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Abstract: This paper addresses a problem of motion formation control of a network of self-deployed
autonomous robots. We propose decentralized motion coordination algorithms for the robots so that they
collectively move in a rectangular lattice pattern from any initial position. There are no predefined leaders
in the group and only local information is required for the algorithms. The algorithms are developed
using the ideas of consensus, and their effectiveness is illustrated via numerical simulations.
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1. INTRODUCTION

The study of decentralized control laws for groups of au-
tonomous agents has emerged as a challenging research area
recently (see e.g.: Jadbabaie et al. (2003); Ren and Beard
(2008); Olfati-Saber et al. (2007); Bullo et al. (2009)). In this
control framework, the motion of each robot is coordinated
using local information such as coordinates or velocities of
several other robots that are closest neighbors of the robot at
a given time. One approach to developing these local motion is
by the inspiration from the animal aggregations, such as schools
of fish, flocks of birds or swarms of bees, that are believed to
use simple, local motion coordination rules at the individual
level (e.g.: Flierl et al. (1999); Shaw (1962); Okubo (1986)). To
simulate these behaviors, Vicsek et al. (1995) proposed a simple
discrete-time model of a system of several autonomous agents
and each agent’s motion is updated using a local rule based on
its own state and the state of its “neighbors.” This simple but
interesting model was then analyzed by a number of researchers
(see e.g.: Jadbabaie et al. (2003); Savkin (2004); Yu and Wang
(2008); Ren and Beard (2008)).

This type of local coordination rule leads to the so-called con-
sensus or agreement scheme. By using this approach a group
of agents can be coordinated to achieve a specific formation
or geometric structure (see e.g.: Ren and Beard (2008); Olfati-
Saber et al. (2007); Cheng and Savkin (2009, 2011)). The ad-
vantages of this consensus approach as compared to the tradi-
tional leader-follower approach, in e.g. Wang (1991), are that
a leader-follower scheme requires a predefined leader and also
there is no explicit feedback to the leader from the formation.
As a result, the leader may walk away and leave its followers
behind. Another approach that is widely adopted is the artifi-
cial potential function approach, see e.g. Leonard and Fiorelli
(2001). As its name suggests, this approach is based on some
potential functions and these functions represent and realize the
inter-agent interactions and/or the interactions with the environ-
ment. An advantage of this approach is that it naturally leads to
a distributed control law and is relatively simple. However, in
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general, a potential function approach may generate many local
minima, leading to only local results and the pattern that the
group forms into cannot be guaranteed.

By taking the consensus approach, the objective of this paper
is to develop a decentralized or distributive control strategy
for a group of robots so that they form into a rectangular
formation and collectively move in this formation from any
initial position. In our problem, there are no leaders assigned
a priori, and the robots have to coordinate with each other
in the group relying on some global consensus to achieve
and maintain a rectangular pattern. Apart from rectangular
patterns, our control strategy can be easily modified to achieve
other geometric patterns like triangular or diamond patterns.
A potential application of our formation control of a group
of robots is for sweep coverage (Choset (2001)) in operations
like minesweeping (Cassinis et al. (1999)), boarder patrolling
(Kumar et al. (2007)), environmental monitoring of disposal
sites on the deep ocean floor (Jeremić and Nehorai (1998)), and
sea floor surveying for hydrocarbon exploration (Børhaug et al.
(2007)).

The rest of the paper is organized as follows. In Section 2,
we formulate the problem of decentralized formation control
of a network of mobile robots. An algorithm to address the
formation control problem is presented in Section 3. Section 4
presents some simulation results to illustrate the proposed algo-
rithm. The detailed proof of the results will be given in the full
version of this paper.

2. PROBLEM FORMULATION

In our decentralized formation control problem, the objective
is to coordinate a group of mobile robots so that they collec-
tively move into a rectangular lattice pattern from any initial
deployment. The coordinating algorithm is decentralized that
the robots can only access local information. We consider a
multi-robot system consisting of n robots labeled 1 through n.
Let Vi(·) and Θi(·) be the linear velocity and heading of the
robot i, respectively. Let l(s) = [cos(s) sin(s)]T be a unit
vector with a given angle s ∈ R measured with respect to x-
axis and let pi = [xi, yi]

T be the position of the robot i. For
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a given sampling period T > 0, the discrete-time kinematic
equations of the robots are given by:

pi((k + 1)T ) = pi(kT ) + Vi(kT )l(Θi(kT ))T, (1)

for i = 1, 2, . . . , n, and k = 0, 1, 2, . . .. The velocityVi satisfies
|Vi(t)| ≤ vmax for i = 1, 2, . . . , n and all t ≥ 0. The initial
headings satisfy Θi(0) ∈ [0, π) for all i = 1, 2, . . . , n, and the
initial positions of the vehicles are in a bounded set B ⊂ R

2

with Lebesgue measure.

Each mobile sensor may have a restricted communication and
detection capabilities to reduce the cost of operation, and it
has a limited information about other sensors in the group.
Therefore, the control law of each mobile senor should be
decentralized in the sense that the movement of each sensor
relies on the information of its neighbors, e.g., positions, head-
ings, and coordination variables. For instance, the locations
of neighboring sensors can be estimated using recursive state
estimation methods; see, e.g., Pathirana et al. (2005, 2004). The
issue of estimation based on limited measurements was studied
in details in Savkin (2006); Matveev and Savkin (2009); Savkin
and Cheng (2007).

Robot i, i = 1, 2, . . . , n, has the ability to communicate with
another robot in a disk of radius r defined by

Di,r(kT ) := {p ∈ R
2 : ‖p− pi(kT )‖ ≤ r},

where ‖ · ‖ denotes the Euclidean norm. Let Ni(kT ) be the set
of all robots j, j 6= i that at time t = kT belong to the disk
Di,r(kT ) and |Ni(kT )| be the number of elements in Ni(kT ).
We describe the robot i has |Ni(kT )| number of neighbors at
time kT . Let P be the collection of simple undirected graphs
defined on n vertices, representing robots 1, 2, . . . , n. For any
time kT ≥ 0, the relationship between neighbors are described
by a simple undirected graph G(kT ) ∈ P with vertex set
{1, 2, . . . , n} where i corresponds to the vehicle i. The vertices
i and j of the graph, where i 6= j, are connected by an edge
if and only if the vehicles i and j are neighbors at time kT .
To study our problem, we impose the following assumption on
G(kT ).

Assumption 2.1. The graph G(kT ) ∈ P is connected for all
k ≥ 0.

For given integers γ, K̄ ∈ {1, 2, . . . , n} and scalars ψ̄, φ̄ ∈
[0, π), and s1, s2 > 0, we define a number points hi,j(kT )
relative to robot γ at time kT as shown in Figure 1. The set
of locations {hi,j(kT )} are defined as follows:

hi,j(kT ) = pγ(kT ) + s2(i− 1)l(φ̄)

+ s1(j − 1)l(φ̄− π/2)
(2)

for i = 1, 2, . . . , ⌊n/K̄⌋ and j = 1, 2, . . . , K̄; and for i =
⌈n/K̄⌉ and j = 1, 2, . . . , n−⌊n/K̄⌋K̄. The hi,j(kT ) positions
are relative to the position of robot γ. In fact, the integer
γ ∈ {1, 2, . . . , n} is not specified at the initial deployment
and any robot can eventually take up the h1,1(kT ) position.

Similarly, the integer K̄ and scalar φ̄ are also unspecified at
the initial deployment. Thus, the dimensions and the orientation
of the rectangular lattice are unknown a priori. Moreover, the
heading ψ̄ of the rectangular lattice is also not specified at the
initial deployment. However, the desired speed that the group
of robots should move is known to all the robots. We let v0 be
such a desired speed that the group of robots moves.

Definition 2.1. Given n autonomous robots, a set of decen-
tralized control algorithms is said to be a rectangular forma-
tion control for the robots if for almost all initial robot po-

Fig. 1. A group of robots moving in the rectangular formation
in the direction φ̄ with speed v0 (n = 11, K̄ = 4).

sitions, there exist a robot γ ∈ {1, 2, . . . , n}, integer K̄ ∈
{1, 2, . . . , n}, and scalars φ̄, ψ̄ ∈ [0, π); and for each hi,j(kT )
location, there exists a unique index zi,j ∈ {1, 2, . . . , n} such
that the following condition holds:

lim
k→∞

‖pzi,j (kT )− hi,j(kT )‖ = 0. (3)

In Definition 2.1, almost all means for all initial conditions
except for a set of initial conditions that has Lebesgue measure
(area) zero.

3. ALGORITHM

In this section, a control algorithm will be presented for the co-
ordination of a group of moving robots to achieve a rectangular
formation. In brief, the algorithm consists of two stages. During
the first stage, the robots coordinate and align themselves into
a line formation. Once the robots are aligned and each has been
assigned an identity (ID) based on this alignment, they start
forming ⌈n/K̄⌉ number of parallel lines. The distance between
these lines is s2. Depending on K̄ and n, the last row of robots
may not form a complete line as shown in Fig. 1.

3.1 First Stage

In the following, a set of decentralized control laws will be
proposed for the robots to achieve a line formation during the
first stage. Since the control laws for the robots are distributed
or decentralized, they rely on the local information of each
robot. Information such as locations and some coordination
variables of a robot’s neighbors is available to the robot. The
coordination variables are mainly for coordinating the motion
of a robot with other robots in the group.

First, for robot i, we introduce the coordination variable
Ki(kT ) that takes a value in the discrete set {1, 2, . . . , n}. The
initial value of this variable satisfies Ki(0) ∈ {1, 2, . . . , n}.
This coordination variable will characterize the dimensions of
the rectangular lattice that the robots will form. In particular, the
number of robots along one side of a rectangular pattern. At any
time k = 1, 2, 3, . . ., robot i, i = 1, 2, . . . , n, updates Ki(kT )
using the following “nearest neighbor rule”: the average Ai(t)
of Ki(kT ) is defined as
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Ai(kT ) :=

1

1 + |Ni(kT )|



Ki(kT ) +
∑

j∈Ni(kT )

Kj(kT )



 .
(4)

It is clear that Ai(kT ) ∈ [1, n]. Now we define Ki((k + 1)T )
of robot i as

Ki((k + 1)T ) := ⌊Ai(kT )⌋. (5)

Next we introduce the coordination variable ψi(kT ) for robot
i. This variable will be used to define the heading of the
rectangular formation. The coordination variable ψi(kT ) has
initial value ψi(0) ∈ [0, π) and ψi(0) = Θi(0). The variable
ψi(·) is updated as follows:

ψi((k + 1)T ) :=

1

1 + |Ni(kT )|



ψi(kT ) +
∑

j∈Ni(kT )

ψj(kT )



 .
(6)

In addition, we introduce the variable ξi(kT ) ∈ {1, 2, 3 . . .}
with ξi(0) = 1. This variable characterizes the row in the
formation that robot i belongs to at time kT . During the first
stage, ξi(·) ≡ 1. At time kT , we let Si(kT ) = {j ∈ Nj(kT ) :
ξj(kT ) = ξi(kT )}. The set Si(kT ) contains the neighbors of
robot i that belong to the same row as robot i. Similar to ψ(kT ),
another coordination variable φi(kT ) for i = 1, 2, . . . , n is
introduced and it will define the orientation of the rectangular
formation. The coordination variable φi(kT ) has initial value
φi(0) ∈ [0, π), and we define:

Hi(kT ) :=

1

1 + |Si(kT )|



φi(kT ) +
∑

j∈Si(kT )

φj(kT )



 ,
(7)

for i = 1, 2, . . . , n, where |Si(kT )| denotes the number of
elements in the set Si(kT ). The coordination variable φi(kT )
is then updated by

φi((k + 1)T ) = Hi(kT ). (8)

In contrast toKi((k+1)T ), ψi((k+1)T ) and φi((k+1)T ) will
take any value in the interval [0, π) rather than from a discrete
set. Using φi(kT ), we define a variable that is the projection of
pj(kT ) (i.e., the position of robot j) in the direction φi(kT ) as

ci,j(kT ) = lT (φi(kT ))pj(kT ), for j ∈ Si(kT ) ∪ {i}.

Similar to (7), we define the average of ci,j(·), j ∈ Si(kT )∪{i}
for robot i as follows:

Mi(kT ) :=

1

1 + |Si(kT )|



ci,i(kT ) +
∑

j∈Si(kT )

ci,j(kT )



 ,
(9)

for k = 1, 2, . . .. For each robot i, we introduce the coordina-
tion variable Fi(kT ) = ci,i(kT ). Using φi(kT ) and Fi(kT ), a
line Li(kT ) that robot i belongs to is defined as:

Li(kT ) = {p ∈ R
2 : lT (φi(kT ))p = Fi(kT )} (10)

for i = 1, 2, . . . , n. This line is instrumental in determining
the control for robot i. To develop the control action along
Li(kT ), we let qij(kT ) be the projection of the position of robot

j ∈ Si(kT )∪{i} on the line Li(kT ) at time kT , and it is given
by qij(kT ) = lT (φi(kT )− π/2)pj(kT ). Using this, we define

robots α, β ∈ Si(kT ), provided that if they exist, such that

qiα(kT ) < qii(kT ) < qiβ(kT ). (11)

During the first stage, if both robots α and β exist, then we
define

Qi(kT ) = (qiα(kT ) + qiβ(kT ))/2. (12)

If α exists but not β, then we define

Qi(kT ) = (qiα(kT ) + qii(kT ) + s1)/2. (13)

On the other hand, if β exists but not α, then we define

Qi(kT ) = (qiβ(kT ) + qii(kT )− s1)/2. (14)

Before introducing our decentralized control laws, we define

v̄i(kT ) = (Qi(kT )− qii(kT ))/T

v̂i(kT ) = (Mi(kT )−Fi(kT ))/T
(15)

for i = 1, 2, . . . , n and k = 1, 2, . . .. Using (15), we introduce
the following variables:

vi(kT ) =
√

v̄i(kT )2 + v̂i(kT )2;

θi(kT ) =

{

φi(kT ) + ξi(kT )− π/2, if v̂i(kT ) ≥ 0

φi(kT )− ξi(kT )− π/2, if v̂i(kT ) < 0,

where ξi(kT ) := cos−1(v̄i(kT )/vi(kT )). Now we are in
position to introduce a set of decentralized control laws that
is described by:

Vi(kT )Θi(kT ) = vi(kT )θi(kT ) + v0l(ψi(kT )). (16)

3.2 Second Stage

The first stage of the algorithm presented previously will drive
the group of robots into a line formation. However, our objec-
tive is to drive the robots into a rectangular lattice pattern as
shown in Fig 1. Therefore, the purpose of the second stage of
the algorithm is to meet the objective and it will be presented in
this subsection.

As mentioned in Section 2, the dimension and the orientation
φ̄ of the rectangular lattice are not predefined. In fact, these
parameters will only be known by the robots when a global con-
sensus is reached via sharing of local information. The rules (6),
(8) and (9) guarantee that all robots will be aligned and moving
in a line formation. In other words, the coordination variables
have reached their respective consensus values. In addition,
using the rule (4), the variable Ki(·) of each robot will also
reach a consensus value K̄ that belongs to {1, 2, . . . , n}, i.e,
Ki(·) = K̄ for i = 1, 2, . . . , n. The value K̄ will characterize
the number of robots in each row of the final formation.

Once the robots are aligned and Ki(kT ) has reached a consen-
sus value K̄, the leftmost robot initiates a counting sequence
and the robots then count from the leftmost robot to the right-
most robot. By doing so, each robot has a unique number or
ID defined by Ni ∈ {1, 2, . . . , n} that characterizes its location
counted from the leftmost robot. By letting the leftmost robot
be robot γ and the rightmost robot be δ, we have Nγ = 1 and
Nδ = n and the robots between them from left to right have
numbers from 2 to n − 1. So long as the rightmost robot has
Nδ = n (meaning that all the robots have been assigned IDs),
the algorithm moves to the second stage. In other words, before
moving to second stage, there exists a set {z1, z2, . . . , zn}, that
is a permutation of the set {1, 2, . . . , n}, such that robot z1 = γ
is at the leftmost position of the line, robot z2 is at the right hand
side of robot z1. Therefore, the right most position is taken by
robot zn = δ.

During the second stage, the robots that have the ID number
Ni greater than K̄ will move down to form a number of
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lines that are parallel to the first line of robots. The distance
between these lines is s2. At the beginning of second stage,
the position of robot zK̄ is passed to robot zn via robots
zK̄ , zK̄+1, . . . , zn−1. Robot zn uses this information and starts
to move to the position that is below robot zK̄ with distance s2
between them. At the same time, robots zK̄+1, zK̄+2, . . . , zn−1

set their variable ξi(·) to 2, since they start forming a second
layer of robot array.

To drive robot zn below robot zK̄ with distance s2, the robot
uses the following rules:

Qzn(kT ) =
{

(qzn(kT ) + qzn−1
(kT ))/2, if qzn−1

(kT ) > qzK̄(kT ),

(qzn(kT ) + qzK̄ (kT ))/2, otherwise.

Mzn(kT ) = (Fzn(kT ) + czn,K̄(kT )− s2)/2,
(17)

where czn,K̄(·) = lT (φzn(·))pK̄(·). By using (17), the position
of robot zn will satisfy

lim
k→∞

(pzK̄ (kT )− pzn(kT )) = s2l(φ̄). (18)

At the same time, robots zK̄+1, zK̄+2, . . . , zn−1 will follow
robot zn to go below robots z1, z2, . . ., zK̄ since ξzK̄+1

(·),
ξzK̄+2

(·), . . ., ξzn(·) are all set to 2. In addition, there will be
the distance of s2 separating between these two rows of robots.
Using algorithms that are similar to the ones for stage 1, the
robots zK̄+1, zK̄+2, . . . , zn−1 will align themselves forming a
second layer of robots that is parallel to the first one.

If n = 2K̄, the number of robots in the second row will equal to
K̄ and a rectangular formation is achieved. On the other hand, if
n > 2K̄, the number of robots in the second row will excess K̄
and a rectangular pattern cannot be achieved, since there will
be n − 2K̄ excess of robots that will move beyond robot z1.
One way to achieve the configuration as shown in Fig. 1 is that
the n− 2K̄ excess robots move down in the direction of −l(φ̄)
below robot z1, instead of moving beyond robot z1. Once these
robots have moved down, they again can start forming the third
layer of robots in the opposite direction to the second row.

Similarly, if n = 3K̄, three rows of robots will be formed and
each row has K̄ number of robots in it. However, if n > 3K̄, the
n−3K̄ excess robots will move down in the direction of −l(φ̄)
below robot zn. By repeating this process, there will be ⌊n/K̄⌋
number of rows formed with K̄ number of robots in each row.
For the last row, i.e., row ⌈n/K̄⌉, there will be n − ⌊n/K̄⌋K̄
number of robots in it. In order to achieve this, we need to
modify v̄i(·) and v̂i(·) for robots that have ID’s greater than
K̄ (i.e. robots that are not in the first row).

After reaching the second stage, we will define two imaginary
lines W1(kT ) and W2(kT ) that represent the sides of a rect-
angle along the direction l(φ̄). These two parallel lines can be
defined as:

W1(kT ) := {p ∈ R
2|(p− pz1(kT ))

T l(φ̄− π/2) = 0}

W2(kT ) := {p ∈ R
2|(p− pzK̄ (kT ))T l(φ̄− π/2) = 0}.

(19)

The distance between these lines is (K̄ − 1)s1.

Using these lines, we first consider the case when ξi(kT ) is
even (i.e., the even row). If both robots α and β exist as defined
by (11), and pα(kT ) /∈ W1(kT ) or pβ(kT ) /∈ W2(kT ), then
we use (12) for Qi(kT ). If β exists but not α, or if β exists and
α is on W1(kT ), then Qi(kT ) is defined by (14). If α exists but

not β, then Qi(kT ) is defined by (13). If robot i hits W1(kT )
and there are no other robots in Si(kT ) that are on W1(kT ),
robot i is then placed at W1(kT ) and Qi(kT ) = qiη,1(kT ),

where qiη,1(kT ) = lT (φi(kT )−π/2)ηi,1(kT ) and ηi,1(kT ) :=
Li(kT ) ∩ W1. When robot i moves along the line W2(kT )
from row ξi(kT ) − 1 and robots α and β do not exist, then
robot i is placed at W2(kT ) and define Qi(kT ) = qiη,2(kT ),

where qiη,2(kT ) = lT (φi(kT )−π/2)ηi,2(kT ) and ηi,2(kT ) :=
Li(kT ) ∩ W2. For the case with odd ξi(kT ) and ξi(kT ) 6= 1,
we can define Qi(kT ) in a similar manner as for the case with
even ξi(kT ).

If robot i is the robot placed at W1(kT ) and ξi(kT ) is odd, or
at W2(kT ) and ξi(kT ) is even, then we define S̄i(kT ), γi and
M̄i(kT ) such that

S̄i(kT ) := {j ∈ Ni(kT ) | ξj(kT ) = ξi(kT )− 1};

M̄i(kT ) := (ci,γi
(kT ) + ci,i(kT )− s2) /2,

where γi := argminj∈S̄i(kT ) |l
T (φi(kT ))(pj(kT )−pi(kT ))|.

The value M̄i(kT ) is for maintaining the distance between 2
rows of robots at s2. Using Mi(kT ), M̄i(kT ) and Fi(kT ), we
introduce

M̂i(kT ) =















Fi(kT )− s2, if Qi(kT ) < qiη,1(kT )

or Qi(kT ) > qiη,2(kT )

M̄i(kT ), if pi(kT ) ∈ W1 or W2;

Mi(kT ), otherwise,

(20)

and also

Q̂i(kT ) =







qii(kT ), if Qi(kT ) < qiη,1(kT )

or Qi(kT ) > qiη,2(kT )

Qi(kT ), otherwise.

(21)

To update the row number, we have

ξi((k + 1)T ) =
{

ξi(kT ), if qiη,1(kT ) < Qi(kT ) < qiη,2(kT );

ξi(kT ) + 1, otherwise.

(22)

Using M̂i(kT ) and Q̂i(kT ), we modify v̄i(kT ) and v̂i(kT )
in (15) as follows:

v̄i(kT ) = (Q̂i(kT )− qii(kT ))/T

v̂i(kT ) = (M̂i(kT )−Fi(kT ))/T.
(23)

Again the control law is described by (16).

3.3 Main Result

Theorem 3.1. Consider n robots and their dynamics are de-
scribed by the equation (1). Suppose that Assumption 2.1 holds.
Then the decentralized control algorithms (15), (16) and (23)
are a rectangular formation control for the robots.

Proof: The proof of Theorem 3.1 will be given in the full
version of this paper.

4. SIMULATION RESULTS

In this section, we present simulation results to illustrate the
proposed algorithm. In the first simulation, the robots form
into a rectangular formation and move in the direction of ψ̄,
as shown in Fig. 2. It is clear that all the robots got aligned first
in the first stage. As soon as they reached the second stage, the
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Fig. 2. Rectangular formation (n = 14, K̄ = 6): robot positions
(△-initial, •-final).
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Initial deployment, n=15, r=1.7, s=0.5

Fig. 3. Rectangular formation (n = 15, K̄ = 10): robot
positions (△-initial, •-final).

robots formed into a rectangular lattice. Hence, in this case, we
have 14 robots and the consensus value of K̄ was 6, there were
2 robots in the third row. In the second simulation, as shown
in Fig. 3, the robots formed into 2 rows. Again the robots got
aligned in the first stage and then they formed 2 rows of robots
in the second stage. In this cases, 5 robots were in the second
row as there were 15 robots and the consensus value of K̄ was
10.

5. CONCLUSIONS

In this paper, a set of decentralized formation control algo-
rithms was developed to coordinate a group of mobile robots
so that they collectively move into a rectangular lattice pat-
tern from any initial deployment. The algorithm was developed
using the consensus approach and it requires only local infor-
mation. Numerical simulations were performed to illustrate the
proposed algorithms. To address the limitations of the current
results, issues such as, collision avoidance between robots, ob-

stacle avoidance, and physical constraints of the robots, are
currently under investigation.
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