q
p −q

]

(17)

enables us to solve problem (10) by gridding the objective
function for all (p, q) in the box [0, 2]× [0, 2] as indicated
in Figure 1. Notice that the global optimal belongs to this
box which provides the optimal Metzler matrix defined by
the pair (p, q) = (0.45, 0.00) and Jso

2
= 2.1929. Finally,

the time simulation of the closed-loop system allows the
determination of the true cost J2(σso) = 1.6357. This
confirms that the σso strategy is strictly consistent and
presents a cost 40% smaller than the best cost produced
by any constant strategy σ ∈ C. This simple example shows
that, even in the case of all subsystems are asymptotically
stable, we may have an important performance improve-
ment whenever switching is allowed.

We now move our attention to the case of H∞ perfor-
mance. The situation is more demanding since only one
scalar variable ρ is present in all Riccati-Metzler inequali-
ties that define the set X∞.

Theorem 5. Assume the set X∞ is not empty. The optimal
solution of

Jso
∞ = inf

{P1,··· ,PN ,Π,ρ}∈X∞

ρ (18)
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provides positive definite matrices Pi, i ∈ K such that
the state feedback switching function σso(t) = g(x(t)) is
strictly consistent.

Proof: Consider the switched linear system (1)-(2) with
zero initial condition x(0) = 0. Since X∞ is not empty
take any {P1, · · · , PN ,Π, ρ} ∈ X∞ and adopt the Lya-
punov function v(x) = mini∈K x′Pix. Following the same
reasoning as in Deaecto and Geromel [2010] it is possible
to conclude that ‖z‖2

2
− ρ‖w‖2

2
< 0 for all w ∈ L2. Hence,

we get

J∞(σso)< ρ (19)

which enables us to say that the optimal solution of
problem (18) provides the most favorable upper bound
to the H∞ performance index, that is J∞(σso) < Jso

∞ .
As before, consider that there exists at least one σ ∈ C
that also belongs to S because otherwise the claim follows
immediately from the fact that J∞(σ) is unbounded for all
σ ∈ C. Consequently, we proceed by assuming that matrix
Aℓ is Hurwitz for some ℓ ∈ K in which case it is well known,
see Boyd et al. [1994], that the following equality

‖Eℓ(sI −Aℓ)
−1H +G‖2∞ =

= inf
Qℓ>0,ρℓ







ρℓ :





A′
ℓQℓ +QℓAℓ • •
H ′Qℓ −ρℓI •
Eℓ G −I



 < 0







(20)

holds. On the other hand, with the Metzler matrix Π = Θℓ

the constraints that define the set X∞ are rewritten as




A′
iPi + PiAi + β(Pℓ − Pi) • •

H ′Pi −ρI •
Ei G −I



 < 0, i ∈ K (21)

and we verify that for β > 0 large enough, matrices
Pℓ = Qℓ, Pi > Qℓ arbitrary but fixed for i = 1, · · · , N ,
i 6= ℓ and ρ = ρℓ the inequalities (21) reduce to the one
in (20) for i = ℓ and to ρℓ > G′G for i 6= ℓ ∈ K that are
redundant. Consequently, since {P1, · · · , PN ,Π, ρ} ∈ X∞,
we get

Jso
∞ = inf

{P1,··· ,PN ,Π,ρ}∈X∞

ρ

≤ ρℓ

≤ ‖Eℓ(sI −Aℓ)
−1H +G‖2∞ (22)

Since this is true for every index ℓ ∈ K such that Aℓ is
Hurwitz, the conclusion is that J∞(σso) < Jso

∞ ≤ J∞(σ)
for all σ ∈ C and the proof is completed. 2

The same remarks valid for the H2 performance index
are also valid for H∞ performance. The Riccati-Metzler
inequalities are difficult to handle due to the nonconvexity
inherited by the product of variables. This fact certainly
makes more demanding the solution of problem (18).
However, following the proofs of Theorem 2 and Theorem 5
an important difference between then is apparent. Suppose
all isolated subsystems are asymptotically stable, choose
Π = 0 which decouples the inequalities that define the set
X2 and determine the associated cost (which clearly may
not be the optimal one for problem (10))

Jso
2

=min
i∈K

inf
Pi>0

{Tr(H ′PiH) : A′
iPi + PiAi + E′

iEi < 0}

=min
i∈K

‖Ei(sI −Ai)
−1H‖2

2
(23)
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Fig. 2. Jso
∞ cost determination

where it is to be noticed that Pi > 0 is arbitrarily close
to the observability gramian of the i-th subsystem. Since
these matrices together with Π = 0 are feasible, the cost of
the switching strategy σso satisfies (11) and so, it is strictly
consistent. Unfortunately, the same reasoning is not valid
for H∞ performance. The main reason is that for Π = 0
the inequalities defining X∞ are not decoupled and the
associated cost

Jso
∞ = inf

Pi>0,ρ







ρ :





A′
iPi + PiAi • •
H ′Pi −ρI •
Ei G −I



 < 0, i ∈ K







=max
i∈K

‖Ei(sI −Ai)
−1H +G‖2∞ (24)

can not be used to establish consistency. Consider now
the following illustrative example where the subsystems
are defined as before and G = 1. Both isolated subsystems
are asymptotically stable and present approximatively the
same H∞ norm. Moreover, with the constant strategy
σ(t) = 2, ∀t ≥ 0 we get the associated cost

J∞(σ) = min
ℓ∈{1,2}

‖Eℓ(sI −Aℓ)
−1H+G‖2∞ = 35.9356 (25)

Adopting the Metzler matrix as in (17), Figure 2 shows the
objective function of problem (18) inside the box [0, 5] ×
[0, 5]. Searching a solution in this box we found (p, q) =
(5.00, 4.50) and the corresponding cost Jso

∞ = 18.0677.
This represents almost 50% reduction when compared
to (25). From Theorem 5, the switching strategy σso is
strictly consistent and its cost is even smaller than Jso

∞ .
Even though we can not guarantee that the solution found
inside that box is optimal, it improves the performance.

As a final remark we want to analyze the possibility to
treat more general models than (1)-(2). Initially, using
again the results of Deaecto and Geromel [2010], it can
be verified that there is no difficulty to replace the full
column rank input matrix H ∈ R

n×m by the σ-dependent
matrix Hσ. Indeed, doing this, the result of Theorem 2
remains valid because for any Qℓ > 0, it is always possible
to define Pi > Qℓ such that H ′

iPiHi > H ′
ℓQℓHℓ, for all

i = 1, · · · , N , i 6= ℓ. The proof of Theorem 5 remains
unchanged. Unfortunately, the same does not hold for
matrix G. Following the proof of Theorem 5 it is clear
that if we replace G by the σ-dependent matrix Gσ then
even for β large enough, the constraints ρℓ > G′

iGi for all
i = 1, · · · , N , i 6= ℓmay not be redundant to the constraint
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(20). Hence, in this case, the proof as it stands is not valid
anymore. This point is left for future research.

4. STATE FEEDBACK

In this section, our goal is to apply the concept of consis-
tency to cope with state feedback control design problems.
Consider a switched linear system of the form

ẋ(t) =Aσx(t) +Bσu(t) +Hw(t) (26)

z(t) =Eσx(t) + Fσu(t) +Gw(t) (27)

evolving from zero initial condition x(0) = 0 where, besides
vectors x, w and z defined before, u ∈ R

p is the control
input. For u(t) = Kσx(t) with Kσ ∈ {K1, · · · ,KN} to be
determined, the closed-loop system is given by

ẋ(t) = (Aσ +BσKσ)x(t) +Hw(t) (28)

z(t) = (Eσ + FσKσ)x(t) +Gw(t) (29)

We need to determine a set of matrix gains {K1, · · · ,KN}
such that the switching strategy σso(t) = g(x(t)) is strictly
consistent with respect to Jα for each α ∈ {2,∞}. As a
first step it is important to generalize the Lyapunov and
Riccati-Metzler inequalities introduced before. Hence, for
the closed-loop system (28)-(29), the set Y2 is composed
by all positive definite matrices Si ∈ R

n×n, matrices
Yi ∈ R

p×n, Tij ∈ R
n×n and a Metzler matrix Π =

{πij} ∈ R
N×N satisfying for all i ∈ K the Lyapunov-

Metzler inequalities




Vi +
∑

j 6=i∈K

πjiTij •

EiSi + FiYi −I



 < 0 (30)

whereas the set Y∞ is composed by all positive definite
matrices Si ∈ R

n×n, matrices Yi ∈ R
p×n, Tij ∈ R

n×n, a
Metzler matrix Π = {πij} ∈ R

N×N and a scalar ρ ∈ R

satisfying for all i ∈ K the Riccati-Metzler inequalities








Vi +
∑

j 6=i∈K

πjiTij • •

H ′ −ρI •
EiSi + FiYi G −I









< 0 (31)

In both inequalities (30) and (31), for each i ∈ K, the
matrix Vi denotes Vi = AiSi + SiA

′
i +BiYi + Y ′

i B
′
i and in

both sets the matrix variables are coupled by the LMIs
[

Tij + Si •
Si Sj

]

> 0, i 6= j ∈ K×K (32)

From the previous results of Geromel and Deaecto [2007],
Deaecto and Geromel [2010], it is known that any feasible
solution of Y2 or Y∞ allows us to synthesize the switching
strategy σso(t) = g(x(t)) with Pi = S−1

i and the control

input u(t) with Ki = YiS
−1

i for all i ∈ K. In fact, applying
the Schur Complement to (32) with respect to the last
row and column, we obtain Tij > SiS

−1

j Si − Si which
multiplied both sides by πji, j 6= i ∈ K provides

∑

j 6=i∈K

πjiTij >
∑

j 6=i∈K

πji

(

SiS
−1

j Si − Si

)

>
∑

j∈K

πjiSiS
−1

j Si (33)

since
∑

j 6=i∈K
πji = −πii for all i ∈ K. The inequality (33)

puts in evidence that conditions (30) and (31) multiplied
both sides by the nonsingular matrices diag{S−1

i , I} and

diag{S−1

i , I, I}, respectively, are equivalent to (7) and (8)
with the replacements (Ai +BiKi, Ei + FiKi) → (Ai, Ei)
for all i ∈ K. Hence, the results of Theorem 2 and Theorem
5 remain valid for the sets Y2 and Y∞, respectively. We
conclude that we can use Theorem 2 to determine the gains
{K1, · · · ,KN} and a strictly consistent switching strategy
σso = g(x) by solving

Jso
2

= inf
{Si,Yi,Wi,Tij}∈Y2

min
i∈K

{

Tr(Wi) :

[

Wi •
H Si

]

> 0

}

(34)
Adopting the same reasoning for the H∞ case, the gains
{K1, · · · ,KN} and a strictly consistent switched strategy
σso = g(x) are obtained from Theorem 5. More specifically,
from the optimal solution of

Jso
∞ = inf

{Si,Yi,Tij ,ρ}∈Y∞

ρ (35)

Some aspects of these results are illustrated by means of
the following two simple examples. They are related to the
H2 case because for H∞, the determination of the true
value of the index J∞(σso) is extremely difficult. Consider
the system (26)-(27) with matrices

A1 =

[

0 1
2 −9

]

, A2 =

[

0 1
−2 −2

]

, B1 = B2 =

[

0
1

]

E1 =

[

0.5 0
0 0

]

, E2 =

[

0 1
0 0

]

, F1 =

[

0
0.5

]

, F2 =

[

0
1

]

and H = [0 10]′. As the pairs (A1, B1) and (A2, B2) are
controllable the best performance taking into account the
individual subsystems (that is with σ ∈ C) is

J2(σ) = min
Kℓ,ℓ∈{1,2}

‖Ẽℓ(sI − Ãℓ)
−1H‖22 = 11.4745 (36)

where Ẽℓ = (Eℓ + FℓKℓ) and Ãℓ = (Aℓ + BℓKℓ). The
minimum is attained for σ(t) = 1, ∀t ≥ 0. Adopting the
Metzler matrix as in (17), Figure 3 shows the objective
function of problem (34) and a plane surface representing
the value of (36) inside the box [0, 60]× [0, 60], where the
minimum value Jso

2
= 2.4660 occurs at (p, q) = (1.0, 0.0).

The true value J2(σso) = 1.4223 represents a significative
reduction compared to (36) and the state feedback gain
matrices are

K1 = [−0.4698 −0.0986] , K2 = [0.0000 −0.2361] (37)

It is interesting to observe that the state feedback gain
K1 given in (37) does not render the closed-loop system
matrix A1+B1K1 Hurwitz. Even though, from Theorem 2
the switching strategy σso is strictly consistent. The next
example illustrates another aspect of consistency. Consider
the switched linear system (26)-(27) defined by matrices

A1 =

[

0 1
1 −5

]

, A2 =

[

0 1
−2 0.5

]

and the other ones unchanged. The best performance
considering each subsystem isolated is

J2(σ) = min
Kℓ,ℓ∈{1,2}

‖Ẽℓ(sI − Ãℓ)
−1H‖22 = 11.5388 (38)

attained with σ(t) = 1, ∀t ≥ 0. Adopting the Metzler
matrix as in (17), problem (34) provides Jso

2 which to-
gether with the plane surface defined by the minimum
value (38) are shown in Figure 4. The minimization in
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the box [0, 60] × [0, 60] gives (p, q) = (3.0, 11.0) and
Jso
2

= 11.4662 ≈ minσ∈C J2(σ). However, the associated
state feedback gains and the switching strategy σso(x(t))
gives the true cost value J2(σso) = 2.9010 yielding the con-
clusion that it is strictly consistent. Once again, comparing
to (38) the performance improvement is expressive.

5. CONCLUSION

In this paper the concept of consistency for switched linear
systems has been introduced. It is used to construct a
quality certificate for suboptimal solutions of problems
involving H2 and H∞ performance indexes as well as
state feedback control design. It has been shown how to
construct min-type switching strategies that are strictly
consistent with respect to the mentioned indexes. The dif-
ficulty to calculate a strictly consistent switching strategy
stems from the solution of a nonconvex problem with a
particular structure. This feature may be relevant for the
development of efficient algorithms to cope with this class
of optimization problems. Theoretical results have been
illustrated by numerical examples.
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