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Abstract: Oscillations in process plants degrade the performance of control loops resulting in
poor product quality. Therefore, plant-wide oscillation diagnosis is an essential task to maintain
the performance of control loops. In recent years, significant research has been performed
on plant-wide oscillation diagnosis. It has been reported that the three major causes for
oscillations in linear closed-loop Single-Input Single-Output (SISO) systems are: (i) aggressively
tuned controller, (ii) stiction in control valves and, (iii) external disturbances. Several offline
data-driven methods have been developed to address the diagnosis problem by focusing on
only one of the causes for oscillations. In the current study, an offline data driven approach
is developed to identify all the three major causes for oscillations. This approach has the
following two components: (i) parametric Hammerstein model based stiction detection and,
(ii) non-parametric Hilbert-Huang spectrum analysis for distingusihing between improperly
tuned controller and disturbance caused oscillations. Simulation and industrial case studies
demonstrate the efficacy of the proposed method for plant-wide oscillation diagnosis.

1. INTRODUCTION

Oscillations are a common type of plant-wide disturbance
whose detection and diagnosis have generated considerable
interest in recent years (Thornhill et al. [2002], Thornhill
and Horch [2007], Choudhury [2004], Jelali and Huang
[2009]). Oscillations in control loops increase the vari-
ability in product quality, accelerate equipment wear and
may cause other issues that could potentially disrupt the
regular plant operation Thornhill et al. [2000], Srinivasan
et al. [2005b]. Therefore, it is necessary to diagnose the
root causes for oscillations in control loops.

The important tasks in plant-wide oscillation diagnosis
are: (i) detection of oscillations, (ii) isolation of oscillatory
control loops and, (iii) diagnosis of root cause for oscilla-
tions. Several methods have been developed for detection
of oscillations in control loops. Some of the widely used
methods for oscillation detection are detailed in Thornhill
and Hagglund [1997] and Thornhill et al. [2003]. Empirical
mode decomposition, a key method used in this work has
also been used for oscillation detection in control loops
Srinivasan et al. [2007]. Numerous multivariate techniques
are employed to identify a group of control loops which
are likely to contain the sources for oscillations. A couple
of well known techniques for isolation of oscillatory loops
are described in Xia et al. [2005], Srinivasan and Tangirala
[2010], Thornhill et al. [2000], Jiang et al. [2006, 2009].

After identification of oscillatory control loops, the next
step is to identify the cause for oscillations among these
loops. A survey by Yang and Clarke [1999] indicated
that 30% of all control loops in Canadian paper mills
were oscillating because of valve problems. Control loop

auditing (Torres et al. [2006]) on 700 control loops from
12 different Brazilian companies showed that most of the
control loops performed poorly due to valve problems or
aggressively tuned controllers.

In short, these surveys indicate that the three major causes
for oscillations in linear SISO loops are: (i) aggressively
tuned controller, (ii) oscillatory external disturbances, and
(iii) control valve nonlinearities such as stiction, backlash
and saturation. Most of the existing techniques focus on
identification of stiction in control loops. More recently,
Karra and Karim [2009] introduced a method that con-
siders all the three root causes. It was assumed that the
disturbance corrupting the process was nonstationary. A
noise model was developed based on this assumption.
However, in reality, it is difficult to model the disturbances
corrupting the system, since they are generally not known.

In this article, we propose a method for diagnosis of all the
three causes for oscillations in closed loop systems. The
proposed approach constitutes of: (i) Hammerstein model
based stiction identification and (ii) amplitude based dis-
crimination analysis using Hilbert Huang (HH) spectrum
for distinction between aggressively tuned controller and
disturbance caused oscillations. The use of Hammerstein
model identification method for stiction detection (Srini-
vasan et al. [2005b], Lee et al. [2008], Jelali [2008], Ivan
and Lakshminarayanan [2009], Karra and Karim [2009])
has been well established in the literature. However, the
use of HHT in the area of root cause analysis has not been
pursued before. In view of this, before presenting the use
of HHT for root cause analysis, we introduce HHT in the
context of oscillating signals in the next section.
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2. PRELIMINARIES - HILBERT HUANG
TRANSFORM OF PROCESS SIGNALS

Recently, Huang et al. [1996] developed the Hilbert-Huang
transformation (HHT) to analyze the time-frequency char-
actersitics of time-dependent signals. HHT comprises of
two distinct parts: (i) Empirical Model Decomposition
(EMD) of the signal to identify the so called Intrinsic Mode
Functions (IMFs) and (ii) Hilbert transform of the IMFs
to obtain instantaneous frequency. EMD is an adaptive
technique which is derived from the assumption that any
signal consists of characteristic oscillations (IMFs) that
are separated on a time-scale. A rigorous description of
the EMD method can be found in the seminal paper by
Huang et al. [1996]. In the second step, Hilbert transform
of all the IMFs are computed, which yields the amplitude
spectra along with the instantaneous frequencies. The am-
plitude and instantaneous frequencies from all IMFs are
plotted as a function of time, either as a 3-D plot(z axis
surface is amplitude) or as 2-D plot (color scale represents
amplitude). This plot of superposition of all instantaneous
frequencies obtained from all IMFs in the time-frequency
plane along with their amplitudes is called as the Hilbert-
Huang spectrum.

We will now present a layman description of why HHT
is important for oscillation characterization and how it
is different from Fourier Transform (FT). The key differ-
ence between HHT and FT is the notion of instantaneous
frequency at every time instant that HHT uses to de-
scribe signals. This use of instantaneous frequency results
in nonlinear distortions to frequency components being
handled in a completely different manner in HHT when
compared to FT. When a single sine wave is nonlinearly
transformed, FT of the transformed time signal will show
several frequency components that are integer multiples
of the original frequency component. This is usually re-
ferred to as harmonic distortion. This spreads the single
frequency into multiple frequencies as shown in Figure 1.
When the same output time signal is analyzed using HHT,
the HH spectrum of the nonlinear time series is represented
as modulation around the fundamental frequency of the
input signal as seen in Figure 1. We exploit this behavior
in our root cause analysis work.

The importance of this representation can be clearly seen
when we look at a nonlinear transformation of a sum of
two sinusoidal input signals as shown in Figure 2. FT
spreads the two frequencies in the frequency scale due to
harmonic distortions and hence from a FT plot it becomes
difficult to infer that the input signal had two frequency
components. However, the HH spectrum shown in Figure
2 shows two waves around the fundamental frequencies
that are clearly separated and easy to identify. As a result,
when oscillations are generated at different parts of a
control loop (controller, disturbance) and passed through a
nonlinear element such as stiction, separating the different
components becomes straight-forward.

3. SOLUTION APPROACH

Our solution approach for root cause diagnosis of oscil-
lating loops is depicted in Figure 3. In this work, we

(a) (b)

(c) (d)

Fig. 1. (a) Nonlinear signal (Sinusoidal signal of frequency
0.03 is passed through a cubic function) (b) Power
spectrum obtained from Fourier Transform (c) One
individual IMF obtained from EMD (d) HH spectrum
of the signal

(a) (b)

(c) (d)

Fig. 2. (a) Nonlinear signal (Sum of sinusoidal signals of
frequencies 0.03 and 0.08 is passed through a cubic
function) (b) Power spectrum obtained from Fourier
Transform (c) One individual IMF obtained from
EMD (d) HH spectrum of the signal
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Fig. 3. Flow chart of RCA algorithm

assume that only one root cause is present at a time. While
multiple causes at the same time are definitely possible,
comprehensive solutions do not exist even for a single
failure scenario at this time. It has been shown in our prior
work (Srinivasan et al. [2005b]) that stiction detection
can be decoupled effectively from controller tuning and
disturbance related problems. In view of this, the first step
of the approach determines presence/absence of stiction.
The algorithm terminates if stiction is detected due to the
assumption of single root cause. If stiction is not detected
then further analysis is needed. Before this analysis is dis-
cussed, a brief description of the well established stiction
detection idea is summarized.

3.1 Stiction detection in linear closed loop systems

In this work, Hammerstein based joint identification al-
gorithm proposed by Srinivasan et al. [2005b] is used for
detection of stiction in control valves. This algorithm is
based on the following one parameter model given by

x(t) =
{
x(t− 1) if |u(t)− x(t− 1)| ≤ d
u(t) otherwise (1)

Here x(t) and x(t − 1) are past and present stem move-
ments, u(t) is the present controller output and ’d’ is
the valve stiction band. The value of ′d′ is expressed in
terms of the percentage or fraction of valve movement
corresponding to the amount of stiction present in the
valve. Hammerstein based method uses a linear model
along with nonlinear stiction parameter to fit the data
between controller output (OP) and process output (PV).
The squared errors between the model predicted and pro-
cess outputs are summed over a period of time to obtain
the Total Squared Error (TSE). The value of stiction
parameter ’d’ corresponding to the model with minimum
TSE is used for stiction detection. A non-zero value of ’d’
indicates stiction while a zero value implies the absence
of stiction in the control valve. If stiction is detected,
then the root cause analysis algorithm is terminated. If
stiction is not present in the control loop, the next step
is to distinguish between aggressively tuned controller and
disturbance caused oscillations. This is discussed next.

3.2 Amplitude based discrimination analysis using HH
spectrum

It is difficult to identify the oscillations caused due to ag-
gressively tuned controller and external disturbances. This
is mainly due to the following reasons: (i) according to
linear systems theory, it has been shown that under noise-
free conditions, sinusoidal disturbances and aggressively
tuned controller lead to identical PV and OP signals in
control loops (Horch [2000]) and, (ii) regular operating
data from industries with constant set-points restrict us
from development of closed-loop models for oscillation
diagnosis. Some of the ways to address this problem are:
(i) using process transfer function, (ii) applying frequency
domain based minimum variance index approach discussed
in Horch [2000] and, (iii) use of the fact that control loop
operating at marginally stable conditions exhibit higher
oscillation amplitude compared to external disturbance
(Horch [2000], Ordys et al. [2007]). HH spectrum based
approach falls under the third category.

In general, assumptions regarding the characteristics of
the noises and external disturbances have to be made in
the development of root cause analysis algorithm. The
assumptions made in the proposed root cause analysis
algorithm are: (i) the measurement noise corrutping the
process output is white and, (ii) the amplitude of oscilla-
tions caused due to aggressively tuned controller is much
higher compared to oscillations caused due to external dis-
turbance. The latter assumption is infact true for systems
operating at marginally stable conditions. We will now
introduce our key idea for root cause diagnosis through
a simple simulation example.

Let us consider a second order plus dead time system

whose transfer function is given by
2e−3s

30s2 + 13s+ 1
. Stable

PID controller transfer function is given by 1.1(1 +
1

11s
+

0.182s) with controller gain Kc = 1.1, integral time con-
stant τi = 11 and differential time constant τd = 0.182.
The output of the system is corrupted with white noise
of signal to noise ratio (SNR) 10. Data for badly tuned
controller and disturbance caused oscillations are gener-
ated using this model. For the aggressively tuned controller
case, the stable closed-loop system is rendered marginally
stable (producing sustained oscillation) by changing the
controller gain to Kc = 2.5. The disturbance corrupted
process output was generated using a sinusoidal signal of
frequency ω = 2π0.1.

The task now is to distinguish between the controller and
disturbance caused oscillations with just from this PV
and OP data with no further information. The first step
is to see if any discriminatory information is available
in Fourier or HH spectrums of the PV and OP signals.
HH spectrum of PV signals for controller and disturbance
caused oscillations are shown in Figure 4. From this
Figure, it is hard to identify any significant information
that can be used to distinguish between controller and
disturbance caused oscillations. Again, same results are
obtained with the Fourier spectrum of PV and OP signals.
We now present a novel transformation and analysis using
HHT that is used to uncover diagnostic information from
just the PV-OP data. We transform the OP data into
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what we term as the OPind (ind for induced) data by
passing the OP data through a stiction nonlinearity. One
could view this transformation as a device for feature
extraction (Venkatasubramanian et al. [2003]). The value
of the stiction value ’d’ is fixed as 30% of the maximum
value of oscillatory component in the OP signal. Fourier
and HH spectrums of the OPind signal for controller
and disturbance caused oscillations are shown in Figure
5. Remarkably, notice that the HH spectrum of OPind

signal for disturbance caused oscillation shows two distinct
frequency bands. However, the HH spectrum of OPind

signal for controller caused oscillation does not contain
such distinct frequency bands. This diagnostic feature of
the transfomed input can be used to distinguish between
the disturbance and controller caused oscillations. Notice
that such obvious distinguishing features are missing in
the Fourier spectrum of the transformed variable.

A rigorous analysis of the reasons for obtaining distinct
information in OPind data is discussed in the manuscript
which is under preparation. In this work, we focus on
the development of the algorithm for root cause analysis
and its application to various industrial control loops.
The feature extraction algorithm developed for distincition
between controller and disturbance caused oscillations is
discussed next.

3.3 Feature extraction algorithm for distinguishing controller
and disturbance caused oscillations

(1) Compute the HH spectrum of the OPind signal.
(2) Divide the total normalized frequency range (F/Fs)

of 0 − 0.5 into various frequency bands with a band
interval of 0.02 with Fs being the sampling frequency.
Let the starting and ending frequencies be 0.02 and
0.46 respectively. In other words, the frequency bands
are in the range ωi = 0.02 : 0.02 : 0.46. The band
interval of 0.02 is just 6% in the total frequency scale
of 0.5 and therefore does not pose any problems in
the identification of root cause for oscillations.

(3) Compute the normalized power from HH spectrum
at various frequency bands for OPind signal using the
following equation:

Phht(ω(i)) =

√√√√√√
ω(i)∑

ω=ω(i−1)

P 2
hht(ω)

N
(2)

Similarly, compute the value Phht(ω(i)) at various
frequency bands for PV signal.

(4) To distinguish between controller and disturbance
caused oscillations, Phht of OPind and PV signals
are compared at low frequencies using a threshold. If
there is no separation then the diagnosis is controller
tuning induced oscillations and if there is a separation
then the diagnosis is that the cause for oscillations is
external to the loop.

(5) In practice, for comparison of Phht of OPind and
PV signals, a threshold value is required. This is to
neglect small power values at various frequencies due
to the presence of noise. In this work, the threshold
value is chosen to be 5% of the maximum value of Phht

computed from PV. This normalizes the threshold
based on the data directly. Only the power values

(a) (b)

Fig. 4. SOPTD (a) Fourier Spectrum of process output
(PV) - Controller caused oscillation (b) HH spectrum
of process output (PV) - Controller caused oscillation

(a) (b)

(c) (d)

Fig. 5. SOPTD (a) Fourier Spectrum of OPind data
- Controller caused oscillation (b) HH spectrum of
OPind data - Controller caused oscillation (c) Fourier
Spectrum of OPind data - disturbance caused oscil-
lation (d) HH spectrum of OPind data - disturbance
caused oscillation

above this threshold are considered to be significant.
This threshold can be raised or lowered, if a priori
knowledge on noise corrupting the process is known.

The above feature extraction algorithm is implemented on
the SOPTD system discussed previously. In case of distur-
bance caused oscillations, Phht computed for OPind data
contain significant values at lower frequencies compared to
the Phht of OPind data obtained for oscillations caused due
aggressively tuned controller. This can be clearly observed
from Figures 6 (a) and (b).

Several simulation studies were performed using the pro-
posed root cause analysis algorithm depicted in Figure 3.
However, due to space constraints, we present only the
results obtained from industrial control loops.
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(a) (b)

Fig. 6. SOPTD (a) Comparison of power from HH spec-
trum of process output (PV) and OPind data - Dis-
turbance caused oscillation (b) Comparison of power
from HH spectrum of process output (PV) and OPind
data - Controller caused oscillation

4. INDUSTRIAL CASE STUDIES

In this section, industrial data sets provided in Horch
[2000] are used for validating the proposed RCA method-
ology. Four control loops are analyzed using the RCA
algorithm and the results obtained on these four loops are
tabulated in Table 1. However, a detailed analysis for the
results obtained from two loops are provided here.

4.1 Level Loop

Results obtained using the RCA algorithm on a level
control loop (LC 621) is discussed. According to the
algorithm detailed in Figure 3, Hammerstein algorithm
is applied on the PV and OP data. The Hammerstein
based stiction algorithm indicated a stiction value of d =
0. Then, according to the algorithm, 30% of stiction is
introduced in the OP data to obtain the OPind signal.
The HH spectrum of the resulting OPind is computed
and Phht of both OPind and PV data are compared. This
power value comparison indicated that the cause for the
oscillations is aggressively tuned controller. Horch [1999]
also showed that aggressively tuned controller is the cause
for oscillations in this loop.

4.2 Flow loop

Data obtained from the flow control loop (FC525) is used
to test the proposed algorithm. Hammerstein algorithm
applied to this PV and OP data set provided a stiction
value of d = 2.16 indicating the presence of stiction. The
data obtained from the process along with the results
from stiction detection technique are shown in Figure
7. According to the proposed algorithm, the cause for
oscillations in this loop is due to a sticky valve which is
also confirmed by Horch [1999].

4.3 Industrial Case study - II

The data sets used for analysis in this section are obtained
from another industry. In this section, results obtained
on three industrial loops using the RCA algorithm are
provided in Table 2. Analysis of these loops using the

Fig. 7. Flow loop process - FC525 (a) Plot of process
output PV and controller output OP (u) (b) Plot of
results from one parameter model based Hammerstein
approach

Loop Loopname Actual case d predicted
case

Flow FC525 Stiction 2.16 Stiction
Flow FC392 Stiction 2.6 Stiction
Level LC621 Controller 0 Controller
Flow FC145 Stiction 0.33 Stiction

Table 1. Results obtained from industrial con-
trol loops provided by Horch

RCA algorithm indicated that two out of three loops
contained stiction. The Hammerstein algorithm indicated
a value of stiction in these two loops (d values are 0.17
and 0.36). The industry also reported that these loops
contain sticky valves. Interestingly, the RCA algorithm
indicated presence of no stiction in the third loop. Further,
no conclusion could be made from the RCA algorithm on
this particular loop. Industrial analysis reported that there
was no stiction in the valve. However, the root cause for the
oscillation in this loop was not reported by the industry.

Loop Actual case d predicted case
Chemical Stiction 0.17 Stiction
Chemical Stiction 0.36 Stiction
Pressure No stiction 0 Disturbance
Table 2. Results obtained from industrial case

study II

5. CONCLUSIONS

A novel and robust method for diagnosis of cause of oscil-
lation in closed-loop systems is developed. The proposed
method combines both the parametric and non-parametric
techniques for root cause analysis of oscillatory systems.
The advantages of the proposed method are: (i) a unique
signature for distinguishing between controller and exter-
nal disturbance is developed, (ii) non-stationary nature of
the disturbance can be naturally handled since HHT is a
time-frequency analysis tool and, (iii) no assumptions on
noise structure is necessary.

There are only two tuning parameters namely, (i) intro-
duction of 30% stiction in OP data and (ii) threshold value
(5% of maximum power value in PV). These two values
are maintained as the same for all the validation results
that include simulation and industrial data. The results
obtained from simulation and industrial data sets shows
the power of the proposed method for root cause analysis.
Future work will focus on the enhancement of the current
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algorithm to identify causes for oscillations in nonlinear
closed-loop systems.
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