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Abstract: This paper proposes a sequential test for fault detection in the case of Laplace
distribution of residual. This approach is adapted from Wald’s sequential test and the paper
establishes specific test thresholds for Laplace distributions. The suggested algorithm is applied
to the detection of oscillatory failure cases on an Airbus A380 elevator actuator characterized
by Laplacian distribution of residual. Moreover the proposed application shows that computing
workload resulting from the proposed sequential test is similar to the classical Wald test.

1. INTRODUCTION

Hydraulic actuators have many applications in aeronautic
such as moving aircraft flight control surfaces. They always
need to operate flawlessly in order to keep the highest flight
safety level and to not reduce the aircraft control capabil-
ity. For this purpose powerful fault detection algorithms
are necessary. They always need to be improved so that
they can correctly monitor actuators always more efficient
in the frame of the aircraft design global optimization.

The residuals used to monitor the actuators can be ob-
tained by model-based methods as in Isermann and Ballé
[1997], Ding [2008] or Garcia et al. [2009] but they do
not give enough information concerning failures on their
own. That is why model-based diagnostic methods are
often coupled with powerful and reliable statistical fault
detection algorithms as shown in Khan et al. [2005] or
Ding [2008].

Among statistical diagnostic algorithms, sequential prob-
ability ratio tests are the most common since they provide
a real-time appraise of the functioning of complex systems
(Basseville and Nikiforov [1993]). Wald’s sequential test
is a well-known case of sequential probability ratio test.
Studies have already been conducted concerning its perfor-
mances in monitoring electro-hydraulic servo-positioning
systems by Khan et al. [2005]. Coupling a Wald’s sequen-
tial test with an observer-based residual, Khan et al. [2005]
effectively detect faults due to incorrect supply pressures
and sensor faults on the plant. The use of Wald’s sequential
test was justified by saving of a great number of observa-
tions over the most efficient test procedures based on fixed
numbers of observations.

Most sequential diagnostic tests are based on a Gaussian
distribution since it is the form commonly taken by resid-
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uals (Shi et al. [2005]). Wald’s sequential test is not an
exception to that rule. This test allows to detect early
low failure amplitude for Gaussian residuals. However,
other distributions may fit residuals better than a normal
distribution. A good criterion should be used to evaluate
the suitability of the distribution used to fit residuals since
the performances of the statistical test will depend on
that distribution as proposed by Basseville and Nikiforov
[1993]. For example Lilliefors test was used in Shi et al.
[2005] to prove that the residual is Gaussian without know-
ing the parameters of the distribution. Kullback-Liebler
distance, used in Kárný [1996] is a good measure of the
divergence between two distributions since it takes into
account the way values are distributed all over the data set.
Yet, as underlined in Shi et al. [2005], a too complicated
probability distribution may not be useful for a statistical
test since the determination of the decision thresholds may
not be implementable due to a considerable computational
workload.

In this paper, the residual evaluation step for the detection
of oscillatory failure cases of an Airbus A380 aircraft ele-
vator hydraulic actuator is rethought. A novel sequential
probability ratio test for Laplace distribution is developed,
based on Wald’s sequential test. A real flight test data set
is used to validate the new method. The determination of
the test decision thresholds is also explained.

The paper is divided in 5 sections. The second section
presents the model of the hydraulic actuator and some
generalities about oscillatory failure cases. The third sec-
tion is dedicated to the general theory of Wald’s sequential
test and its adaptation to first Laplace distribution. In the
fourth section, this result is applied to the detection of
oscillatory failure cases in order to illustrate the perfor-
mances of the test. The last part presents conclusions and
perspectives.
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2. MODELLING OF THE HYDRAULIC ACTUATOR
AND OSCILLATORY FAILURE CASES

2.1 Actuator model

The non linear model of the hydraulic actuator is based on
its physical behaviour. The corresponding equation gives
the actuator rod speed as a function of the hydraulic
pressure delivered to the actuator and the forces applied on
the control surface and reacted by the actuator. The two
main contributors are aerodynamics forces and the servo
control load in damping mode of the passive actuator in
the case of two actuators. The actuator rod speed (for a
hydraulic servo control) can be expressed by the following
deterministic state-space model (cf. Goupil [2010]):ẋ(t) = V0(t)

(
∆P (t)− Faero+Fdamping

S

∆Pref

) 1
2

y(t) = x(t)

(1)

where y represents the actuator rod position, V0 is the
actuator rod speed computed by the Flight Control Com-
puter (FCC), corresponding to the maximum speed of
one actuator alone with no load. S is the actuator piston
surface area, ∆P is the hydraulic supply pressure really de-
livered to the actuator and ∆Pref is a reference differential
pressure linked to the maximum rod speed performances.
Faero represents the aerodynamic forces applied on the
control surface. Fdamping represents the servo control load
of the adjacent actuator in damping mode and is defined
by:

Fdamping = Kaẋ
2(t), (2)

where Ka is the actuator damping coefficient.

With V0(t) = KciK (u(t)− x(t)), equation 1 can also be
written as the following:

ẋ(t) =

KciK (u(t)− x(t))

(
∆P (t)− Faero

S

∆Pref + Ka(KciK(u(t)−x(t)))2
S

) 1
2

(3)

where K is the servo control gain and u is the real actuator
position command. Saturations of various types (actuators
limit positions, maximum orders) are taken into account
in the different varying gains (Kci).

This mathematical model of an hydraulic actuator is the
one currently used for model-based fault detection on
Airbus A380 aircraft (figure 1).

2.2 Oscillatory Failure Cases

Oscillatory Failure Cases (OFC) result in an unwanted
control surface oscillation, leading to strong interactions
with loads and aero-elasticity when located within actua-
tor bandwidth, see Goupil [2010] and Lavigne et al. [2007]
for further information. Consequently, they must be de-
tected in time. Figure 2 shows how the hydraulic actuator

Fig. 1. Principle of model-based diagnostic of the hydraulic
actuator.

Fig. 2. OFC sources localization in the servo-loop control
of a control surface.

is controlled by the FCC and the different places where
OFC may appear in the control loop. The residual of the
actuator is computed by substracting the measured value
provided by the control surface sensor from the estimated
control surface position as shown in figure 1.

OFC is said to be liquid when it results in a sinusoidal
signal added to the nominal servo-loop signal or solid when
the sinusoidal signal replaces the nominal signal. Early and
robust detection of OFC is very important because it has
an impact on the structural design of the aircraft. Goupil
[2010] demonstrated that the model-based approach im-
plemented in the A380 permits stringent requirements
to be met with low computational cost. This solution is
currently used on in-service Airbus A380 to ensure OFC
detection, providing a complete coverage of such events.
However, for upcoming and future aircraft, it could be
required to detect OFC with less important amplitude in
less time while keeping a good robustness. The following
sequential probability ratio test could help to achieve this
goal when used as a residual evaluation technique instead
of the current one (Goupil [2010]).
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3. SEQUENTIAL TESTS FOR FAULT DETECTION

3.1 Wald’s sequential test

This diagnostic algorithm is generally used when the
residual of the plant follows a Gaussian distribution. Non-
sequential diagnostic tests are dependent on the number
of observations in the sample which is being tested. In
practice, a moving window is used on the residual. The
width of that window is carefully determined in order to
maximize the performances of the algorithm. For Wald’s
sequential test, the width of the sample is not specified. A
decision is made as soon as there are enough observations
in the sample so that error probabilities are inferior to
set values. These values are the non detection and false
alarms probabilities, respectively PND and PF . Further
information can be found in Basseville and Nikiforov
[1993].

Let H0 be the hypothesis of normal functioning of the
actuator and H1 be the hypothesis of a faulty functioning.
The probability density functions associated with H0 and
H1 have been determined and are noted p(xk|H0) and
p(xk|H1) where xk is the observation at the instant k. Let
A be the decision threshold corresponding to the selection
of the hypothesis H0 and B the threshold for H1. The
likelihood ratio for Wald’s sequential test is given by :

λk =
p(x1, x2, ..., xk|H1)

p(x1, x2, ..., xk|H0)
(4)

The threshold is determined by considering the extreme
case when the likelihood ratio is equal to B :

p(x1, x2, ..., xk|H1) = B · p(x1, x2, ..., xk|H0)

∫ ∞
B

p(x1, x2, ..., xk|H1)dx1...dxk

= B ·
∫ ∞
B

p(x1, x2, ..., xk|H0)dx1...dxk

∫ ∞
B

p(x1, x2, ..., xk|H1)dx1...dxk = 1− PND∫ ∞
B

p(x1, x2, ..., xk|H0)dx1...dxk = PF

Hence :

B =
1− PND
PF

. (5)

A can be found by following the same reasoning :

A =
PND

1− PF
. (6)

The resulting diagnostic rule is :
- H0 is chosen when λk ≤ A,
- H1 is chosen when λk ≥ B,
- No decision can be made when A ≤ λk ≤ B. The previous
decision is kept.

The next part will show that this approach can be ex-
tended to first Laplace distribution.

3.2 Wald’s sequential test for first Laplace distribution
residuals

The probability density function of the first Laplace dis-
tribution for a sample x is given by:

f(x) =
1

2 · b
exp

(
−|x− µ|

b

)
(7)

where µ is the mean of the data set and b is a scale
parameter related to its variance σ2 by:

σ2 = 2 · b2. (8)

The parameter b can be estimated using maximum likeli-
hood method:

b =
1

N

N∑
i=1

|xi − µ| . (9)

where N is the number of observations.

A novel Wald’s sequential test is calculated using the first
Laplace distribution. Let x = x1, ..., xN be a data set
following the first Laplace distribution whose mean is µ0

and variance related scale parameter b0. x is supposed to
be the residual in normal functioning (H0) of an hydraulic
actuator. The corresponding probability density function
is:

p (xi|H0) =
1

2 · b0
exp

(
−|xi − µ0|

b0

)
. (10)

In case of failure we assume that the residual can be fitted
by the following first Laplace distribution defined by µ1

and b1 parameters:

p (xi|H1) =
1

2 · b1
exp

(
−|xi − µ1|

b1

)
. (11)

Proposition 1. Assuming that the residual can be fitted
by the above first Laplace distributions, then the variance
based test decision relation is given by:

lnA− k ln

(
b0
b1

)
≤

k∑
i=1

(
−|xi − µ1|

b1
+
|xi − µ0|

b0

)
≤ lnB − k ln

(
b0
b1

)
.

(12)

Proof.

The likelihood ratio for sample k is given by:

λk =
p(x1, x2, ..., xk|H1)

p(x1, x2, ..., xk|H0)
(13)
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Supposing that the xi, i = 1 . . . k are independent of each
other, λk can be rewritten as the following:

λk =
p(x1|H1)p(x2|H1)...p(xk|H1)

p(x1|H0)p(x2|H0)...p(xk|H0)
(14)

λk =

k∏
i=1

1
2·b1 exp

(
− |xi−µ1|

b1

)
1

2·b0 exp
(
− |xi−µ0|

b0

) (15)

λk =

(
b0
b1

)k k∏
i=1

exp

(
−|xi − µ1|

b1
+
|xi − µ0|

b0

)
(16)

λk =

(
b0
b1

)k
exp

[
k∑
i=1

(
−|xi − µ1|

b1
+
|xi − µ0|

b0

)]
(17)

then thresholds are evaluated by taking the natural log-
arithm of the above expression in the inequality lnA ≤
lnλk ≤ lnB.

2

The previous test is used in the next section to detect
liquid OFC in an hydraulic actuator of an aircraft elevator.

4. APPLICATION

The test developed in the previous section is now applied
to the residual of an elevator actuator from an experi-
mental data set provided by an Airbus A380 FCC during
dynamic flight operations as shown in figure 3 representing
the position of the elevator.

Fig. 3. Position of the elevator.

Figures 4 and 5 present respectively the residuals in normal
conditions and a zoom in the residual with a liquid OFC
with an amplitude of 0.5◦ and a frequency of 3Hz injected
at time 500s.

The first step in applying the sequential test is determining
the distribution followed by the residual in normal con-
ditions. Kullback-Leibler distance will enable the choice
between normal distribution and Laplace distribution.

Given two probability distributions P1 and P2, Kullback-
Leibler distance also called relative entropy measures the

Fig. 4. Residual of the actuator without failure.

Fig. 5. Residual of the actuator with 0.5◦ of amplitude and
3Hz of frequency OFC inserted at time 500s.

dissimilarity between those distributions. Kullback-Leibler
distance DKL (P1, P2) of P2 in relation to P1 is given by:

DKL (P1, P2) =
∑
i

P1(i) log
P1(i)

P2(i)
. (18)

The less DKL (P1, P2) is, the more P2 is close to P1.

In practice, after determining the parameters for the Gaus-
sian and Laplacian distributions, their Kullback-Leibler
distances in relation to the residual of the hydraulic actua-
tor are calculated. The distances for Gaussian distribution
and Laplace distribution are given in table 1. The residual
is nearly three times closer to Laplace distribution than to
the Gaussian one as shown in figure 6.

Gaussian Laplace

Kullback-Leibler 0.9965 0.3632
distances

Table 1. Kullback-Leibler distances of normal
and Laplace distributions in relation to the

residual.

Figure 7 presents the distribution of the residual with a
0.5◦ of amplitude failure after a long enough period. The
main peaks are now located on the amplitude of the failure.

Results given by a variance-based Gaussian Wald’s sequen-
tial test and the new Laplacian sequential probability ratio
test for the detection of liquid OFC are now compared.
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Fig. 6. Residual bar graph and associated Laplace and
Normal distributions.

Fig. 7. Residual bar graph with a 0.5◦ of amplitude OFC.

1st case: Gaussian

For a Gaussian distribution ℵ(µ, σ2) with mean µ and
variance σ2, Wald’s inequality on the variance is:

2·
ln(A)+ k

2 ln
(
σ2
1

σ2
0

)
1
σ2
0
− 1

σ2
1

≤
k∑
i=1

(xi − µ)
2 ≤ 2·

ln(B)+ k
2 ln

(
σ2
1

σ2
0

)
1
σ2
0
− 1

σ2
1

(19)

where xi is the i-th observation, σ2
0 is the variance limiting

the area without failure and σ2
1 is the variance due to

the failure. These values are experimentally set to σ2
0 =

(3.6σ)
2

and σ2
1 = (3.7σ)

2
in order to minimize detection

times.

2nd case: Laplace

Relation (12) is taken with the following values for the
determination of the thresholds: b0 = 7b and b1 = 8b where
b is the scale parameter obtained when the residual was
fitted by first Laplace distribution. µ1 enables to chose
the minimum amplitude of the failure the user wants to
detect. Indeed, when the OFC appears for a long enough
period the shape of the residual probability density is given
in figure 8. Now two peaks which can be considered as
two Laplace distributions located at plus and minus the

Fig. 8. Shape of the faulty residual probability density after
a long period.

Fig. 9. Tests decision with 0.5◦ of amplitude and 3Hz of
frequency OFC inserted at time 200s.

amplitude of the OFC overshadow the initial distribution
centered around 0. from a practical point of view, one can
observe that if µ1 is set at the position of the peak on the
right, failures with an amplitude superior or equal to µ1

are detected more quickly. For this application µ1 is set to
0.5◦.

The following tables show simulation results for 0.5◦ of
amplitude and variable frequency liquid OFC injected at
200s where the command signal is dynamic on one hand
and faults with 1◦ of amplitude and variable frequencies
on the other hand, with µ = 0.5◦.

Error signal freq. (Hz) 0.1 1 2 3 4 5

Gaussian 3.23 4.23 4.11 4.09 4.08 4.06

Laplace 0.86 0.28 0.42 0.44 0.45 0.47

Error signal freq. (Hz) 6 7 8 9 10

Gaussian 4.08 4.11 4.11 4.09 4.05

Laplace 0.40 0.48 0.55 0.48 0.45

Table 2. Detection times (s) for a liquid failure
with 0.5◦ of amplitude and variable frequency

with µ1 = 0.5◦

The new sequential probability ratio test with first Laplace
distribution gives better results than Gaussian Wald’s
sequential test. Detection times are divided by 4 at the
minimum for a 1◦ of amplitude OFC and by 9 for a 0.5◦ of
amplitude OFC. The use of Laplace distribution enables
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Error signal freq. (Hz) 0.1 1 2 3 4 5

Gaussian 1.62 0.81 0.86 0.8 0.84 0.86

Laplace 0.59 0.20 0.17 0.16 0.19 0.17

Error signal freq. (Hz) 6 7 8 9 10

Gaussian 0.87 0.84 0.86 0.83 0.84

Laplace 0.19 0.19 0.22 0.17 0.19

Table 3. Detection times (s) for a liquid failure
with 1◦ of amplitude and variable frequency

with µ1 = 0.5◦

to greatly improve the test. Moreover the test does not
depend on the frequency of the OFC since detection times
are nearly the same all over the frequency range apart from
0.1Hz.

5. CONCLUSION

A novel sequential test for first Laplace distribution based
on Wald’s sequential test was developed in this paper.
The test was applied to an Airbus A380 aircraft elevator
hydraulic actuator. Results showed that variable ampli-
tude and frequency oscillatory liquid faults were correctly
detected with detection times always better than those
of Wald’s Gaussian sequential test. The fact that the
minimum detectable amplitude can be added to the test
parameters greatly improved its performances for ampli-
tude superior or equal to that minimum. Moreover from
an industrial point of view the test is easy to tune as the
required detection level is a clear input of the algorithm.
A test campaign not presented in this paper will enable to
verify the performances of the algorithm with residuals in
various flight conditions and for solid OFC.
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