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Abstract: This communication is devoted to a “practical” comparison between high-order
sliding modes and the recently introduced model-free control. The perfect knowledge of the
relative degree of the output variable, which is a standard assumption for sliding modes,
is assumed here. Our comparisons are based on two concrete case-studies and on numerous
computer simulations. The smoothness of the input variables, the robustness with respect to
noises and the straightforward extendibility of the model-free controllers to MIMO systems are
highlighted.
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1. INTRODUCTION

The excellent robustness properties of sliding mode control
with respect to perturbations and uncertainties explains
its great popularity (see, e.g., Edwards & Spurgeon [1998],
Perruquetti & Barbot [2002], Utkin [1992], Utkin et al.
[1999]). Chattering, i.e., the high frequency commutations
of the control variables, is however, as we know, a major
drawback of this setting. Among the many works aimed
at the attenuation of this most annoying shortcoming,
let us mention High-Order Sliding Modes (see Levant &
Alelishvili [2008]), or HOSM, the boundary layer approach
(Slotine [1991]) and the sliding sector method (Furuta
et al. [2000]).

There exist several classes of HOSM algorithms (see,
e.g., Levant [2005], Levant & Alelishvili [2007, 2008] and
the references therein) especially nested sliding modes,
quasi-continuous controllers and high order integral sliding
mode. The last category is particularly interesting to over-
come the chattering effect by (artificially) raising the rel-
ative degree. An output feedback sliding mode controller
can be realized by combining a sliding mode controller
with a sliding mode differentiator. An interesting sliding
mode controller for MIMO systems in Defoort et al. [2009]
is based on the finite time stability of a chain of integrators
from Bhat & Bernstein [2005]. We mention that sliding
mode controllers had led to a huge number of exciting ap-
plications involving real systems as in Bartolini et al. [2000,
2003], Ghanes et al. [2010], Khan et al. [2003], Levant
et al. [2000], Defoort et al. [2009], Orlov et al. [2003], Sira-
Ramı́rez [2002], Spurgeon et al. [2003], Shkolnikov et al.

[2000], Shkolnikov & Shtessel [2002], Shtessel & Shkolnikov
[2003].

Model-free control (Fliess & Join [2008, 2009], Fliess et al.
[2011a]) is a recently introduced approach, which does
not necessitate any mathematical modeling. The unknown
dynamics is approximated on a very small time interval
by a very simple model which is continuously updated
with the aid of online estimation techniques (Fliess &
Sira-Ramı́rez [2003, 2008]). The loop is closed thanks
to an intelligent PID, which provides the feedforward
compensation and is easily tuned. Model-free control has
already led to a number of exciting applications. 1

Since the knowledge of the relative degree is a standard
assumption in sliding mode control, 2 we deal in this article
with SISO minimum phase systems of the form

ẋ= a(x) + b(x)u, x ∈ D ⊂ Rn, u ∈ R (1)

y = s(x)

where n and the smooth functions a, b and s are unknown
while the relative degree r of y is constant and known:

y(r) = f(x) + g(x)u. (2)

With the classical assumption g(x) 6= 0 and the knowledge
of bounds on f and g, all HOSM controllers listed above
solves the problem of zeroing the output y in finite time.
If the relative degree is not artificially raised, chattering
appears when the output and its derivatives up to order
r − 1 are close to 0. The output y can be chosen to solve
1 See the references in Fliess et al. [2011a,b].
2 With the exception of some recent works (see, e.g., Levant [2010]
and the references therein).
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a stabilization or a trajectory tracking problem. We show
how model-free control can be adapted to the particular
situation of (1)-(2).

The knowledge of r is not a restrictive assumption for
a large number of finite-dimensional systems encountered
in practice: robotic manipulators, mobile robots, electric
drives, for example, are modeled by a collection of non-
linear integrators, which may be simple or double. More-
over, dynamic models may be automatically generated by
symbolic softwares (see, e.g., Khalil & Creusot [1997] for
robotic manipulators). The identification of physical pa-
rameters involved in such models is nevertheless a difficult
task. Both sliding modes as well as model-free controllers
aim to bypass this last step.

The comparison between sliding modes and model-free
control is kept here at a practical level for the following
two reasons:

• The mathematical backgrounds are different:
· differential inclusions for sliding modes,
· various algebraic tools for model-free control.

• In the presence of unavoidable noise corruptions the
concepts of finite-time and asymptotic stabilities boil
both down to “practical” stability.

Our paper is organized as follows. After a short review
of model-free control in Section 2, Section 3 defines, via
online algebraic estimation techniques, a new controller
which takes into account the knowledge of the relative
degree. Two nonlinear case-studies are analyzed in Section
4, where numerous computer simulations are displayed.
Some concluding remarks are provided in Section 5.

2. A SHORT REVIEW OF MODEL-FREE CONTROL

2.1 Generalities

Replace the unknown, or at least poorly known, system
equation by the “ultra-local” model 3

y(ν)(t) = F (t) + αu(t) (3)

which is continuously updated, where

• the constant coefficient α is chosen by the practi-
tioner, such that αu and y(ν) are of the same order of
magnitude;
• the time-varying function F (t), which is estimated

thanks to the knowledge of u and y, subsumes the
structural properties;
• the order ν of derivation is always ≤ 2.

The loop may be closed, if ν = 1 for example, via an
intelligent PI controller, or i-PI,

u = −F
α

+
ẏ?

α
+KP e+KI

∫
e (4)

where y? is the output reference trajectory, e = y − y? is
the tracking error, KP , KI are the usual PI gains.

2.2 Identification and estimation issues

Consider

L

(
d

dt

)
z = φ+ αu

3 See in the same proceedings Fliess et al. [2011b] and the references
therein for more details.

where

• φ and α are unknown constants,
• L( ddt ) ∈ R[ ddt ] is a linear differential operator with

constant coefficients,
• dνz

dtν = y for some ν ≥ 0.

We thus approximate an unknown function like F in
Equation (3) by a piecewise constant one. The above
equation reads in the operational domain:

L(s)Z =
φ

s
+ αU + I(s) (5)

where I ∈ R[s] is a polynomial associated to the initial

conditions. For N ≥ 1 sufficiently large, dNI
dsN

≡ 0.

Multiplying both sides of equation (5) by dN

dsN
permits to

get rid of the initial conditions.

dN

dsN
L(s)Z =

(−1)NN !

sN+1
φ+ α

dNU

dsN
(6)

Rewriting Equation (6) with N1 6= N yields the linear
identifiability (Fliess & Sira-Ramı́rez [2003, 2008]) of φ
and α. Multiplying both sides of Equations (6) by s−M ,
where M ≥ 0 is sufficiently large, permits to get rid of
positive powers of s, i.e., of derivatives with respect to
time. The corresponding formulae in the time domain are
easily deduced thanks to the correspondence between d

ds
and the multiplication by −t in the time domain. Note
that the above computations together with the sampling
provides a linear discrete filter which is easily implemented
for real time applications.

Remark 1. See also Michel [2010] for another approach of
the estimation of α.

3. SYNTHESIZING THE CONTROLLER WITH THE
KNOWLEDGE OF THE RELATIVE DEGREE

Rewrite Equation (2) as follows:

y(r)(t) +

r−1∑
i=−m

aiy
(i)(t) = h(x, t) + g(x)u(t) (7)

where h(x, t) = f(x) +
∑r−1
i=−m aiy

(i), m ∈ N, y(−m) =∫
· · ·
∫

︸ ︷︷ ︸
m

y. The left hand side of Equation (7) is a Hurwitz

polynomial, which is related to an obvious stabilization
procedure.

Apply the techniques sketched in Section 2.2 in order to
obtain estimates of piecewise constant approximations F
and α of h and g in Equation (7). 4 Then

u = −F
α

defines a stabilizing controller.

4. NUMERICAL SIMULATIONS

The two systems below are flat (Fliess et al. [1995], Lévine
[2009], Sira-Ramı́rez et al. [2004]). We know moreover

4 A lack of space prevents us from reproducing detailed calculations,
which show that a rough estimate of g is sufficient.
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that flatness-based control provides a most efficient control
strategy. Let us therefore emphasize again that our only
aim here is a comparison between sliding modes and
model-free control.

4.1 A kinematic car model

Fig. 1. A car in Cartesian coordinates

The kinematic car model, which is borrowed from Levant
& Alelishvili [2008], is depicted in Figure 1. It satisfies the
following equations:

ẋ1 = v cosϕ ẋ2 = v sinϕ,

ϕ̇ =
v

l
tan θ θ̇ = u

The variables x1 and x2 represent the Cartesian coordi-
nates of the rear-axle middle point, 5 ϕ is the orientation
angle, while v is the longitudinal velocity. The parameter
l measures the distance between the two axles and θ is the
steering angle. The control task is to drive the car toward
a reference trajectory of the form x2 = ḡ(x1) where x1 and
x2, i.e. ḡ(x1), are measured. Let y = s(x1, x2) = x2−ḡ(x1),
v = 10m/s, l = 5m, ḡ(x1) = 10 sin(0.05x1) + 5. Initial
conditions are set to 0. Levant & Alelishvili [2008] utilizes
the following controller:

u = −z2 + 2(|z1|+ |z0|2/3)−1/2(z1 + |z0|2/3sign(z0))

|z2|+ 2(|z1|+ |z0|2/3)1/2
.

The variables z0, z1 and z2 are respectively the filtered
values of the noisy output y and of its derivatives of first
and second orders. They are the outputs of the following
second order differentiator:

ż0 = ν0, ν0 = −14.7361|z0 − σ|2/3sign(z0 − σ) + z1,

ż1 = ν1, ν1 = −30|z1 − ν0|1/2sign(z1 − ν0) + z2

ż2 =−440 sign(z2 − ν1).

As indicated in Levant & Alelishvili [2008], a step sampling
of 0.0001 second is used to simulate the sliding mode
control using the Euler method.

Set, for implementing our model-free control, m = 0 and
r = 3 in Equation (7). The parameters a0, a1 and a2 of

5 Remember that this middle point is a flat output (Fliess et al.
[1995], Lévine [2009], Sira-Ramı́rez et al. [2004]).

Equation (7) are chosen according to a classical third order
dynamics (s− a)(s2 + 2ξωns+ ω2

n) = 0.

Simulation with a Brownian noise. Consider first that
the measurements of x1 and x2 are altered by an additive
Brownian noise 6 a realization of which is shown in the Fig-
ure 2. According to Figure 3 model-free control provides
better tracking performances. Moreover, the control inputs
depicted in the Figures 4 and 5 show that the model-
free control input is smoother. Softer steering angle is also
provided by the model-free controller (see Figures 6 and
7).
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Fig. 2. Brownian noise realization used in the simulations
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Fig. 3. Output tracking for both sliding mode and i-PID
controllers
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Fig. 4. Sliding mode control input

6 A Brownian noise is the integral of a Gaussian white noise. In the
simulation, we used a low-pass filtered band-limited Gaussian white
noise.
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Fig. 5. Model-free control input

0 2 4 6 8 10 12 14 16 18 20
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

Steering angle; Sliding mode

Fig. 6. Steering angle θ corresponding to the sliding mode
controller
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Fig. 7. Steering angle θ corresponding to the model-free
controller

Simulation with a Gaussian white noise. Simulations
with a zero-mean additive (band-limited) white noise of
variance of 0.2, are depicted in the Figures 8, 9 and
10. They also show that the model-free controller perfor-
mances are better: we achieve a better tracking without
any chattering.

Remark 2. The chattering in Figure (4) can be eliminated
by raising the relative degree. It would have complicated
both the controller as well as the differentiator design. A
well known solution is to consider u̇ as a virtual input.

Remark 3. We took care to tune the parameters such that
the control magnitudes of Figures 9 and 10 are similar.
Compare also Figures 4 and 5.
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Fig. 8. Output tracking for both sliding mode and i-PID
controllers
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Fig. 9. Sliding mode control input
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Fig. 10. Model-free control

4.2 A three axis robot

Figure (11) depicts a robotic manipulator with 3 arms and
3 input torques. It satisfies the equation

q̈ = M(q)−1 (G(q) +H(q̇, q) + u)

where q = [q1, q2, q3]T , M(q) is the symmetric inertia
matrix, u = [u1, u2, u3]T are the control torques. We force
the robot’s end effector to draw a circle in a horizontal
plane with constant angular velocity. It yields the reference
trajectories q?1 = 2πt while q?2 and q?3 are constant. Take
for this purpose the model-free controller ë+Kdė+KP e =
F (t) + αu, where m = 0 and r = 2, α is a 3 × 3 matrix,
and e = q−q?. Figures 12, 13, 14, 15 and 16 illustrates the
effectiveness of the straightforward controller u = α−1F .

Remark 4. Extending model-free control to some MIMO
systems is straightforward. It does not seem to be the case
for sliding modes.
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Fig. 11. Manutec R3 robot
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Fig. 12. Real and measured variable q2.
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Fig. 13. Real and measured variable q3.

5. CONCLUSION

Our two case-studies lead to the following observations,
which need further theoretical and practical investigations
in order to be fully confirmed:

• The model-free controllers yield smooth control vari-
able, without any chattering.
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Fig. 14. Control inputs.
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Fig. 15. Measured robot’s end effector position (circular
trajectory).
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Fig. 16. Real (noise-free) robot’s end effector position
(circular trajectory).

• The implementation of model-free control only ne-
cessitates a standard discrete linear filter, whereas
a rather complex derivation of noisy signals is used
for sliding modes, where, moreover, the calculation of
fractional powers is quite demanding.

• The choice of the model-free controller parameters is
obvious.

• The model-free controller seem to be more robust
with respect to corrupting noises.

• It is straightforward to extend model-free control to
some MIMO systems.
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