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Abstract: Three different schemes for Fault Tolerant Control (FTC) based on Adaptive Control in 
combination with Artificial Neural Networks (ANN), Robust Control and Linear Parameter Varying 

(LPV) systems are compared. These schemes include a Model Reference Adaptive Controller (MRAC), a 

MRAC with an ANN and a MRAC with an H∞ Loop Shaping Controller for 4 operating points of an 

LPV system (MRAC-4OP-LPV, MRAC-NN4OP-LPV and MRAC-H∞4OP-LPV, respectively). In order 

to compare the performance of these schemes, a coupled-tank system was used as testbed in which two 

different types of faults (abrupt and gradual) applied in sensor and actuators in different operating points 

were simulated. The simulation results showed that the use of ANN in combination with an adaptive 

controller for LPV-based system improves the FTC scheme, delivering a robust FTC system against 
abrupt and gradual sensor faults. For actuator faults, the only schemes that were fault tolerant were the 

MRAC-H∞4OP-LPV and the MRAC-4OP-LPV (i.e. the MRAC-H∞4OP-LPV was fault tolerant for 

actuator faults varying from 0 to 0.5 of magnitude).   

Keywords: LPV systems, MRAC, Artificial Neural Networks, H∞ control. 



1. INTRODUCTION 

Modern systems and their challenging operating conditions in 

certain processes increase the possibility of failures causing 

damages in equipment and/or operators. In these 

environments the use of automation control (i.e. adaptive and 

robust control) and intelligent systems is fundamental to 

minimize the impact of faults. Fault Tolerant Control (FTC) 
methods have been proposed to ensure the continuous 

operations even faults appear and to prevent more serious 

effects.  

In the last years, FTC schemes based on Linear Parameter 

Varying systems have been developed. In Bosche et al. 

(2009) a FTC structure for vehicle dynamics is developed 

employing an LPV model with actuator failures. The 

methodology described in Bosche et al. (2009) is supported 

on the resolution of Linear Matrix Inequalities (LMIs) using 

the DC-stability concept and a Parameter-Dependent 

Lyapunov Matrix (PDLM). In Montes de Oca et al. (2009) an 
Admissible Model Matching (AMM) FTC method based on 

LPV fault representation was presented; the faults were 

considered as scheduling variables in the LPV fault 

representation allowing an on-line controller adaptation. For 

instance, in Rodrigues et al. (2007) a FTC methodology for 

polytopic LPV systems was presented. The most important 

contribution of Rodrigues et al. (2007) was the development 

of a Static Output Feedback (SOF) that maintains the system 

performance using an adequate controller reconfiguration 

when faults appear.  

Although, most of the FTC methods that have been 

developed are based on classical and modern control theory; 

classical Artificial Intelligence (AI) approaches such as 

Artificial Neural Networks (ANN), Fuzzy Logic (FL), ANN-

FL and Genetic Algorithms (GA) offer an advantage over 

those traditional methods used by the control community.  

ANN have been applied in FTC because they are helpful to 
identify, detect and accommodate system faults. ANN are 

used as fault detectors by estimating changes in process 

models dynamics (Polycarpou and Helmicki, 1995), as 

process controllers (Wang and Wang, 1999), and performing 

both functions: fault detection and control (Perhinschi et al., 

2007).  

On the other hand, advanced techniques from Robust Control 

such as H∞, have also been applied to FTC with encouraging 

results. Dong et al. (2009) proposed an active FTC scheme 

for a class of linear time-delay systems, using a H∞ controller 

in generalized internal mode architecture in combination with 
an adaptive observer-based fault estimator. In Xiadong et al. 

(2008) a dynamic output feedback FTC approach that uses an 

H∞ index for actuator continuous gain faults was proposed. 

And in Liang and Duan (2004) an H∞ FTC approach was 

used against sensor failures for uncertain descriptor system.  

To improve the capabilities of FTC systems, in this paper 

three different passive FTC approaches based on Adaptive 

Control, ANN, Robust Control and LPV systems were 

developed. The first approach is a Model Reference Adaptive 

Controller for 4 operating points of an LPV system (MRAC-

4OP-LPV), the second approach is a combination of an 

MRAC with an ANN controller for 4 operating points of an 
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LPV system (MRAC-NN4OP-LPV) and the third scheme is a 

MRAC in combination with an H∞ Loop Shaping controller 

for 4 operating points of an LPV system (MRAC-H∞4OP-

LPV). The MRAC was chosen as a based controller because 

guarantees asymptotic output tracking, it has a direct physical 

interpretation and it is easy for implementation.   
This paper is organized as follows: section 2 describes the 

main building blocks; in section 3 the proposed schemes are 

shown; section 4 presents the results, in section 5, a 

comparison with similar approaches is presented, and finally, 

section 6 addresses the conclusions.  
 

2. BACKGROUND 

The background theory implemented to implement the 

MRAC-4OP-LPV, MRAC-NN4OP-LPV and the MRAC-

H∞4OP-LPV approaches will be described. 

2.1  LPV Systems 

The Linear Parameter Varying (LPV) systems depend on a 

set of variant parameters over time. These systems can be 

represented in state space. The principal characteristic is the 

matrix representation function of one or more variable 

parameters over time. The continuous time representation of 

an LPV system is: 

                                                (1) 

                       
where x(t)   Rn represents the state space vector, y(t)   Rm is 

the measurement or output vector, u   Rp is the input vector, 

     represents the parameters variation over time t and A(.), 

B(.), C(.) and D(.) are the continuous function of     .  

An LPV system can be obtained through different 

methodologies; if the physical representation of the nonlinear 

system is obtained, the Jacobian Linearization method, the 

State Transformation Method and the Substitution Function 
method can be used. The main objective of these 

methodologies is to occult the nonlinearity of the system in 

any variable in order to get the LPV system. If the 

experimental data model is obtained, the LPV system can be 

created using the Least Square Estimation for different 

operating points of the system (Apkarian et al., 1995; Bamieh 

and Giarré, 2001; Marcos and Balas, 2004). 

2.2  MRAC controller 

The Model Reference Adaptive Control (MRAC), 

implements a close loop controller where the adaptation 

mechanism adjusts the controller parameters to match the 

process output with the reference model output. The 

reference model is specified as the ideal model behaviour that 

the system is expected to follow (see Figure 1). This type of 

controller behaves as a close loop controller because the 

actuating error signal is fed to the controller in order to 

reduce the error to achieve the desired output value (Whitaker 

et al., 1958). The controller error is calculated as follows: 

          - 
 
                                         (2) 

where y(t) is the process output and  
 

(t) is the reference 

model output. To reduce the error, a cost function was used in 

the form of 

                                            (3) 

where θ is the adaptive parameter inside the controller.  

The function      can be minimized if the parameters θ 

change in the negative direction of the gradient J, this is 

called the gradient descent method and it is represented by: 

  
  

  
  -  

  

  
   - 

  

  
                                (4) 

where γ is the speed of learning. The implemented MRAC is 

a second order system and has two adaptation parameters: 

adaptive feedfoward gain      and adaptive feedback gain 

    . These parameters will be updated to follow the 

reference model. The final equations of the two adaptation 

parameters are: 

     
  

   
  

        

           
    

   

  
 - 

  

   
  -  

        

           
           (5) 

  

   
   - 

        

           
   

   

  
  - 

  

   
      

        

           
         (6) 

where     and     are the coefficients of the second order 

model. 

 

Fig. 1.  Model Reference Adaptive Controller (MRAC) 

general scheme. 

2.3  Artificial Neural Networks (ANN) 

ANN are mathematical models that try to mimic the 

biological neural system. An artificial neuron have multiple 

input signals x1, x2, …, xn entering the neuron using 

connection links with specific weights w1, w2, …, wn or 

    
       named the net input, and also have a firing 

threshold b, an activation function f and an output of the 

neuron that is represented by         
     -  . The firing 

threshold b or bias can be represented as another weight by 

placing an extra input node x0 that takes a value of 1 and it 
has a w0=-b (Nguyen et al., 2002).  

An ANN can have a feedback or a feed-forward structure. 

The ANN need to be trained from examples, in a process 

called supervised learning.  Once a successfully training is 

done, the ANN is ready if and only if the networks reproduce 

the desired outputs from the given inputs. The most common 

methodology is the backpropagation algorithm, where the 

weights of the ANN are determined by using iteration until 

the output of the network is the same as the desired output. In 

addition, unsupervised learning uses a mechanism for 

changing values of the weights according to the input values, 

this mechanism is named self-organization.  

2.4  H∞ Loop Shaping Controller 

The H∞ control theory is a robust technique developed in 

Zames (1981) to achieve robust performance and stabilization 

in an implemented system. This control theory uses the H∞ 
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norm which is the frequency response magnitude to 

maximum singular value of the interested transfer function 

(i.e. peak gain or worst case disturbances). The standard 

configuration problem for an H∞ controller is shown in 

Figure 2 (Skogestad and Postlethwaite, 2005): 

 
Fig. 2. General H∞ controller configuration (Zames, 1981). 

where K is the H∞ controller, P is a generalized plant, u are 

the control variables, w the exogenous signals, z the error 

signals which have to be minimized to achieve the control 

objectives and v the measured variables. In terms of state 

space, the above is rewritten as (Skogestad and Postlethwaite, 
2005): 

 
    
    

       
    
    

   
            

            
  
    
    

                   (7) 

 
                                                           (8)   

                                                           

      

     
        

        

                                (9) 

In which the linear fractional transformation of w to z is given 

by:                                

                    ,        ,             -     
- 
            (10) 

where the H∞ control implicate the minimization of H∞ norm 

of        . 

                               ∞                                      (11) 

                                                     

3. PROPOSED SCHEMES 

A two tank second order coupled-tank system was used for 

LPV-based approaches validation. This coupled-tank system 

is composed by two cylindrical tanks (Figure 3): an upper 

and a lower tank. A pump is used to transport water from 

reservoir to tank 1, the outlet flow of tank 1 flows to tank 2, 

and finally the outlet flow of tanks 2 end in the reservoir 

(Abdullah and Zribi, 2009; Apkarian, 1999). The water levels 

of the tanks are measured using differential pressure sensors.  

 

 

Fig. 3.  Coupled-tank system designed by Apkarian (1999).  

Pan et al. (2005) proposes the following model for this 

process. Table 1 describes the variables. 

         -
  
  

           
  
  

                 (12) 

        -
  
  

            -
  
  

                    (13) 

 

                                            (14) 

 

In Table 1, the variables definition involves in the above 

system are explained. 

Table 1. Variables definition of the coupled tank system 

Variable Definition Value 

h1, h2 water level of tanks 1 and 2 - 

A1, A2 
cross-section area of tanks 1 

and 2 
15.5179 cm2 

a1, a2 

cross-section area of the 

outflow orifice of tanks 1 

and 2 

0.1781 cm2 

U pump voltage - 

kp pump gain 3.3 cm
3
/ V s 

G gravitational constant 981 cm/s2 

α4 approximation constant 2.981 x 10-7 

α3 approximation constant -3.659 x 10-5 

α2 approximation constant 1.73 x 10-3 

α1 approximation constant -4.036 x 10-2 

α0 approximation constant 0.583 

 

An LPV model of the system is computed by a polynomial 

fitting technique that approximates     for         cm with 

 
 
  , where (Forsythe and Malcolm, 1977): 

 
 
 α   

 
 α   

 
 α   

 
 α    α                    (15) 

The parameters  
 
 and  

 
 are bounded with the following 

values: 

     
 
     

 
  

 
           

 
     

 
  

 
        (16) 

The LPV form ends in: 

                                           (17) 

     

where: 

   
  
  

        
 
 

 
 
                       (18)  

      
-       

 
 

       
 

-       
 

                  (19) 

   
      

 
             

 

 
        (20) 

 

3.1  MRAC 4 Operating Points LPV Controller (MRAC-4OP 
LPV) 

To start testing the LPV model of the two tank system, an 

MRAC scheme including the four extreme operating points 

was developed (see Figure 4).  
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Table 2. Model Reference  

Adaptive Controller of the 4 Operating Points. 
Operation 

Point 
MRAC  Equations for Each Operating Point 

 Reference Model 

= 

Process Model 

Adaptive feed forward 

update rule      
Adaptive feedback 

update rule      

 

 
 
     

 
 
            

                   
    

                

                   
     

                

                   
   

 

 
 
     

 
 
            

                  
    

               

                  
     

               

                  
   

 

 
 
     

 
 
     

 
       

                  
 

 

 

   
               

                  
   

 

 

  
               

                  
   

 

 

 
 
     

 
 
     

 
       

                  
 

 

   
               

                  
     

               

                  
   

 

 

3.2 MRAC Neural Network 4 Operating Points LPV 
Controller (MRAC-NN4OP-LPV) 

Four ANN controllers were added to the MRAC-4OP-LPV 

Controller. To create and train the ANN controller, the 

desired reference levels of the tanks were introduced as well 

as the measured levels (when the system has no faults) as the 
inputs and the outputs of the ANN, respectively. The created 

ANN is a two-layer feed forward ANN with 50 sigmoid 

hidden neurons and a linear output neuron. To train the 

network the Levenberg-Maquard backpropagation algorithm 

was used. This training algorithm is a combination of Gauss-

Newton and gradient descent methods which integrates the 

benefits of the global and local convergence properties from 

the gradient descent and Gauss-Newton methods, 

respectively (Ye, 2004).  The global implementation of the 

MRAC-NN4OP-LPV can be observed in Figure 4 as a 

feedforward controller. 

3.3 MRAC H∞ Loop Shaping 4 Operating Points LPV 
Controller (MRAC- H∞4OP-LPV) 

An H∞ controller was design for each of the 4 operating 

points. The H∞ control proposed in this work was designed 
by using the loop shaping method and the following steps 

were realized: First, the worst faulty condition (30% of 

deviation from the nominal operation point) were simulated 

and identified in the form of a Laplace function. Second, 

these functions are compared against the non-fault process. 

Third, a loop shaping control synthesis is performed to 

calculate an optimal H∞ controller for the Laplace fault-

functions. This controller shapes the sigma plot of the 

Laplace fault-function and obtains the desired loop shaping 

with a precision parameter called γ (e.g. if γ   o    b  ≥   

with γ = 1 being a perfect match). Figure 4 also shows the 

implementation of the MRAC- H∞4OP-LPV Controller as a 
feedback controller. 

The input of both controllers must be persistently exciting in 

order to converge to the desired output value. 

 

4. RESULTS 

Two different types of faults were simulated: abrupt and 

gradual. Abrupt faults were simulated with a step function.  

Gradual faults were implemented with ramp functions. 

Abrupt faults in actuators represent a pump stuck and in 

sensors a constant bias. Gradual fault could be a progressive 

loss of electrical power in pump, and a drift in sensors.  

 

 

Fig. 4. MRAC+NN+H∞ 4 Operating Points LPV Controllers. 

 

For each of the three proposed MRAC-4OP-LPV, MRAC-

NNOP-LPV, MRAC-H∞4OP-LPV controllers both faults 

were tested obtaining the results shown if Table 3. These 

results explain the range in which the methodologies are 

robust (R), fault tolerant (FT), unstable (U) or degraded 

system (DS). For example, the MRAC-NNOP-LPV is robust 

for the four operating points.  

Figures 5 and 6 show the simulation results. In these figures 

the output of the reference model and the process model are 

plotted. In Figure 5 the MRAC-4OP-LPV, the MRAC-

NN4OP-LPV and the MRAC-Hinf4OP-LPV controllers are 

compared. The three controllers are working in an operating 

point ( 
 
     and  

 
    ), the left column figures present an 

abrupt-sensor fault of magnitude 7 (which means a 70% 

deviation from nominal value) introduced at time 5,000 s. It 

can be observed that the MRAC-NN4OP-LPV is the only 

robust scheme against the fault. On the other hand, in the 

right column of Figure 5 an abrupt-actuator fault of 

magnitude 0.25 (2.5 % deviation from nominal value) was 

introduced at time 5,000 s. It is shown that the MRAC-

NN4OP-LPV has a steady oscillation (degraded system) at all 

times of the simulation. 

In Figure 6 the same controllers are tested working in the 

operating point  
 
     and  

 
    . Left column shows 

gradual-sensor fault of magnitude 3 (30 % deviation from 

nominal value) at time 5,000 s. It can be seen that the 

MRAC-NN4OP-LPV is the only robust scheme. Right 

column of Figure 6 presents gradual-actuator fault of 

magnitude 0.25 introduced at time 5,000 s. For this case, the 

MRAC-4OP-LPV has the smaller deviation of the normal 
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operating value at the beginning of the fault, but a steady 

oscillation is observed.  

Table 3. Results of the three MRAC 

schemes in the four Operation Points of the LPV system 

Approach Sensor Faults Actuator Faults 

 Abrupt Gradual Abrupt Gradual 

Process Model 1 

MRAC-4OP-LPV 

f < +/- 4.4   R 

+/- 4.4 <f < +/-7.8 

   T 
f > +/-        U 

f < +/- 4.4   R 

+/- 4.4 <f < +/-7.8 

   T 
f > +/-        U 

0 < f < 0.25 

   T 

f >        U 

+/-0 < f <+/-0.25 

   T 

f >+/-        
U 

MRAC-NN4OP-

LPV 

R R f>    S f>    S 

MRAC- H∞4OP –

LPV 

f <       R 

    < f <      T 

f >      U 

f < +/-       R 

+/- 5.1 <f < +/-16 

   T 

f > +/-      U 

0 < f < 0.5 

   T 

f >       U 

+/-0 < f <+/-0.5 

   T 

f >+/-       U 

Process Model 2 

MRAC-4OP-LPV 

f < 4.9   R 

4.9 < f < 8.2   T 
f >        U 

f < +/- 4.9   R 

+/- 4.9 <f < +/-
8.2  T 

f > +/-       

0 < f < 0.25 

   T 
f >        U 

+/-0 < f <+/-0.25 

   T 
f >+/-       U 

MRAC-NN4OP-

LPV 

R R f>    S f>    S 

MRAC- H∞4OP –

LPV 

f <       R 

    < f <        T 

f >        U 

f < +/-       R 

+/- 6.2 <f < +/-15.7 

   T 
f > +/-        U 

0 < f < 0.5 

   T 

f >       U 

+/-0 < f <+/- 0.5 

   T 

f >+/-       U 

Process Model 3 

MRAC-4OP-LPV 

f < 0.5   R 
0.5< f < 0.7 

   T 

f > 0.7   U 

f < +/- 0.5   R 
+/- 0.5 <f < +/-0.7 

   T 

f > +/- 0.7   U 

0 < f < 0.25 
   T 

f >        U 

+/-0 < f <+/- 0.25 
   T 

f >+/-       U 

MRAC-NN4OP-

LPV 

R R f>    S f>    S 

MRAC- H∞4OP –

LPV 

f <       R 

    < f <       T 
f >       U 

f < +/-       R 

+/- 2.7 <f < +/-4.9 
   T 

f > +/-       U 

0 < f < 0.5 

   T 
f >       U 

+/-0 < f <+/- 0.5 

   T 
f >+/-       U 

Process Model 4 

MRAC-4OP-LPV 

f <       R 

0.5< f < 0.7 

   T 

f >        U 

f < +/-       R 

+/- 0.5<f < +/-0.7 

   T 

f > +/-        U 

0 < f < 0.25 

   T 

f >        U 

+/-0 < f <+/- 0.25 

   T 

f >+/-       U 

MRAC-NN4OP-

LPV 

R R f>    S f>    S 

MRAC- H∞4OP –

LPV 

f <       R 

2.2 < f < 4.8 

   T 

f >       U 

f < +/-       R 

+/- 2.2 <f < +/-4.8 

   T 

f > +/-       U 

0 < f < 0.5 

   T 

f >       U 

+/-0 < f <+/- 0.5 

   T 

f >+/-       U 

FT = Fault Tolerant, R = Robust, U = Unstable, DS=Degraded System 

 

5. COMPARISON WITH SIMILAR APPROACHES 

Some other MRAC approaches in the last years have been 

developed, in the context of FTC systems, but there are 

several differences from the methods proposed in this work. 

Cho et al. (1990) proposed a method for FTC systems using a 

pole assignment controller and a MRAC controller to 

guarantee the system performance in the presence of a fault, 

this scheme is different from ours because it did not use any 

AI method such as ANN. In the case of robust H∞ controller, 

although there are some publications where the H∞ technique 

has been combined with other schemes (Lian et al., 2002), to 

the best of our knowledge there are no reports concerning the 

combination of MRAC with H∞ for LPV systems. For the 

MRAC controller for LPV systems or LPV controls just a 

few studies had been developed (see Mayasato, 2007; 

Abdullah and Zribi, 2009), although none of them included 

any AI techniques.  

 
Fig. 5. Comparison between the 3 MRAC schemes with an 

abrupt-sensor fault of 70% and an abrupt-actuator fault of 

2.5%. 

 
Fig. 6. Comparison between the 3 MRAC schemes with a 

gradual-sensor fault of 30% and a gradual-actuator fault of 

2.5%. 
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6. CONCLUSIONS 

For sensor faults, the MRAC-NN4OP-LPV methodology 

showed the best results because it was fault tolerant against 

the faults no matter the operation point and the magnitude of 

the fault. This method resulted the best scheme because is a 

combination of two type of controllers, one is a Model 

Reference Adaptive Controller (MRAC) and the other one is 

an ANN-based controller designed to follow the ideal 

trajectory (non-faulty trajectory). Both controllers were 

designed to work in 4 operating points of an LPV system 

giving them the possibility of control each of these operating 

points. For the actuator fault, the only schemes that were fault 

tolerant were the MRAC-H∞4OP-LPV and the MRAC-4OP-

LPV. The MRAC-H∞4OP-LPV and the MRAC-4OP-LPV 

were able to compensate completely the abrupt and gradual 

actuator fault approximately after 5,000 and 15,000 s, 

respectively.  

As future work of this article, experiments using the 

nonlinear model of the system instead of the LPV plant were 

realized. In these experiments chattering in the plant output 

was observed. This chattering was reduced using the design 

of the MRAC controller based on Lyapunov theory because it 

guarantees the system stability. In addition, experiments 

using a real physical coupled tank system are being carried 

out. 
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