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Abstract: This paper deals with path planning and the associated control for a car-like vehicle in parallel
parking problem. Our path planning method is purely based on a geometric approach such as minimal
turning radii, which can be determined by the geometry of a vehicle and its maximum steering angle. The
main strategy for parallel parking comes from retrieving a vehicle from the parking slot. This procedure
is reversible and applicable for the parallel parking maneuvering. The theoretical minimum length of
parallel parking slot for parking in one trial is given. The proposed planning method is independent of
the initial position of the vehicle if the vehicle position is in parallel to the parking space. For the control
aspect, a model-free approach is proposed to compensate for neglected dynamics at chassis level due for
example to road slopes. Convincing simulation results are presented.
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1. INTRODUCTION

Driving assistance systems such as automatic parallel parking
assist, have been extensively studied in recent years. This kind
of system is designed to improve comfort and security of
driving in constrained environments where a lot of attentions
and experiences are needed to maneuver the vehicle. Since the
task of parallel parking requires many repeated maneuvers in
a very limited space, its nature is different from the normal
driving in a huge environment. Many methods to tackle the
parking problem have been presented, and they can be divided
into two categories : one based on stabilization of the vehicle to
a target point and the other, based on planning a feasible path
that connects initial and goal configurations.

The methods based on stabilization can be divided again into
two groups. The first group is the one based on Lyapunov
function: e.g. in Lee et al. [1999] the authors propose a method
using Lyapunov functions to stabilize the vehicle firstly to a
desired line corresponding to the parking place, and secondly
to a desired point corresponding to the middle of the parking
space. This method is simple and easy to apply but the behavior
of the vehicle depends very strongly on the Lyapunov function
gains. Then, it is necessary to adjust the gains in accordance
with the detected dimension of parking space but this is not an
easy task. The second group is the one based on learning human
skills using Fuzzy logic (e.g. Zhao and Collins Jr [2005])
or neural network (e.g. Jenkins and Yuhas [1993]) in order
to acquire the empirical technique of human experts. These
methods do not need any path planning and their associated
tracking control but they are limited to the experience of human
experts and not easily extended to more general cases.

One of the most conventional methods based on path planning
is the one proposed by Laumond et al. [1994] that carries out
the path planning in two phases:

- Step 1: Plan a geometric collision-free path without taking
non-holonomic constraints of the vehicle into account.

- Step 2: Perform subdivisions on the path until all endpoints
can be linked to their neighbors by an admissible collision-free
path using a local planner.

This method can be applied for parallel parking problem in
general cases by using Reed&Shepp’s shortest path (Reeds and
Shepp [1990]) as a local planner in Step 2.

The interesting work we have considered is the one using
a geometric approach (Lo et al. [2003]) which is based on
retrieving a vehicle from parallel parking bay. In real life, when
the parking bay is large enough, human driver usually steers the
front wheel to maximum angle for retrieving. When the vehicle
is retrieved, the driver steers the front wheel to maximum angle
again but in reverse direction until the car is parallel to the
road. Since this procedure is reversible thus it can be applied in
parallel parking problem. This steering scenario forms a simple
path composed by two identical minimum circles connected by
a tangent point. In order to use this path for parallel parking,
it is necessary to know the correct position where to begin the
parking maneuvers in accordance with the initial position of
the car. For this usage, the authors used a looked-up table pre-
calculated off line and they said that the necessary minimum
length of the parking bay is the radius of the circle forming the
path. The usage of look-up table can not cover all cases and
we need more precise calculation for the minimum length of
the parking bay. Our approach will be based on this geometric
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method but without look-up table and more precise formula for
the minimum length will be given.

Significant and practical key issues in motion planning are
safety and optimality. In this paper, we will focus on the ma-
neuvering path planning which will meet these key issues quite
well. In section 2, we will recall some geometric properties
related on the kinematics of the vehicle and define turning radii
of the vehicle. Then a path planning for the simplest parallel
parking scenario in one trial will be shown in section 3. Section
4 is devoted to the generation of reference time trajectories.
Then we will propose a robust grey-box control strategy in
section 5 to follow the planned path. Finally, our conclusion
will be presented in section 6.

2. GEOMETRIC PROPERTIES

The car-like robot is subject to the limit of steering angle:
−βmax < β < βmax. When the velocity v is constant and the
steering angle β is fixed, the vehicle movement is almost a
circle. The turning radius of that circle depends on the steering
angle β . The steering angle therefore influences the minimum
radius of the circle. This feature of the kinematics of the vehicle
helps to plan a simple path with circular motions.

Consisting in parking the vehicle with a minimum number of
maneuvers, the shortest path can be done with circles of mini-
mum radius (Reeds and Shepp [1990]). In this context, the mo-
tion planning for the automatic parallel parking necessitates the
study on turning radii which can be determined by geometric
parameters of the vehicle and the steering angle β .

First, we define the parameters describing the dimension of
the vehicle (see Fig. 1): front and rear overhang p, wheelbase
e, overall length of vehicle l, overall width of vehicle w and
steering angle β .

The turning radius is the radius of the circle created by a vehicle
when it turns with a fixed steering angle. It is defined by a
virtual wheel located in the middle of the front axle, using the
steering angle β and the wheelbase e. By trigonometry:

R =
e

sinβ
.

Two other turning radii can be defined: the inner radius Ri

which is the smallest radius formed by the inside rear wheel
and the outer radius Re which is the largest radius formed by
the outside front corner of the vehicle.

The inner radius Ri can be calculated from the radius R by
applying the Pythagorean theorem:

Fig. 1. Geometry of the vehicle and turning radii

Fig. 2. Strategy for parallel parking in one trial

Ri =
√

R2 − e2 −
w

2
=

√
e2

sin2β
− e2 −

w

2
=

e

tanβ
−

w

2
.

Similarly, the external radius Re can be calculated from R by
using the Pythagorean theorem:

Re =
√
(Ri +w)2 +(e+ p)2 =

√
(
√

R2 − e2 +
w

2
)2 +(e+ p)2

The more we increase the steering angle β , the more turning
radii become obviously small. In the following sections, when
the steering angle β is maximal, the minimum radii will be
denoted by (Rmin,Rimin

,Remin
).

3. PATH PLANNING IN ONE TRIAL

For the automatic parallel parking system, normally ultra-sonic
sensors or infra-red sensors are used to measure the parking
space. These sensors can not measure the exact depth of the
space if there is no wall and generally we park the vehicle in
a line with neighboring vehicles. Therefore we assume in the
following sections that the depth of the space is equal to the
width of the vehicle.

3.1 Main strategy

We will tackle the problem of parallel parking by retrieving
vehicle from the parking space as proposed in Lo et al. [2003].
That is, we can reason in the opposite way: if we are able to
retrieve the car without reversing of the longitudinal velocity,
we can park the car without velocity sign change too. This
is what we call in the sequel a maneuver “in one trial”. We
assume that the parking space is large enough. To exit from
the parking slot, one first reverses the car to the end before
touching the vehicle behind. Then one steers to the left at
maximum to make an appropriate orientation to go out and
counter-steers at maximum until the vehicle is parallel to the
road. This procedure is reversible and therefore applicable
to the problem of parallel parking. With this maneuver, the
corresponding path followed by the midpoint of the rear axle
is the one composed by two circular arcs of minimum radius
connected by a tangential point as shown in Fig. 2.
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We note that the lengths of these two arcs are identical when
the vehicle is positioned in parallel after the exit. That is,
the central angles of these arcs are identical. The more the
central angle increases, the more the lateral displacement △y
and longitudinal displacement △x at the end of maneuver will
increase (see Fig. 3). In other words, for different angles, the
final positions will be different and this position can cover a
large set of lateral displacement △y from its minimum value.
To perform the automatic parallel parking, the exit procedure
will be reversed. In this case, the final position of the exit
will be the starting position of the parking maneuver and it
is necessary to know the longitudinal displacement △x and
the associated counter-steering position in accordance with the
lateral displacement △y. If the vehicle’s lateral displacement
and the length of the parking slot are bigger than their minimum
value, the vehicle can reverse the exit procedure to be parked
correctly.

3.2 Minimum length of the parking space

In this section, the minimum length of the parking space to park
a car in one trial will be precisely calculated. At the exit, the
outer front corner will determine if the vehicle collides (see
Fig. 4). The outer radius Remin

should be therefore taken into
account. The minimum length Lmin of the parking space can
be calculated by using the Pythagorean theorem applied to the
triangle C1BA:

Lmin = p+
√

R2
emin

−R2
imin

.

Therefore if the length of the space is theoretically longer than
Lmin, we can succeed parallel parking without collision. The
minimum lengths calculated for several commercial models are
summarized in Table 1.

3.3 Minimum lateral displacement

Now, we need to calculate the minimum lateral displacement
△ymin, dead zone in other words where the vehicle can not be
found after the exit. This dead zone is related to the minimum
central angle θmin of the arc. When the vehicle leaves the
parking space if the two arcs to be followed are too short, the
vehicle collides with the vehicle ahead. It is therefore necessary
to calculate the minimum angle θmin to avoid the collision and
to check out for a dead zone on the lateral displacement △y.

Fig. 3. Exit trajectories with several different turning positions

Fig. 4. Calculation of minimum length of the parking space

Fig. 5. Calculation of △ymin and θmin

Here we suppose that the length of the parking space is equal to
Lmin. In this case, the right rear wheel has a high probability of
collision, and therefore the radius Rimin

associated with the right
rear wheel should be taken into account. The minimum angle is
reached when the right rear wheel passes through the point A
(the left rear corner of the front vehicle, see Fig. 5). That is,
the minimum angle is the angle that allows the minimum inner
radius Rimin

to pass through A without collision. This angle can
be calculated geometrically.

At the exit, the right rear wheel creates a circle of radius Rimin
+

w with center C1 then a circle of radius Rimin
with center C2 (see

Fig. 5). If we imagine another circle of radius Rimin
with center

A, C2 is the intersection between the circle of radius 2Rimin
+w

with center C1 and the circle of radius Rimin
with center A. In

this case, we can calculate the intersection points of these two
circles and we take the point C2 (see Bourke [1997] for details).
Then we can easily compute θmin and △ymin.

According to calculation, the minimum central angle θmin can
put the vehicle in parallel to the parking slot with an almost zero
lateral shift △y ≈ 0 (as we can see in Fig. 5). △ymin calculated
for several commercial models are almost zero (see Table 1). 1

This means that most of commercial cars have no constraint on
their initial lateral displacement when they park.

1 These computations have been done by using geometry of commercial

vehicles found in e.g. Etai [1997].

Table 1. Summary of geometric calculations for
several commercial vehicles

Model MINI AUDI A6 MEGANE PICASSO BOXER

△ymin (m) 0.021 0.0034 0.0035 0.0052 0.0034

Lmin (m) 5.60 7.07 6.52 6.23 6.92
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3.4 Calculation of the longitudinal starting position and the
turning position in accordance with the initial lateral position

In order to execute the parallel parking in one trial, it was
necessary to know the longitudinal displacement △x and the
associated turning position according to the initial lateral dis-
placement △y. In other words, when the vehicle arrives and is
positioned in parallel in the vicinity of the parking space, the
vehicle will measure the size of the space and its initial lateral
position yi. Then, if we can directly compute the longitudinal
starting position xs where the vehicle starts to turn into and
the turning position Pt in accordance with yi, the vehicle can
first move longitudinally up to xs and start steering to the right,
while moving back up to Pt . Then it can counter-steer to the
left to enter into the parking slot. In this section we develop
analytical calculations for these relationships.

Once the vehicle size and the maximum steering angle βmax

are known, the minimum radius (Rmin,Rimin
,Remin

) can be cal-
culated. Since in our methodology, the vehicle is supposed
to follow two arcs tangentially connected, the rotation center
C1(xc1

,yc1
) is always perpendicular to the final position of the

parking maneuver with a distance of Rimin
+w/2 and we define

this distance by radius R̃min (see Fig. 6). Once the geometry of
the parking space is available, the center C1 can then be easily
determined. Similarly the center C2 is always perpendicular to
the start position of parking maneuver (xs,ys) with a distance of

R̃min. Since the vehicle is supposed to move longitudinally from
(xi,yi) to (xs,ys), yc2

of the center C2 is still far from yi with the

same distance R̃min whatever the initial longitudinal position xi

is. Therefore:

yc2
= yi − R̃min.

Now we can calculate the point Pt(xt ,yt) where the vehicle
counter-steers. First yt can be calculated by the symmetry
between the two centers C1 and C2:

yt = (yc1
+ yc2

)/2.

Then xt can be calculated by applying the Pythagorean theorem:

xt = xc1
+

√
R̃2

min − (yt − yc1
)2.

Finally, we can calculate the longitudinal displacement xs by
the symmetry:

Fig. 6. Calculation of xs and Pt

Fig. 7. Simulations on Matlab, vehicle length = 3.62 m, space
length = 5.44 m

xs = xc2
= 2xt − xc1

.

Thus, we have shown how to calculate the longitudinal starting
position xs and the turning position Pt in accordance with the
initial lateral position yi. Now, we have all information needed
to plan a path. Since we know the two rotation centers (C1 and

C2) and the radius R̃, we can connect (xs,ys), Pt(xt ,yt) and the
final position by the associated arcs of circle. By connecting
(xs,ys) with the initial position (xi,yi), a path from the initial
position to the final position can be finally planned.

The complete strategy for path planning was simulated on our
simulation environment using Matlab. As we can see in Fig. 7,
the planned paths are composed of 2 identical circular arcs of
minimal radius and a straight line segment. It shows also that
our method is completely independent of the initial position of
the vehicle. The only constraint is that the vehicle should be
in parallel to the parking space whatever its initial position is.
But this is what we usually do to perform parallel parking. As
a consequence, we can obtain the second one of Fig. 7 that a
human driver will never realize.

Remark 1. Our algorithm can be extended to a maneuver “in
n trials” if the free space is too small to park the car in one
trial (Choi [2010]). These results cannot be published for the
moment, due to a confidentiality clause.

4. GENERATION OF REFERENCE TRAJECTORIES

Now we can plan a geometrical path which consists of 4 seg-
ments: 2 straight segments and 2 circular arcs of minimal ra-
dius, and this can be expressed in cartesian coordinates (x,y(x))
(see for example Fig. 8). The last straight segment is added
to position the vehicle in the middle of the parking slot at the
end of the parking maneuver. Our goal is to make the vehicle
well follow the generated path. In order to do this, we need to
build reference time trajectories xre f (t), yre f (t), functions of the
longitudinal velocity vre f (t) and the steering angle βre f (t). This
can be done through for example a kinematic model of the car
(see Choi [2010] and Lo et al. [2003]).
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In our parking process, the reference velocity will have a trape-
zoidal shape at each maneuver. The length of each segments of
the geometric path can be easily calculated, then if we know
the desired constant acceleration ades to attain the maximal
constant velocity vmax, the reference velocity trajectory can be
easily generated.

First, the time needed to reach vmax is given by t1 = vmax
ades

.

Then the distance over t1 is d1 =
adest

2
1

2
. The time during which

the vehicle stays at a constant speed vmax can be calculated

by t2 = d−2d1
vmax

, where d is the distance of a segment of the

geometric path.

At each transition between maneuvers, we increase the steering
angle linearly to its maximum value, with a time t3 needed to
rotate wheels from −βmax to βmax during which the vehicle re-
mains stationary. During 2t1+ t2, it keeps its maximum steering
angle ±βmax.

Thus, with the same calculations for each segment and the same
value t3, we can obtain a reference trajectory of the velocity of
a trapezoidal shape. For example, when ades = 1m/s2, vmax =
1m/s and t3 = 2s, the generated reference velocity trajectory for
the geometric path of Fig. 8 is illustrated in Fig. 10. As we can
see in the last part of this figure, if the segment length is too
short, the shape of the velocity becomes an isosceles triangle.
The generated reference trajectory steering angle βre f (t) is
shown in Fig. 9.

With times t1, t2 and t3, the reference acceleration are f (t) is also
obtained as in Fig. 9, which can be viewed as a ‘feedforward’
term.

Once the reference trajectories of velocity and steering angle
are generated, the time functions of xre f (t) and yre f (t) can be
calculated numerically, for example by integrating the kine-
matic model of the vehicle (Lo et al. [2003]) (see Fig. 10).

5. ROBUST GREY-BOX CONTROL

5.1 Engine/Brake torque generation

In order to make the vehicle follow the reference trajectories,
we can elaborate a desired acceleration with feedback terms as
follows:

u = are f −KD(v− vre f )−KP(s− sre f ), (1)

where KD and KP are derivative and proportional gains, sre f is
the reference traveled distance which is equal to the total area
of the reference velocity profile.
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Fig. 8. Geometric path for parallel parking
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Fig. 9. Reference trajectories of steering angle βre f (t) and
acceleration are f (t).

Now it is necessary to compute desired torque τd corresponding
to the desired acceleration u. Using the formula we already
developed in Villagra et al. [2009], we obtain :

τd = I
4

∑
i=1

ω̇i + rMu. (2)

where I is the wheel rotation inertia moment, ωi is the wheel
angular velocity, r is the tire radius, and M is the total weight of
vehicle.

Let us point out that the steering control is applied indepen-
dently of the engine/brake torque when the vehicle is at rest as
already mentioned in section 4.

5.2 Grey-box feedback control

In fact, external forces like road slop, rolling resistance and
aerodynamic forces are neglected when elaborating the desired
torque τd of (2), but the feedback terms in u of (1) are not
robust enough to tackle them. Therefore the model-free control
technique (Fliess and Join [2008]) will be applied in this section
in order to guarantee robustness of the system against neglected
external dynamics. The procedure described in Choi et al.
[2009] and Villagra et al. [2009] can here be applied in a similar
way. Since some specific dynamics are very well known, it is
worth to integrate them in our predictive scheme, this is the
reason why we call this method “grey-box control”.

The expression between the desired torque and the measured
acceleration γx can then be written as follows:

γx =
1

rM
(τd − I

4

∑
i=1

ω̇i)+F, (3)

where F represents all the neglected external dynamics. Now
since from (2),
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Fig. 10. Result with the model-free strategy

u =
1

rM
(τd − I

4

∑
i=1

ω̇i),

(3) can be rewritten by γx = u+F . Therefore F can be estimated
by F̂k = γxk

− uFk−1
. Then we can correct immediately the

desired acceleration u by uFk
= uk− F̂k. Our final desired torque

can then be obtained by

τdk
= I

4

∑
i=1

ω̇i + rMuFk
.

SiVIC (realistic simulation environment dedicated to prototyp-
ing and evaluating ADAS, Gruyer et al. [2006]) was used to test
our model-free control strategy. Road slope of 5◦ was added in
the parking environment. Some interesting results are shown in
Fig. 10, where the effect of the slope of the parking slot is well
compensated by our grey-box control strategy and the reference
positions x and y are well tracked.

6. CONCLUSION

We have proposed an easy path planning method based on a
geometric approach for the parallel parking problem in a known
environment. Once the vehicle is parallel to the parking place
whose length is superior to its minimum Lmin, our method
is independent of the initial position of the vehicle and can
plan a simple path composed of 2 identical circular arcs of
minimum radius and a straight line segment. A robust control

strategy for parking using model-free approach to compensate
all the unmodeled external dynamics such as road slop was also
studied.

We will communicate in our next publication the extension
of our algorithm for a parking “in n trials” according to the
available length of the parking slot. A theoretical justification
on its complexity is given and compared with other planners
(e. g. Laumond et al. [1994]) and existing commercial products
(such as the Park4u developed by Valeo). Experimental results
have also been developed but they cannot be detailed here due
to a confidentiality clause. 2
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