

Implementation and evaluation of UML as modeling notation in object oriented

software engineering for machine and plant automation

Birgit Vogel-Heuser* Steven Braun* Benjamin Kormann*

David Friedrich**

* Institute of Automation and Information Systems,

Technische Universität München, 85748 Garching, Germany

(e-mail: {vogel-heuser, braun, kormann}@ais.mw.tum.de)

** Dept. of Design, Prototyping and Standards,

Siempelkamp GmbH, 47803 Krefeld, Germany

(e-mail: david.friedrich@siempelkamp.com)

Abstract: Our goal is to increase efficiency and quality in automation engineering in machine and plant

manufacturing industry by supporting modularity and reuse. This article proofs that object-oriented model-

based design can beneficially be applied in industry and that the code automatically derived from the UML

model can be implemented on industrial PLCs without additional effort. We had to solve the formal

mapping from UML models to IEC 61131-3 program code in order to use an object-oriented approach

with Unified Modeling Language (UML) as modeling notation integrated into a classical Programmable

Logic Controller (PLC) programming environment (IEC 61131-3).

1. INTRODUCTION

This paper answers the following questions: Is an integrated

UML modeling approach useful and beneficial for software

engineering in automation in terms of software quality and

development efficiency? What are the domain specific

characteristics in UML diagrams and UML semantics needed

to achieve an increased software quality and efficiency? We

have used an object-oriented approach with Unified Modeling

Language (UML) as modeling notation integrated into a

Programmable Logic Controller (PLC) programming

environment IEC 61131-3. We mainly focus on automation

software development for machine and plant manufacturing

industry. The IEC 61131-3, respective IEC 1131-3 by Bonfatti

et al. (1997), with its five languages (Structured Text,

Sequential Function Chart, Ladder Diagram, Function Block

Diagram and Instruction List) is still accepted and applied as a

worldwide industry standard in automation software

engineering. Regarding the study of ARC Advisory Group

(2009), the impact of non-IEC programming environments on

embedded controllers is still minimal. This paper will briefly

discuss the state of the art in automation software engineering

for machine and plant manufacturing industry, the tools used

and the applied experimental evaluation methods. The

applicability of UML as notation will be discussed on three

evaluation experiments of UML in PLC programming.

Therefore we derived the concept and selected diagrams of

our UML approach which are supported by the often used IEC

61131-3 engineering environment CoDeSys 3.0. The UML

integration concept and two diagrams will be exemplarily

introduced with respect to their implementation in code. The

application of UML embedded into IEC 61131-3 will be

evaluated, firstly by industrial companies as a beta-test and

secondly in a lab experiment with students. Finally we will

summarize the lessons learned during development and

application in industry and estimate the necessary effort along

with the available benefit for automation in machine and plant

manufacturing. We conclude with necessary further

development steps.

2. STATE OF THE ART

2.1 SW Engineering in Machine and Plant Automation

Modeling is barely applied in machine and plant automation,

especially for hybrid processes, i.e. discrete and continuous

process with a high degree of individual machines and plants.

Though physical devices are modeled to ease start-up by

simulation prior to runtime like proposed by Kain et al. (2009)

or process modeling in process industry, but currently reuse in

automation software is mostly applied on function block level,

see Katzke et al. (2004) and Vogel-Heuser (2009a). The

application engineer selects reusable elements, i.e. function

blocks out of a library.

In Estévez, et al. (2007) a methodology for designing an

industrial control system is detailed based on a management

of model collaboration. This approach aims at achieving the

exchange of information among the tools in order to support

the development cycle of industrial control applications.

Heverhagen et al. (2001) proposes the use of real-time Unified

Modeling Language (UML) for defining IEC 61131-3

function blocks having code mapping as a main goal. Dietrich

et al. (2006) applied UML in software development

considering safety constraints for testing purposes of

PROFIsafe. Licht (2004) proposed the integration of timed

automata to verify the real time behavior. Secchi et al. (2007)

introduce a unified framework for physical system and

software modeling with the use of UML-RT profile.

This result is expanded in our project requirements analysis

and by interviews with industry experts in Vogel-Heuser

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

Copyright by the
International Federation of Automatic Control (IFAC)

9151

(2009b). They all rate modularity and version management as

well as change management as key requirements for

successful engineering. The object-oriented paradigm has led

to great success in application development, because it

addresses the needs of concepts to handle today’s complexity

in software development and outperforms other approaches.

The object-oriented extension of the IEC 61131-3

specification with classes and methods, interfaces and

inheritance seems to emerge as a promising solution.

However this extension towards object-orientation does not

include event mechanisms (as commonly used in Java, C#),

but yet relies on synchronous program processing. It is not

intended to replace the five well established IEC languages,

because, among other reasons, it might discourage control

engineers since support of legacy code would not be ensured.

The cyclic execution pattern of PLCs still applies. In contrast,

IEC 61499 in Sunder et al. (2006) follows an event-based

paradigm with asynchronous communication and program

execution. These differences regarding communication and

execution mechanisms constitute (still) the main disparity

between IEC 61499 and IEC 61131-3.

2.2 UML and Tool Support in Automation

The research groups Giese and Henkler (2006), Burmester et

al. (2005), Gehrke (2005) included in SFB 614 adapted UML

to mechatronic tasks and to real time requirements. A code

generation to IEC 61131-3 ST is prototypically implemented,

but not integrated into an IEC 61131-3 environment. A bi-

directional mapping between the UML model and the

generated code is an essential prerequisite for executable

UML models in automation. It ensures consistency, keeps

track of changes at plant site, and avoids a drift between

model and code, since currently tests and improvements are

mainly done at startup time. At the beginning we used IEC

61131-3 code generated out of UML models without any bi-

directional mapping. But from an industrial point of view it is

mandatory to edit during start-up, operation and maintenance

as well as during redesign (see chapter 2.2). We showed that

only a close integration of UML model and PLC code allows

modification of code on plant site without the risk of

inconsistency between model and code, see Witsch et al.

(2009).

2.3 Usability Requirements

Industrial projects, their experts, as well as a lab experiments

may be included to evaluate the benefits in terms of quality

and time reduction based on criteria for the usability

evaluation of programming notations and programming

languages in lab experiments proposed by Gemino and Wand

(2005) and Patig (2008). Katzke (2008) and Friedrich (2009)

define an appropriate task to evaluate and include the user

group, i.e. skilled workers or technicians for operation and

maintenance in automation software engineering, see Vogel-

Heuser (2009a).

3. UML AS NOTATION IN AUTOMATION SOFTWARE

ENGINEERING

The UML (current version 2.3) is an established standard for

software development. It is specified by the Object

Management Group (OMG) and available as ISO/IEC 19501.

UML can be used to create models from a software

perspective or on a conceptual basis. The latter use of UML

can be applied to almost any problem domain. Diagrams, such

as use case diagrams are introduced for discussions to get a

clear view of a system to be modeled and to enable the

retrieval of requirements. Later on such diagrams serve as

documentation and ease understanding. A major drawback in

using UML sketches is the risk of becoming inconsistent with

each other. If the UML is used from a software perspective,

object-oriented features can be used for model construction.

The complete specification consists of 16 different diagram

types for structural and behavioral description (in version 2.3).

In this chapter we focus on the usability requirements of a

modeling notation.

3.1 Requirements from PLC Programming as a Task

A more detailed analysis of PLC programming as a task is

helpful to derive the requirements for an appropriate UML-

based support and its integration into an IEC 61131-3

engineering tool. We focus on hybrid processes in the

production plant, which have specific constraints regarding

qualification of personnel, necessity of program changes

during run time as well as usually applied modularity and

reuse concepts. Katzke et al. (2004) found three sizes of

modules in industry, i.e. basic modules, application modules

and plant modules and realized a wide spread type of reuse in

plant manufacturing copy & paste, copy & modify and

growing in the last years building of variants by parameters.

To derive modules from a universal module and to use

inheritance is still in its beginning.

3.2 UML in Automation -UML-PA Profile

Based on task analysis, Vogel-Heuser et al. (2005) and

Friedrich (2009) conducted a series of controlled experiments

to evaluate the benefit of modeling as such, and more

specifically of UML for process modeling and subsequent

PLC-programming. Two approaches based on the UML and

the Idiomatic Control Language (ICL) got compared to the

typical procedure of PLC programming without any notational

support. One of the main results stated by the subjects was the

fact, that no procedural method for the modeling task was

provided. Subjects felt confused by the number of possible

diagrams provided by the UML and were insecure about the

correct sequence in modeling. Additionally, most of the

subjects criticized the lack of tool support for the modeling

task. They felt the use of pen and paper for the modeling task

wasn’t flexible enough. The transfer from the model to the

program was not clear from a programming task point of

view. Subjects proposed an automatic PLC code generation in

case the model was created with a software tool.

UML-PA specified in Katzke (2008) and described in Katzke

and Vogel-Heuser (2005) is, as the UML, composed out of

various sub-languages. These languages describe different

structures, interactions and behaviors. By selecting specific

language elements, from approaches in the software

development, the UML-PA is a customized modeling

language for automation and was developed in DiSPA by

Fischer et al. (2004). The applicability of a modeling language

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

9152

in its practical use is as important as its formal specification.

The UML-PA was designed at lower complexity with fewer

types of diagrams and modeling elements. Software engineers

using UML-PA should:

 decide faster for the use of a specific diagram type

 define the links between software objects and sen-

sors/actuators of a system faster and easier

 summarize typical characteristics in objects to a class

definition faster

 create behavioral descriptions out of interactions and

scenarios faster and more precisely

 Determine the complete software system behavior out of

the specific object behavior in individual scenarios.

3.3 Detailed Requirements from Industry

Experiments showed the necessity of a domain specific UML

and a restricted number of diagrams, as well as support of a

tool and a methodology. Support of legacy code is strongly

required. Many lines of code exist in manufacturing and plant

automation, which have already been tested. This legacy

software often constitutes valuable know-how and needs to be

reused due to economic and quality reasons. An advantage of

its implementation is the ability to present the software

structure in an intuitive way, importing and visualizing

existing IEC 61131-3 code in the form of UML class

diagrams should be possible (as a minimal requirement).

An implementation decoupled access of components is the

fundamental basis for exchangeability on code level, e.g. a

temperature sensor provides (aside from parameterization) a

single method, which returns the measured temperature value.

This way such a sensor can easily be replaced by any other

interface compliant component without any modification on

the method calling software. A component accessible by a

standardized interface enables the possibility of maintainable

software throughout the plant or machine lifecycle even if

components must be replaced because of a technology change

or maintenance. Diehm (2008) states the following central

disadvantages of SFC lead to the requirements on UML state

charts:

 Each SFC-Step iteration leads to a PLC cycle change.

Thus detailed sequences cannot be modeled in SFC,

even though it is based on a state automaton.

 Pseudo states must be inserted to jump before parallel

sequences.

 Error handling routines lead to complex transition

conditions.

 It is often necessary to insert jumps in order to realize a

particular algorithm, which decreases readability.

The aspect of documentation during the project and support

for communication between different disciplines was revealed

as an important requirement.

4. UML EMBEDDED IN IEC 61131 ENVIRONMENT

Control engineers in automation must cope with challenges in

all phases throughout development of control systems. Since

existing technologies and paradigms are limited in their

effectiveness, a new approach is needed for a higher

productivity in modularity and reuse of software components

other than on a function block level. Therefore the object-

oriented features are interwoven with all other already

existing language elements. The UML can even be made

executable and used as a programming language. With the

means of a model compiler, UML models become executable.

The UML specification does not provide a formal definition

on how model elements must be mapped into object-oriented

programming languages, neither for discrete event systems

nor for cyclic execution systems, such as PLCs. Executable

UML models must be mature and complete for successful and

productive usage and most importantly acceptance. Our UML

editor is embedded into CoDeSys 3.0, the reference

implementation of the object-oriented extension of IEC

61131-3. The editor supports three diagram types as there are

class diagrams for structural description, state chart and

activity diagram for behavioral description. All these

diagrams are specified in a complete manner by Witsch et al.

(2009, 2010). The editor provides modeling, coding and

online debugging of UML models, where object-oriented

elements can be mixed with traditional IEC language

elements. Since the debugging functionality is entirely

integrated in the IEC 61131-3 environment, the

implementation can be monitored during runtime.

The class diagram enables a completely novel view of the

control code structure. Class diagrams visualize the depen-

dency and connection of components. A bi-directional

mapping between the UML model and the generated code is

integrated into the UML editor. The object-oriented paradigm

encourages a modular design by different relation types, such

as association among classes and inheritance for hierarchical

structuring. The UML class diagram illustrates the structure of

automation control software and helps to understand the

interdependencies of components. Each of them has its own

individual internal behavior. Detailed information on UML

diagrams are not within the scope of this paper, but can be

obtained in Witsch et al. (2008).

More complex design patterns like those already applied in

classical application development have not yet been

elaborated in automation control systems. It will be an

important future research project to derive such patterns to

reduce development time and cost while getting higher

software quality. The object-oriented paradigm states that

each instance of a component (as known as object) en-

capsulates state and behavior. UML state charts pick up that

concept and provide a view to an implementation of an object

in the UML editor. The UML state charts for industrial PLCs

like introduced in Witsch et al. (2010) are formally specified

as follows:

A PLC-state chart is a 6 tuple (),

where

• { } is a nonempty, finite set of states
 with

 - a time information and

 - execution within a PLC-cycle (true, false)

• is a nonempty, finite set of transitions

with

 - conditions over the set of variables

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

9153

 - is the priority of the transition regarding its

source state,

 - actions

 - execution within a PLC-cycle (true, false)

• is the transition function

• { },
 is a finite set of ordered orthogonal states with:

 { } with

)

• is the initial state

• is the final state

Let be an active state and let be all outgoing

transitions of , the transition function fires, iff

 ({ | })

with
 .

State chart diagram is similar to IEC 61131-3 Sequential

Function Chart, but more powerful with its modeling

elements. Some of the main distinction between UML state

chart and SFC are the missing support for failure concepts in

SFC where state charts provide exception transitions out of

composite-states for hierarchical state structures. Additionally

SFC cannot be used for method implementations of the object

oriented extension of the IEC 61131-3 standard and cyclic

changes can only be expressed after each step in SFC whereas

state charts provide so called fast states being executed in a

single cyclic execution. A major improvement from a

usability point of view is the totally freedom of state and

transition placement in state charts. States can have multiple

transition conditions and states can also be organized

hierarchically. State machines are valid in the scope of

objects. An object can take in exactly one state at a given

point in time and it is able to transit to another state by method

calls. The different behavior of the components is realized by

method calls in the context of the corresponding object

causing state transitions. A behavioral description is also

needed for the interaction of components (objects). UML

activity diagrams within the UML editor allow the

specification of sequential and parallel tasks with Petri nets

semantics. Each activity can be considered as real tasks totally

independent to the PLC typical cyclic execution time, such as

move out cylinder to its end position, see Witsch and Vogel-

Heuser (2009).

5. APPLICATION EXAMPLE

The considered modular application example consists of a

sorting belt, a stack depot, a crane and a stamp module (Fig.

1).

Fig. 1. Schematic illustration of the stamp and sort plant

In step 1 a work piece (WP) gets pushed from a stack depot

into the handover position. The crane grabs the WP at 0°. The

WP is handed over to the stamp at 180° in step 2. It clamps

the work piece, stamps it with a configurable pressure and

releases it afterwards. In step 3 the crane transports WP to the

sorting belt at 90°. WP is handed over to the sorting belt and

gets transported to an available (free) slide, where a cylinder

pushes the work piece off the belt in the final step 4. All these

components represent a larger functional module within the

context of application.

There are six pneumatic cylinders, which are present in three

different variants. As there are single acting (mono), double

acting and controlled single acting cylinders. The modular

composition of all components is directly mapped onto the

object-oriented software structure. A module of the technical

system equates to a class in the object-oriented environment.

This picks up the concept of a mechatronic module from a

software development point of view. Fig. 2 shows the

realization of the work piece being pushed from a stack depot

into handover position of the application example following

the formal PLC state chart specification mentioned earlier.

Fig. 2. State chart based implementation of material supply

task

The outer left solid black state is considered as the starting

state, whereas the upper framed solid black state is considered

as the final state. The edges can optionally carry conditions,

which if present need to be evaluated to true before they

become active. The composite state enables a hierarchical

grouping of states. In this particular example the lower region

within the composite state is executed before the upper one,

because it has a lower ordering number noted on the right

hand side. The degree of all outgoing edges on the decision

point is three, where the conditions are evaluated in the order

of their priority from high to low (P1 highest). The transition

(evaluated in order) which evaluates to true first will fire first.

Each state can have optional entry, do and exit actions. A do

action can run multiple times over multiple cycle times of the

PLC whereas entry as well as exit actions are executed only

once at the entrance and exit. This becomes clear in the formal

definition of state charts, because the specific entry and exit

actions are part of the state transition function T, hence these

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

9154

actions are executed only once, either when leaving or

entering a state. Dotted edges leaving the composite state are

able to fire at any time. This is an important modeling

technique for e.g. error handling, wherever necessary within

the hierarchy. This particular state chart in figure 2 checks the

material characteristics first and switches to the corresponding

state in the lower region. It transits to the upper region of the

composite state and starts the material supply part of the

implementation

6. EVALUATION OF UML IN MDE FOR AUTOMATION

In this chapter the application of UML embedded into IEC

61131-3 will be evaluated by industrial companies as a beta-

test and in a lab experiment with students.

6.1 Evaluation by Industry Application Experts

Our embedded UML concept and the UML editor were

evaluated on different prototype states by the project

consortium, but also by the companies of the industrial

advisory board and others, i.e. externally (outside of the

consortium) by application experts in the automation control

industry, i.e. Bosch and HAUNI. BOSCH Atmo (Packaging

Automation) did an analysis on the integration of the object-

oriented features in IEC 61131 and UML compared to IEC

61499 into their coding guidelines for control software

development. It showed that CoDeSys 3.0 proved advantages

over procedural programming like encapsulation of multiply

needed code, thus common copy paste errors on algorithm

level can be excluded or at least reduced to a minimum. The

number of LOC (Lines of Code) is reduced, which also

increases the readability of PLC software code. It turned out,

that state charts can easily be used to model sequences. Due to

state charts visual similarity to SFC a smooth integration and

application is given. Since quite a few libraries offering basic

functionalities exist in IEC 61131-3 languages it would be a

tremendous challenge to completely replace them all by their

object-oriented counterparts. BOSCH came to the conclusion,

that the integration of the object-oriented feature along with

the UML editor is recommended, since executable UML

provides a novel structural view on software providing

enormous visual advantages, while the compatibility to the

IEC 61131-3 languages are still given because of the

complementary relation to state charts. Furthermore the

already known chances of an object-oriented procedure, like

reuse and modularity can be exploited for automation control

software development. HAUNI AG claims a consequent

encapsulation of data is a fundamental prerequisite to high

software quality, which becomes true by the means of object-

oriented analysis, design throughout the lifecycle. The UML

editor showed significant performance in a demo project they

implemented. The application of graphical programming

along with the object-oriented concepts being compatible to

well-known IEC 61131-3 programming languages was the

key to success. However the editor must reach quality of a

commercial product.

A well-defined and theoretically suitable modeling language

does not need to be the universal key to success. It is

inescapable to conduct experiments to rate its usability.

Therefore an experimental setup was created to evaluate the

effectiveness of UML state charts in PLC programming in

comparison to similar and in the PLC context elaborated

graphical modeling languages, here Sequential Function Chart

(SFC) specified in IEC 61131.

6.2 Lab Evaluation with Students and Trainees

Besides the industrial evaluation and ß-test we wanted to

proof the advantage of the embedded UML concept. That’s

why we decided to conduct another experiment to test one of

the main advantages of the embedded UML in a limited

experimental set-up, i.e. state charts to model error handling

(see Fig. 2). 30 subjects (bachelor students in mechatronic

engineering) were asked to compare PLC state charts

available in the UML editor to SFCs, both embedded in a

standard IEC 61131-3 development environment. The focus

of this experiment was the implementation of error handling

routines to existing control software. It incorporates two

subtasks in order to complete successfully. The given code

must be interpreted in the first place and extended by creating

error routines. As the null hypothesis it was assumed, that

there is no difference in the treatment, so that similar scores

can be reached and similar time is needed for problem solving

for PLC state charts or SFCs. The alternative hypothesis

posits there is no significant difference between the two

graphical notations. The subjects were grouped into two

equally sized teams after they had passed some short capacity

tests in short-term-memory, visual realization and

combinatorics. In the first task of the application example

introduced in chapter 5, the subjects had to extend the given

piece of code with an error handling routine for a movement

timeout of a pneumatic cylinder. In the second task a

consistency check on two sensor variables had to be

implemented. This task is predestinated to be elegantly solved

with the means of enhanced features of PLC state charts such

as composite states. The outcome of the first experiment

showed no significant deviation between both languages from

a quality and time prospective. A remarkable quality

improvement of the outcome is noticeable in the identification

of errors, setting status variable and process resumption with

the use of PLC state charts. The SFC group achieved better

results in error handling and resetting of status variable after

the error had been solved. Hence it can be summarized, that

PLC state charts and SFCs are equivalently appropriate for

solving the given task, since there are no significant

differences. The discriminating elements in PLC state charts

for error handling (composite states and transitions) were not

used in the first experiment as expected. The results are not

discouraging, though. The majority with eleven of fifteen

subjects using PLC state charts expressed their preference for

a free placement of modeling elements, where only two would

rather prefer a fixed alignment. Also the SFC group (60 %

free, 14 % no preference, 26 % static) mostly preferred a free

placement. Throughout the entire evaluation prototypical

implementation of PLC state charts were used in contrast to a

commercially fully-fledged SFC editor.

7. RESULTS AND DISCUSSION: STRENGTH AND

SHORTCOMINGS OF UML IN AUTOMATION

The embedded UML derived from prior research on usability

of UML and a domain specific UML has been evaluated by

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

9155

the inner and outer consortium of industrial companies and

will be available in November as part of a wide spread

engineering environment based on IEC 61131-3 (CoDeSys

3.0, TwinCAT, etc.). Companies of the consortium already

apply the tool successfully and are looking for further

extensions. ELAU proclaims that the object-oriented approach

using UML is a key technology to cope with the complexity

of today’s and future software engineering tasks in

automation. The importance of an appropriate and reliable

tool, which meets industrial requirements and gains users’

acceptance, became more than obvious during the lab

experiments. The decision to support only three diagrams and

to implement the activity diagram and state charts could be

verified as correct by the industrial evaluation. Because

modularity and reuse is strongly connected to variants and

versions, the documentation of this variants and import of

legacy code, which is not an issue of UML, is a key success

factor for industrial application as well as some additional

features implemented in the embedded UML concept.

8. CONCLUSION AND OUTLOOK

The paper described the development of an embedded UML

concept and tool derived from the requirements in

manufacturing and plant automation (hybrid processes) and its

industrial and lab evaluation. For an adequate engineering of

the entire control task in hybrid systems the integration with

Matlab/Simulink as modeling approach for closed loop

control needs to be realized. On this basis we intend to

develop a so called technology editor for process engineers.

This concept supports process engineers to execute different

series of experiments on the same machinery to gain and to

explore e.g. variable material characteristics of thermo-

mechanical forming in a familiar environment. The

integration of a closed loop control library, which is directly

generated from a Simulink model, allows to build-up a hybrid

system. To increase modularity and reuse in industry we need

to tackle educational aspects as well in engineering education

in industry and in industrial education. Rules and check-lists

for the development of good modules and good interfaces

need to be developed, which are certainly not domain

independent. Another direction of further development is to

support testing, the derivation of test cases and the automation

of tests based on the structural and behavioral description of

the UML model. Regarding the model itself we are

developing a modeling concept to integrate energy flow into

the structural behavioral model.

ACKNOWLEDGEMENTS

Stiftung Industrieforschung together with 3S, Beckhoff,

Teamtechnik, ELAU (Schneider Electric) and SIG Combibloc

sponsored the research on UML in automation from 2006-

2008 and from 2008-2010 the implementation was supported

by 3S and Beckhoff. The usability research was not supported

financially.

REFERENCES

ARC Advisory Group (2009). Programmable logic controllers

worldwide outlook. Five year market analysis and

technology forecast through 2013.

BESTVOR (2010). URL http://www.bestvor.de.

Bonfatti, F., Monari, P., and Sampietri, U. (1997). IEC 1131-3

Programming Methodology: Software engineering

methods for industrial automated systems. ICS Triplex

ISaGRAF, Essex.

Burmester, S., Giese, H., and Schäfer, W. (2005). Model-

driven architecture for hard real-time systems: From

platform independent models to code. In: Proceedings of

the European Conference on Model Driven Architecture -

Foundations and Applications, 25-40, Springer, Berlin.

Diedrich, C., Krause, J., and Franke, A. (2006): UML based

software development under safety constraints. In:

Sicherheit (Dittmann, J. (ED.)), 361-368, Magdeburg

Diehm, S. (2008). Anforderungen an die Modellierung von

funktionsbausteinen mit UML aus Sicht eines

Systemanbieters. In: Automation & Embedded Systems

(Vogel-Heuser, B. (ED.)), Oldenbourg Industrieverlag,

München.

Estévez, E., Marcos, M., and Orive, D. (2007). Automatic

generation of PLC automation projects from component-

based models. In: Int. Journal of Advanced Manufacturing

Technology, 35, Issue 6. 527-540, Springer, Berlin.

Fischer, K., Göhner, P., Gutbrodt, F., Katzke, U., and Vogel-

Heuser, B. (2004). Conceptual design of an engineering

model for product and plant automation. In: Integration of

Software Specification Techniques for Applications in

Engineering (Ehrig, H., Damm, W., Desel, J., Große-

Rhode, M., Reif, W., Schnieder, E. and E. Westkämper

(EDs.)), 301-321, Springer, Berlin.

Friedrich, A. (2009). Anwendbarkeit von Methoden und

Werkzeugen des konventionellen Softwareengineering zur

Modellierung und Programmierung von

Steuerungssystemen, Ph.D. thesis, Universität Kassel.

Gehrke, M. (2005). Entwurf mechatronischer Systeme auf

Basis von Funktionshierarchien und Systemstrukturen,

Ph.D. thesis, Universität Paderborn.

Gemino, A. and Wand, Y. (2005). Complexity and clarity in

conecptual modeling: comparison of mandatory and

optional properties. In: Data and Knowledge Engineering,

3, 301-326, Elsevier, München.

Giese, H. and Henkler, S. (2006). A survey of approaches for

the visual model-driven development of next generation

software-intensive systems. In: Journal of Visual

Languages and Computing, 6, 528-550, Elsevier,

München.

Heverhagen, T., and Tracht, R. (2001). Integrating UML-

RealTime and IEC 61131-3 with Function Block Adapters.

In: Proceedings of the IEEE International Symposium on

Object-Oriented Real-Time Distributed Computing, 395-

402, Washington DC.

Katzke, U. (2008). Spezifikation und Anwendung einer

Modellierungssprache für die Automatisierungstechnik auf

Basis der Unified Modeling Language (UML), Ph.D.

thesis, Universität Kassel.

Katzke, U. and Vogel-Heuser, B. (2005). Design and

application of an engineering model for distributed process

automation. In: Proceedings of the American Control

Conference 2005, 2960-2965, Minneapolis.

Katzke, U., Vogel-Heuser, B., and Fischer, K. (2004).

Analysis and state of the art of modules in industrial

automation. In: Automation Technology in Practice

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

9156

international, 2, Issue 1, 23-31, Oldenbourg-Verlag,

München.

Licht, T. (2004). Ein Verfahren zur zeitlichen Analyse von

UML-Modellen beim Entwurf von Automatisierungs-

systemen, Ph.D. thesis, Universität Ilmenau.

Patig, S. (2008). A practical guide to testing the under-

standability of notations. In: Proceedings of the 5th on

Asia-Pacific Conf. on Conceptual Modeling, 49-58,

Wollongong.

Secchi, C., Bonfè, M., and Fantuzzi, C. (2007). On the use of

UML for modeling mechatronic systems. In: IEEE

Transactions on Automation Science and Engineering, 4,

Issue 1, 105-113, Hyderabad.

Sunder, C., Zoitl, A., Christensen, J., Vyatkin, V., Brennan,

R., Valentini, A., Ferrarini, L., Strasse, T., Lastra, J., and

Auinger, F. (2006). Usability and interoperability of IEC

61499 based distributed automation systems. In:

Proceedings of the 4th IEEE International Conference on

Industrial Informatics, 31-37, Singapore.

Vogel-Heuser, B. (2009a). Automation & Embedded Systems-

Effzienzsteigerung im Engineering, Kassel University

Press.

Vogel-Heuser, B. (2009b). Visionen für das Engineering der

Automatisierungstechnik 2020. In:

Automatisierungstechnische Praxis, 51, Issue 5, 49-56,

Oldenbourg Industrieverlag, München.

Vogel-Heuser, B., Friedrich, D., Katzke, U., and Witsch, D.

(2005). Usability and benefits of UML for plant

automation- some research results. In: Automation

Technology in Practice international, 3, Issue 1, 52-60,

Oldenbourg Industrieverlag, München.

Witsch, D., Ricken, M., and Kormann, B. (2010). PLC state

charts: An approach to integrate UML state charts in open-

loop control engineering. In: Proceedings of the 8th IEEE

Industrial Conference on Industrial Informatics, 915-920,
Osaka.

Witsch, D., Schünemann, U., and Vogel-Heuser, B. (2008).

Steigerung der Effizienz und Qualität von

Steuerungsprogrammen durch Objektorientierung und

UML. In: Automatisierungstechnische Praxis, 50, Issue

11, 42-47, Oldenbourg Industrieverlag, München.

Witsch, D., and Vogel-Heuser, B. (2009). Close integration

between UML and IEC 61131-3: New possibilities

through object-oriented extensions. In: Proceedings of the

14th IEEE International Conference Emerging

Technologies and Factory Automation, 1-6, Mallorca.

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

9157

