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Abstract: In this paper, nonlinear systems with time delay disturbances are studied. Both
matched and mismatched disturbances are considered. By using an appropriate transformation,
the system is transformed to an appropriate regular form, and the nonlinear sliding mode
dynamics are derived. A set of sufficient conditions is developed, using a Lyapunov-Razuminkhin
approach, such that the sliding motion is uniformly asymptotically stable. An output feedback
sliding mode control, independent of the time delay, is proposed to drive the system to the
sliding surface in finite time. A simulation example shows the effectiveness of the approach.

1. INTRODUCTION

Nearly all real systems are nonlinear in nature. One of the
basic approaches to deal with nonlinear systems is ‘lin-
earisation’ which can be classified as approximate lineari-
sation (Guardabassi and Savaresi [2001]) and exact/partial
linearisation (Marino and Tomei [1995]). However, lineari-
sation techniques are only applicable to a limited class
of nonlinear systems. It may be possible to describe the
operation of a real system by a linear model in a neigh-
bourhood of a certain point, but it can only describe the
‘local’ behavior of the system.

Time delay is often encountered in engineering systems
(Richard [2003], Gu et al. [2003]), where the delay may ap-
pear in the system state, input, output and disturbances.
Sometimes even a small delay may affect the performance
of the system greatly; a stable system may become un-
stable, or chaotic behavior may appear if delay arises in
the system. This has motivated the study of time delay
systems. A variety of control approaches including sliding
mode control, H∞ control and back-stepping techniques
have been applied to the control of systems with time
delay, and many important results have been achieved
(see, e.g. Mazenc and Bliman [2006], Wang et al. [2009]).
Much work has focussed on linear systems and/or assumed
that all the system state variables are available. In some
circumstances it is impossible or prohibitively expensive to
measure all of the system state variables. This motivates
the need to design control systems using only output
information.

It is well known that sliding mode control is completely
robust to so-called matched disturbances (Utkin [1992],
Edwards and Spurgeon [1998]). This has motivated the
application of sliding mode techniques to time delay sys-
tems with disturbances. Dynamical output feedback slid-
ing mode control strategies are proposed in Niu et al.
[2005], Yan et al. [2010, 2009]; these increase the system

dimension and require more hardware for implementation.
In comparison with this, static output feedback control
is preferable. Note, when compared with state feedback,
the static output feedback control problem is much more
difficult, even for linear systems without delay (Syrmos
et al. [1997]). Much less attention has been paid to systems
involving time delay using static output feedback sliding
mode control, and only very limited literature is available.
A static output sliding mode control scheme for time delay
systems is proposed by Janardhanan and Bandyopadhyay
[2006] where only a class of linear discrete-time systems
is considered. In all the existing results for time-delay
systems, it is required that the bounds on the distur-
bances satisfy a linear growth condition. Recently, the
bounds on disturbances/uncertainties have been extended
to the nonlinear case for time delay systems (Yan et al.
[2010]). However, the designed control explicitly depends
on the time delay which requires the time-delay is perfectly
known, and requires the nominal system to be largely
linear.

As pointed out in Hua et al. [2008], most of the existing
sliding mode controllers for nonlinear systems depend on
time delay, and thus require that the time delay is known
and hence require memory, which is difficult to implement
especially for the case of time-varying delay. A memoryless
control for a class of linear systems was proposed based on
the back-stepping approach in Hua et al. [2008] where the
nonlinear disturbances are matched and it is assumed that
all the system states are available. Although a memoryless
sliding mode control scheme is given in Yan [2003], all
the nonlinear terms do not include delay and are assumed
matched, which renders the associated sliding mode dy-
namics to be without delay.

LMI techniques have been widely applied to linear time
delay systems (Fridman and Dambrine [2009], Richard
[2003], Gu et al. [2003]), and provide a systematic design
approach. However, it is impossible to find a systematic
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design approach for nonlinear systems because nonlinear
systems exhibit very rich phenomena. In this paper a ro-
bust stabilisation problem is considered for a class of fully
nonlinear systems with time-varying delay disturbances.
Both the disturbances and the nominal system are nonlin-
ear. It is not required that the nominal systems are linearis-
able or partially linearisable. The disturbances involved
are matched and mismatched, and have nonlinear time
delayed bounds. By employing an appropriate coordinate
transformation, the system is first transformed to regular
form, which provides a good structure for analysis and
design. Based on the Lyapunov-Razuminkhin approach,
sufficient conditions are derived to guarantee that the
sliding motion is uniformly asymptotically stable. A static
output feedback sliding mode control law is then proposed
to drive the system to the sliding surface in finite time. The
developed control is independent of the time delay. Finally,
a simulation example is presented to show the effectiveness
of the approach.

2. PROBLEM FORMULATION

Consider nonlinear systems with time delay disturbances

ẋ= f(t, x) + g(t, x)
(
u+∆g

(
t, x, xd)

)
+∆f

(
t, x, xd)(1)

y = h(x) (2)

where x ∈ Ω ⊂ Rn (Ω is a neighbourhood of the origin),
u ∈ Rm and y ∈ Ωy ⊂ Rp are, respectively, the state
variables, inputs and outputs with m ≤ p < n. It is
assumed the matrix function g(·) ∈ Rn×m has full column
rank, and the nonlinear vectors f(·) ∈ Rn and h(·) ∈ Rp

with h(0) = 0 are known. The terms ∆g(·) and ∆f(·)
represent the matched and the mismatched disturbances
respectively. The notation xd := x(t−d) and yd := y(t−d)
represents delayed states and delayed outputs respectively,
where d := d(t) is the time-varying delay which is assumed
to be known, continuous, nonnegative and bounded in
R+ := {t | t ≥ 0}, that is

d̄ := sup
t∈R+

{d(t)} <∞

The initial condition associated with the time delay is

x(t) = φ(t), t ∈ [−d̄, 0] (3)

where φ(·) ∈ Θ with Θ the admissible initial value set
related to the time delay, which is defined by

Θ :=
{

φ(t) | φ(·) ∈ C[−d̄,0], ‖φ(t)‖ ≤ q1

}

(4)

for some constant q1 > 0. It is assumed that all the
nonlinear functions are smooth enough for the subsequent
analysis, which guarantees that the unforced system has
unique continuous solutions.

Suppose that the Jacobian matrix of the vector-valued
function h(x), denoted by Jh, is full rank in the domain
Ω. Then, the elements of h(x) are independent of each
other, and there exist n − p smooth functions δi(x) for
i = 1, . . . , n − p such that the Jacobian matrix of the
vector-valued function

T (x) :=







δ1(x)
...

δn−p(x)
h(x)







(5)

JT (·) is nonsingular in Ω. This implies that T (x) forms a
diffeomorphism in the domain Ω. Let

z := [δ1(x), · · · , δn−p(x)]
T

Clearly the diffeomorphism T in (5) defines a new coordi-
nate system:

T : x 7→ col(z, y) = T (x) (6)

Further, it is assumed that the input distribution function
matrix g(t, x) satisfies

[
∂T (x)

∂x
g(t, x)

]

=

[

0
G(t, y)

]

(7)

where G(t, y) ∈ Rm×m is nonsingular in R+ × Ωy.

Then, in the new coordinate system (z, y) defined by (6),
system (1)–(2) can be described by

[

ż
ẏ1

]

= F1(t, z, y1, y2) + ∆F1(t, z, y, zd, yd) (8)

ẏ2 = F2(t, z, y1, y2) +G(t, y1, y2)
(
u+∆G(t, z,

y, zd, yd)
)
+∆F2(t, z, y, zd, yd) (9)

y = col(y1, y2) (10)

where z ∈ Rn−p, y1 ∈ Rp−m and y2 ∈ Rm form the
states in the new coordinate system, and u ∈ Rm and
y := col(y1, y2) ∈ Rp are the system inputs and outputs
respectively. In the above, yd := y(t − d), zd := z(t − d),
and

[

F1(·)
F2(·)

]

:=

[
∂T

∂x
f(t, x)

]

x=T−1(z,y)

[

∆F1(·)
∆F2(·)

]

:=

[
∂T

∂x
∆f(t, x)

]

x=T−1(z,y)

∆G(·) := [∆g(t, x, xd)]x=T−1(z,y)

In the new coordinate system (z, y1, y2), the domain Ω is
transferred to

ΩT := Ωz × Ωy1 × Ωy2
:= {(z, y1, y2) | (z, y1, y2) = T (x), x ∈ Ω}

where z ∈ Ωz, y1 ∈ Ωy1 , and y2 ∈ Ωy2 . It is clear that
system (8)–(9) is in regular form, and that the system
outputs are a subset of the state variables, thus facilitating
the sliding mode design.

In this paper, the stabilisation problem for system (8)–
(10) will be considered. The objective is to design a static
output feedback sliding mode control law

u = u(t, y) (11)

which depends only on time t and the system output y, but
is independent of the time delay d(t), such that the closed-
loop system formed by applying the control (11) to system
(8)–(9) is uniformly asymptotically stable irrespective of
the delayed disturbances. Since this control has no delay
involved, it is called memoryless control.

The local case will be treated in this paper. In order
to avoid unnecessary notation in describing the local
region, the domain may not be specifically stated, but each
variable’s dimension will be clearly shown.
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3. PRELIMINARIES

Some definitions are first introduced.

Definition 1. A function f0(x1, x2, x3) : Ω1 × Ω2 × Ω3 7→
Rn is said to satisfy a generalised Lipschitz condition with
respect to (w.r.t.) the variables x1 ∈ Ω1 ⊂ Rn1 and
x2 ∈ Ω2 ⊂ Rn2 uniformly for x3 in Ω3 ⊂ Rn3 if there
exist continuous functions Lf01(·) and Lf02(·) defined in
Ω3 such that for any x̂1, x1 ∈ Ω1 and x̂2, x2 ∈ Ω2, the
inequality

‖f0(x1, x2, x3)− f0(x̂1, x̂2, x3)‖

≤ Lf01(x3) ‖x1 − x̂1‖+ Lf02(x3) ‖x2 − x̂2‖

holds for any x3 ∈ Ω3. Further, if Ω1 = Rn1 and Ω2 = Rn2 ,
then, it is said that f0(·) satisfies a global generalised
Lipschitz condition w.r.t. x1 and x2 uniformly for x3
in Ω3. Moreover, f0(·) is called a (global) generalised
Lipschitz function, and Lf01(·) and Lf02(·) are called
(global) generalised Lipschitz constants.

Remark 1. The generalised Lipschitz condition in Defi-
nition 1 has been introduced in Corduneanu [1991]. The
generalised Lipschitz constants Lf01(x3) and Lf02(x3) are
usually functions of x3 instead of constants. This is dif-
ferent from the normal Lipschitz condition. However, in
order to maintain a consistent style, here the continuous
functions Lf01(x3) and Lf02(x3) are called generalised
Lipschitz constants. This generalised Lipschitz condition
is more relaxed than the normal Lipschtiz condition.

Definition 2. (see, Khalil [2002], Gu et al. [2003]) A con-
tinuous function α : [0, a) 7→ [0,∞) is said to belong to
classK if it is strictly increasing and α(0) = 0. Further, it is
said to belong to classK∞ if a = ∞ and limr→∞ α(r) = ∞.

In connection with the well known K function defined
above, the following new concept is introduced, which will
be termed as a WS function.

Definition 3. A continuous function β(t, τ1, τ2) : R+ ×
R+×R+ 7→ R+ with β(t, 0, 0) = 0 is said to be weak w.r.t
the variable τ1 and strong w.r.t. the variable τ2 if there
exist continuous functions χ1(t, τ1, τ2) and χ2(t, τ1, τ2)
such that

β(t, τ1, τ2) = χ1(t, τ1, τ2)τ1 + χ2(t, τ1, τ2)τ2 (12)

where both functions χ1(·, ·, τ2) and χ2(·, ·, τ2) are nonde-
creasing w.r.t. the variable τ2. The function β(t, τ1, τ2) is
said to belong to the class WS function w.r.t. τ1 and τ2.

Remark 2. It should be noted that if a continuous func-
tion α(t, τ1, τ2) : R

+ ×R+ ×R+ 7→ R+ with α(t, 0, 0) = 0
is smooth enough, then, the decomposition

α(t, τ1, τ2) = α1(t, τ1, τ2)τ1 + α2(t, τ1, τ2)τ2
holds. The relevant discussion is available in Banks and
Al-jurani [1994]. Further if α1(t, τ1, τ2) and α2(t, τ1, τ2) are
nondecreasing w.r.t. τ2, then α(t, τ1, τ2) belongs to a WS
function w.r.t. τ1 and τ2.

4. SLIDING MODE DESIGN

In this section, a sliding surface is proposed first, and the
stability of the associated sliding mode is analysed. Then
a sliding mode control is designed such that the closed-
loop system is driven to the sliding surface and maintains
a sliding motion on it thereafter.

4.1 Stability of sliding motion

For system (8)–(10), choose the switching function

s(x) := y2 (13)

Then, the output sliding surface is described by

{col(z, y1, y2) | y2 = 0} (14)

Since system (8)–(9) is in regular form, the sliding mode
dynamics associated with the sliding surface (14) can be
described in a compact form by

Ẋ = F1s(t,X) + ∆F1s(t,X,Xd) (15)

where X := col(z, y1) ∈ Rn−m. The considered domain is
X ∈ ΩX := Ωz × Ωy1 , and

F1s(t,X) := F1(t, z, y1, 0),

∆F1s(t,X,Xd) :=∆F1(t, z, y1, 0, zd, y1d, 0)

The initial value related to the delay for system (15) is
obtained from (3) using the coordinate transformation (6).

Assumption 1. There exists a C1 function V (·) : R+ ×
Rn−m 7→ R+ and positive constants ri for i = 1, . . . , 4
such that for any X ∈ ΩX

i). r1‖X‖2 ≤ V (t,X) ≤ r2‖X‖2;

ii). ∂V
∂t

+
(
∂V
∂X

)T

F1s(t,X) ≤ −r3‖X‖2 ;

iii).
∥
∥ ∂V
∂X

∥
∥ ≤ r4‖X‖

where ∂V
∂X

:= [ ∂V
∂X1

· · · ∂V
∂Xn−m

]T

and col(X1, X2 · · · ,

Xn−m) := X.

Assumption 2. If there exists a continuous nondecreasing
function ρ(·) defined in R+ satisfying ρ(τ) > τ for τ > 0,
such that for any θ ∈ [−d̄, 0],

V (t+ θ,X(t+ θ)) ≤ ρ(V (t,X(t))) (16)

then, there exists a constant c0 > 1 such that

‖X(t+ θ)‖ ≤ c0‖X(t)‖ (17)

for any θ ∈ [−d̄, 0] where V (·) is given in Assumption 1.

Remark 3. If the nominal system associated with (15)
is exponentially stable, then the conditions i)-iii) in As-
sumption 1 hold (see, e.g. Theorem 4.14 in Khalil [2002]).
Assumption 2, which is related to the time delay, is a fur-
ther limitation on the function V (·) given in Assumption
1. If time delay is not involved, then Assumption 2 will be
unnecessary. A class of functions satisfying Assumption 2
is presented in Lemma 1 in the Appendix.

Assumption 3. The disturbance ∆F1s(·) in (15) satisfies

‖∆F1s(t,X,Xd)‖ ≤ ψ (t, ‖X‖, ‖Xd‖) (18)

where ψ(·, τ1, τ2) is a known class WS function w.r.t. the
variables τ1 and τ2.

Since ψ(·) is a class of WS function, it follows that under
Assumption 3, the function ψ(·) has a decomposition as

ψ(·) = ψ1(t, ‖X‖, ‖Xd‖)‖X‖+ ψ2(t, ‖X‖, ‖Xd‖)‖Xd‖ (19)

where the functions ψ1(·, ·, τ) and ψ2(·, ·, τ) are nonde-
creasing w.r.t. the variable τ ∈ R+.
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Theorem 1. Under Assumptions 1-3, system (8)–(9) has a
uniformly asymptotically stable sliding motion associated
with the sliding surface (14) if for X ∈ ΩX and t ∈ R+,

ψ1(t, ‖X‖, c0‖X‖) + c0ψ2(t, ‖X‖, c0‖X‖)≤
1

r4
(r3 − γ)

(20)

holds for some γ > 0 and c0 > 1, where ψ1(·) and ψ2(·) are
given in (19), and r3 and r4 are defined in Assumption 1.

Proof: The sliding mode dynamics of system (8)–(9) in
(15) must be proved to be uniformly asymptotically stable.
Consider the Lyapunov candidate function V (·) defined in
Assumption 1. It follows that the time derivative of V (·)
along the trajectory of system (15) is given by

V̇ = ∂V
∂t

+
(
∂V
∂X

)T
(F1s(t,X) + ∆F1s(t,X,Xd))

≤ ∂V
∂t

+
(
∂V
∂X

)T
F1s(t,X) +

∥
∥
∥

(
∂V
∂X

)T
∥
∥
∥

·‖∆F1s(t,X,Xd)‖

≤−r3‖X‖2 + r4ψ1(t, ‖X‖, ‖Xd‖)‖X‖2

+r4ψ2(t, ‖X‖, ‖Xd‖)‖X‖‖Xd‖ (21)

where equation (19) and Assumptions 1 and 3 are em-
ployed. Assume that there exists a function ρ(·) in R+

which satisfies ρ(τ) > τ for τ > 0, such that

V (t+ θ,X(t+ θ)) ≤ ρ(V (t,X(t))), θ ∈ [−d̄, 0] (22)

Then, from Assumption 2, there exists a constant c0 > 1
such that for any θ ∈ [−d̄ 0]

‖X(t+ θ)‖ ≤ c0‖X(t)‖ (23)

Since ψ1(·, ·, τ) and ψ2(·, ·, τ) are nondecreasing w.r.t. τ in
R+, it is clear that if (22) holds, then from (23) and (21),

V̇ ≤−
(

r3 − r4ψ1(t, ‖X‖, c0‖X‖)

−r4c0ψ2(t, ‖X‖, c0‖X‖)
)

‖X‖2 ≤ −γ‖X‖2

where inequality (20) is employed above. Hence the con-
clusion follows from the Razumikhin Theorem (see, e.g.
Gu et al. [2003]) . ∇

4.2 Reachability analysis

In order to design a static output feedback sliding mode
control law for system (8)–(10), the following assumptions
are imposed on the system (9).

Assumption 4. The disturbances ∆G(·) and ∆F2(·) in
(9) satisfy

‖∆G(t, z, y, zd, yd)‖ ≤̟1(t, z, y, zd, yd) (24)

‖∆F2(t, z, y, zd, yd)‖ ≤̟2(t, z, y, zd, yd) (25)

for some known functions ̟1(·) and ̟2(·) which in turn
satisfy the generalised Lipschitz condition w.r.t. the vari-
ables z, zd and yd uniformly for t ∈ R+ and y ∈ Ωy.

Assumption 5. The nonlinear function F2(t, z, y) in
(9) satisfies the generalised Lipschitz condition w.r.t. the
variables z uniformly for t ∈ R+ and y ∈ Ωy.

Assumptions 4 and 5 imply that the following inequalities

|̟1(t, z, y, zd, yd)−̟1(t, 0, y, 0, 0)| ≤ L̟11(t, y)‖z‖

+ L̟12(t, y)‖zd‖+ L̟13(t, y)‖yd‖ (26)

|̟2(t, z, y, zd, yd)−̟2(t, 0, y, 0, 0)| ≤ L̟21(t, y)‖z‖

+ L̟22(t, y)‖zd‖+ L̟23(t, y)‖yd‖ (27)

‖F2(t, z, y)−F2(t, 0, y)‖ ≤ LF21(t, y)‖z‖ (28)

hold in the domain ΩT .

Consider system (8)–(10) in the domain

{(z, y) | ‖z‖ ≤ q2, y ∈ Ωy} ⊂ ΩT (29)

where q2 is a positive constant and Ωy := Ωy1 × Ωy2 . Let

q := max{q1, q2} (30)

where q1 and q2 are defined by (4) and (29) respectively.
Construct the control law

u(t, y) =−G−1(t, y)F2(t, 0, y)−G−1(t, y)
(

‖G(t, y)‖

·̟1(t, 0, y, 0, 0) +̟2(t, 0, y, 0, 0)
)

sgn(y2)

−G−1(t, y)k(t, y)sgn(y2) (31)

where F2(·) is given in (9) and the functions ̟1(·) and
̟2(·) satisfy (24) and (25) respectively. The symbol sgn
is the usual signum function, and the function k(·) is the
control gain to be determined later. The function G(t, y)
is given in (7), which is nonsingular in R+ × Y , and thus
the control u(·) in (31) is well defined.

Theorem 2. Consider the nonlinear system (8)–(9). Under
Assumptions 4 and 5, system (8)–(9) can be driven to the
sliding surface (14) in finite time and maintains a sliding
motion on it thereafter by control (31) if the control gain
k(·) is chosen as

k(t, y) := q
(

LF21(t, y) + ‖G(t, y)‖
(
L̟11(t, y) + L̟12(t, y)

+L̟13(t, y)
)
+ L̟21(·) + L̟22(·) + L̟23(·)

)

+ η (32)

for any η > 0, where the positive constant q is defined in
(30), F2(·) is given in (9) and the functions̟1(·) and̟2(·)
satisfy (24) and (25) respectively. L⋆ are the associated
generalised Lipschitz constants given in (26)–(28).

Proof: Substituting u(·) in (31) into equation (9), it
follows from (13) that

sT (x)ṡ(x) = sT (x)
(

F2(t, z, y)− F2(t, 0, y)
)

+ sT (x)

·G(t, y1, y2)∆G(t, z, y, zd, yd)

−‖G(t, y)‖̟1(t, 0, y, 0, 0)s
T (x)sgn(y2)

+sT (x)∆F2(t, z, y, zd, yd)

−̟2(t, 0, y, 0, 0)s
T (x)sgn(y2)

−k(t, y)sT (x)sgn(y2) (33)

As s(x) = y2 in (13), it follows that under Assumption 5,

sT (x)
(

F2(t, z, y)− F2(t, 0, y)
)

≤ ‖s(x)‖ ‖F2(·)− F2(t, 0, y)‖ ≤ qLF21(t, y)‖s(x)‖(34)
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and from the fact that sT sgn(s) ≥ ‖s‖ for any vector s, it
follows that under Assumption 4,

sT (x)G(t, y1, y2)∆G(t, z, y, zd, yd)− ‖G(t, y)‖

·̟1(t, 0, y, 0, 0)s
T (x)sgn(y2)

≤ ‖s(x)‖ ‖G(t, y)‖
(
̟1(t, z, y, zd, yd)−̟1(t, 0, y, 0, 0)

)

≤ ‖s(x)‖ ‖G(t, y)‖
(
L̟11(t, y)‖z‖+ L̟12(t, y)‖zd‖

+L̟13(t, y)‖yd‖
)

≤ q‖s(x)‖ ‖G(t, y)‖
(
L̟11(·) + L̟12(·) + L̟13(·)

)
(35)

where q is defined by (30), and (26) is employed above. By
similar reasoning as in (35),

sT (x)∆F2(t, z, y, zd, yd)−̟2(t, 0, y, 0, 0)s
T (x)sgn(y2)

≤ ‖s(x)‖
(

̟2(t, z, y, zd, yd)−̟2(t, 0, y, 0, 0)
)

≤ q‖s(x)‖
(

L̟21(t, y) + L̟22(t, y) + L̟23(t, y)
)

(36)

and substituting (34)–(36) into (33) yields

sT ṡ≤ q
(

LF21(t, y) + ‖G(t, y)‖
(
L̟11(t, y) + L̟12(t, y)

+L̟13(t, y)
)
+ L̟21(t, y) + L̟22(t, y)

+L̟23(t, y)
)

‖s‖ − k(t, y)‖s‖

=−η‖s‖

where (32) is employed above. This shows that the reach-
ability condition holds. Hence the conclusion follows. ∇

Theorems 1 and 2 together show that the associated
closed-loop system is uniformly asymptotically stable.

5. SIMULATION EXAMPLE

Consider a nonlinear system with time delay disturbances

ẋ =

[
−3x1x

2
2 − 3x1 + x23

3x21x2 − 3x2 − x3 exp{−t} cos(x2t)
−2x3 +

1
2x1x

2
3

]

︸ ︷︷ ︸

f(·)

+

[
0
0

x22 sin
2 t+ 1

]

︸ ︷︷ ︸

g(·)

(
u+∆g(t, x, xd)

)
+∆f(t, x, xd) (37)

y =:

[

y1
y2

]

=

[

x2
x3

]

(38)

where x = col(x1, x2, x3) ∈ R3, u ∈ R and y ∈ R2

are, respectively, the state variables, input and outputs,
and ∆g(·) and ∆f(·) are the matched and mismatched
disturbances respectively.

Let z = x1. It is easy to see that the system (37)–(38) is
in the form (8)–(10) as follows

[

ż
ẏ1

]

=

[

−3zy21 − 3z + y22
3z2y1 − 3y1 − y2 exp{−t} cos(y1t)

]

︸ ︷︷ ︸

F1(·)

+∆F1(t, z, y, zd, yd) (39)

ẏ2 =−2y2 +
1

2
zy22

︸ ︷︷ ︸

F2(·)

+(1 + y21 sin
2 t)

︸ ︷︷ ︸

G(·)

(
u+

∆G(t, z, y, zd, yd)
)
+∆F2(t, z, y, zd, yd) (40)

The disturbances ∆G(·), ∆F1(·) and ∆F2(·) are assumed
to satisfy

|∆G(·)| ≤ |zd + y1| exp{−t}
︸ ︷︷ ︸

̟1(·)

(41)

‖∆F1(·) ‖ ≤ z2d sin
2(ty1d) + (y2dy2)

4 (42)

‖∆F2(·)‖ ≤ (|zd|+ 1)(y22 + |y1|)
︸ ︷︷ ︸

̟2(·)

(43)

Choose the switching function

s(x) := y2
Then, the sliding mode dynamics are described by

Ẋ =

[

−3zy21 − 3z
3z2y1 − 3y1

]

︸ ︷︷ ︸

F1s(·)

+∆F1s(t,X,Xd) (44)

where X = col(z, y1), and from (42)

‖∆F1s(t,X,Xd)‖ ≤ z2d sin
2(ty1d) ≤ z2d

︸︷︷︸

ψ

and thus equation (19) is satisfied with

ψ1(·) = 0 and ψ2(·) = ‖zd‖

This implies that Assumption 3 is satisfied. Construct a
candidate Lyapunov function V = z2 + y21 . Assumption 1
holds with r1 = r2 = 1, r3 = 6, and r4 = 2. From Lemma
1 in the Appendix, Assumption 2 holds with ρ(·) = 1
and c0 = 1.01. Let γ = 0.5, then it follows that all the
conditions in Theorem 1 hold in the domain

ΩX = {(z, y1)
∣
∣ |z| ≤ 2.7, y1 ∈ R}

which guarantees that the sliding motion is uniformly
asymptotically stable.

Then, the control law (31) with the gain k(·) satisfying
(32) is well defined. From Theorems 1 and 2, the closed
loop system is uniformly asymptotically stable.

For simulation purposes, the delay is chosen as d(t) = 2−
sin t and the initial condition related to the delay is given
by

φ(t) = [ sin t 0 1 + cos t ]
T

and the constants q = 3 and η = 1. The simulation in
figure 1 demonstrates the effectiveness of the proposed
approach.

6. CONCLUSIONS

A class of fully nonlinear systems with time delay distur-
bances has been studied in this paper. Based on sliding
mode techniques, a static output feedback control law is
designed to stabilise the system. The sliding mode dynam-
ics are fully nonlinear and the bounds on the disturbances
are nonlinear and time delayed. Both matched and mis-
matched disturbances are considered. The conservatism is
reduced by exploiting the system structure. This work pro-
vides a methodology to deal with fully nonlinear systems
using static output feedback sliding mode control.
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Fig. 1. The time response of the controlled system (37)–(38) (top),
the switching function (middle) and the control signal (bottom)

APPENDIX

In this Appendix, a result related to Assumption 2 will be
shown.

Lemma 1. Suppose that ξ : R+ 7→ R+ is differentiable
and strictly increasing with ξ(0) = 0, and P ∈ Rn×n

is symmetric positive definite (s.p.d.). Then the function
V (X) := ξ(XTPX)) with X ∈ Rn is positive definite
and satisfies Assumption 2 if there exists b > 1 such that
bξ(r) ≤ ξ(cr) for some constant c > 0 and any r ∈ R+.

Proof: Since P is s.p.d. and ξ(·) is strictly increasing in
R+ with ξ(0) = 0, it follows from XTPX ≥ 0 that

V (X) = ξ(XTPX) ≥ ξ(0) = 0

and V (0) = 0 ⇐⇒ X = 0. This implies that the function
V (X) is positive definite.

The objective now is to prove that V (·) satisfies Assump-
tion 2. Suppose that there exists b > 1 such that bξ(r) ≤
ξ(cr) for some constant c > 0 and any r ∈ R+. Then,
Let ρ(r) := br (r ∈ R+). Since ξ : R+ 7→ R+ is strictly
increasing in R+, it follows that when V (Xd) ≤ ρ(V (X))
(Xd := X(t− d)),

ξ
(
XT
d PXd

)
≤ bξ

(
XTPX

)
≤ ξ(cXTPX)

⇐⇒XT
d PXd ≤ cXTPX

=⇒ λ(P )‖Xd‖
2 ≤ XT

d PXd ≤ cXTPX ≤ cλ(P )‖X‖2

⇐⇒‖Xd‖ ≤

√

cλ(P )/λ(P )‖X‖.

where λ(·) and λ(·) denote the maximum and minimum
eigenvalues of a matrix respectively. Hence the conclusion

follows by choosing c0 ≥
√

cλ(P )/λ(P ). #

Lemma 1 shows a class of functions satisfying Assumption
2. For example, the function

V (z, y) = (zTP1z + yTP2y)
α

belongs to such a class of functions if the matrices P1 and
P2 are s.p.d. with appropriate dimensions, and α ≥ 1 is a
constant.
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