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Abstract: A linear time-invariant system is defined as unitary if all singular values of its transfer matrix are 
equal. A method of constructing a unitary system in a fault detection observer form is developed in this 
paper. The singular values of the constructed system can be assigned as an analytical function of frequency 
with a selectable parameter. As the optimization of singular values related properties is important in 
balancing the sensitivity and robustness of fault detection observers, the study of unitary system has both 
theoretical importance and potential applications in model-based fault detection such as the H∞/H_ 
optimization to be discussed in Part II of the paper.  
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1. INTRODUCTION 

The singular values of a transfer matrix (Gasparyan, 2008) are 
non-negative functions of frequency that determine the gains 
of a multi-input multi-output (MIMO) linear time-invariant 
(LTI) system for which the matrix represents. Important 
properties such as H2 norm, H∞ norm, and H_ index are 
defined based on the singular values: over a given frequency 
range, H2 norm is the integral of the 2-norm of the singular 
values vector (Bernstein, 2009); H∞ is the supreme of the 
largest singular value (Zhou et al., 1996); H_ is the infimum of 
the smallest singular value (Wang et al., 2007). In the theories 
of robust control (Sinha, 2007; Zhou et al., 1996), robust 
estimation (Simon, 2006), and model-based fault detection 
(Chen and Patton, 1999), one of the most active research 
topics is about how to construct a system with those properties 
being optimized.  

As those properties present the features of a system from 
different aspects, the singular values give a more detailed and 
accurate description of the system. However, the studies on the 
singular values of a system and specifically the studies on how 
to construct a system with pre-defined singular values are still 
rare. The reason partially lies in the complexity of the singular 
values of a transfer matrix.  

In MacFarlane and Hung (1983), it is shown that the singular 
values of a transfer matrix – more accurately, the square of the 
singular values – are roots of a polynomial, whose coefficients 
are polynomials of complex variable s (usually taken as 
s jω=  with ω  as frequency) and its conjugate s . It is thus 
concluded that these singular values are locally analytical as 
functions of s. Boyd and Balakrishnan (1990) further proved 
that the “unordered unsigned” singular values, which belong 
to a set of real functions, are globally analytical. The analytical 
forms of these singular values (as functions of s), however, are 
not available for a generic transfer matrix.  Even though, the 

analytical forms of singular values are available for some 
specific systems such as the unitary system discussed in this 
paper.  

A unitary system is defined in this paper as an MIMO LTI 
system with a special property that all singular values of its 
transfer matrix are equal to each other. We will show that, for a 
system satisfying certain requirements, a unitary system in a 
weighted observer form, which is commonly used for the 
purpose of fault detection, can be constructed with a properly 
selected gain and weight matrix. Its singular values have the 
form of 1| 1 |s k −+ +  with the freedom of selecting k, which is 
the magnitude of frequency response of a first-order transfer 
function 1/( 1).s k+ +  The singular values of the constructed 
unitary system and hence all singular values related properties 
thus can be assigned. This significant characteristic can be 
applied to solve the problems related to the optimization of H2, 
H∞, and H_ of a system such as the combined H∞/H_ 
optimization shown in Part II of the paper.  

The Part I of the paper is organized as follows. Section 2 
contains some preliminary information such as the definition 
of a unitary system. Section 3 presents the method of 
constructing a unitary system in the fault detection observer 
form. An example is given in Section 4. The paper ends in 
Section 5 with conclusions. 

2. PRELIMINARY OF UNITARY SYSTEM 

In this section, the definition of a unitary system and the 
problem of constructing a unitary system will be presented. 
For the simplicity, we will only discuss a square system whose 
number of inputs and outputs are equal.  

2.1 Definition of unitary system 

A multi-input multi-output (MIMO) linear time-invariant 
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(LTI) system can be described by a transfer matrix. The 
singular values of a transfer matrix are non-negative real 
functions of frequency. In this paper, a system is defined as 
unitary if all of its singular values are equal. 

Definition: A stable linear time-invariant system of m-inputs 
and m-outputs is defined as a unitary system if its transfer 
matrix ( )G s satisfies 

1 2( ) ( ) ( )ms s sσ σ σ= = =… ,                              (1) 
where ( )i sσ  is the ith singular value of ( )G s , whose singular 
value decomposition (SVD) has the form of 

~( ) ( ) ( ) ( )G s U s s V s= Σ ,                 (2) 
where ( )1( ) , , ms diag σ σΣ = … is a diagonal matrix of 
singular values; ( )U s  and ( )V s  are unitary complex matrices 
such that  ~ ~( ) ( ) ( ) ( ) mU s U s V s V s I= =  (“~” denotes the 
transpose of the conjugate such that ~ ( ) ( )TU s U s= ).       
 
2.2 A unitary system in the fault detection observer form 
 
For a transfer matrix ( )G s  with a minimal realization as 

( ) 1( )G s C sI A F−= −                  (3) 

where ,n nA R ×∈ n mF R ×∈ and ,m nC R ×∈  the problem 
addressed in the rest of this paper is to construct a unitary 
system in the form of 

1( ) ( )UG s WC sI A LC F−= − −             (4) 
with constant matrices L and W. System (4) is a transfer matrix 
that represents a weighted observer of ( )G s , which is used for 
the purpose of fault detection. Consider a system: 

x Ax Bu Ff
y Cx

= + +
=

,                  (5) 

where x is the state vector; y is the output vector; u are known 
inputs; and f are unknown faults to be detected. ( )G s is the 
transfer matrix  from f  to y. An observer for the purpose of 
fault detection can be built as 

( )x Ax Bu L y y
y Cx

= + − −
=

.              (6) 

The estimation errors x x x= −  and y y y= − then satisfy 

( )x A LC x Ff
y Cx

= + +
=

.               (7) 

The weighted estimation errors of outputs are  
r Wy= ,                    (8) 

or equivalently in another form 
( ) ( ) ( )Ur s G s f s= ,                (9) 

where 
1( ) ( )UG s WC sI A LC F−= − − .          (10) 

The problem is thus to select the (observer) gain L and the 
weight matrix W so that ( )UG s  is unitary.  

3. CONSTRUCTING A UNITARY SYSTEM 

This section presents the method of constructing a unitary 
system in the form of ( ).UG s  Section 3.1 will show that ( )G s  
can be transformed to a unitary ( )UG s  if the following 

conditions are satisfied:  
1. ( )rank CF m=  or equivalently CF is non-singular. This is a 
measurement requirement so that, if satisfied, the states in (5) 
can be classified into two groups through linear transformation: 
one group of measured states whose dynamics contains f 
explicitly and one group of unmeasured states whose 
dynamics does not contain f; 
2. ( )G s does not have finite zeros on the imaginary axis. This 
is required for the purpose of fault detection. If ( )G s  contains 
zeros on the imaginary axis, for example ojω± , then the faults 
of the frequency oω  might not be detectable.  
If the above conditions cannot be satisfied, then an 
approximate unitary system can be constructed with the 
method shown in Section 3.2. In the case of non-square 

( ),G s a solution is given in Section 3.3 so that the resulted 
( )UG s  has equal singular values. 

 
3.1 Constructing a unitary system  
 
In this section, we will show first that the system in (3) can be 
transformed to a special form ( )rG s  through a first gain L1 
(Lemma 1) and all possible systems in form of (4) can be built 
from ( )rG s  with a second gain L2 (Lemma 2). In Lemma 3, 
we show that there exists a companion system 

2 ( ) ( )rG s G s CF= +   for ( )rG s  such that if 2 ( )cG s  is unitary, 
( )rcG s  is also unitary, where 2 ( )cG s  is an observer-form 

transfer matrix of 2 ( )G s  and ( )rcG s  is the observer of 

2 ( )G s with the same observer gain. Lemma 4 demonstrates 
that there exists a gain such that the singular values of 2 ( )cG s  
are equal to those of CF. Thus if the singular values of WCF 
are equal to each other, which can always be satisfied for the 
non-singular CF through a weight matrix W, then 2 ( )cWG s  is 
unitary. The method of constructing a unitary system is then 
summarized in Theorem 1 which follows the route of ( )G s  

( )rG s→  2 ( )G s→ 2 ( )cG s→ ( ) ( )rc UG s G s→ → with ( )UG s  
as a unitary system. 
Lemma 1: A transfer matrix 1( ) ( )G s C sI A F−= −  with CF 
non-singular can be transformed to 

( ) 11
1( ) ( )rG s C sI A L C F CF s k −−= − − = +       (11) 

with a gain L1, where k is a selectable parameter. 

Proof: 
Since CF is non-singular, there always exists an invertible 
matrix  

1( )CF C
T

F

−

⊥

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

                (12) 

such that 

[ ]0C CF T= , 
0
I

TF ⎡ ⎤= ⎢ ⎥
⎣ ⎦

            (13) 

where F ⊥  is the transform of the basis of the null space of 
TF  so that ( )0 .n m mF F⊥

− ×= With T, the original 
1( ) ( )G s C sI A F−= −  can be transformed to 
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[ ]1 1 1( ) ( ) 0 ( )
0
I

G s CT sI A TF CF sI A− − − ⎡ ⎤= − = − ⎢ ⎥
⎣ ⎦

,  (14) 

where  

1 11 12

21 22

A A
A TAT

A A
− ⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

.            (15) 

With a selectable k and 

( ) 1
11

1 1
21

( )

( )
mkI A CF

L
A CF

−

−

⎡ ⎤− +
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
,           (16) 

one has 

[ ]
( )

( )

1 1 1
1

1

1 12

22

1

1

22

1 1

( ) ( )

        
0

        0
00

        ( ) ( )

r

m

m

m

G s CT sI A L CT TF

sI kI A
CT TF

sI A

sI kI I
CF

sI A

CF s k I CF s k

− − −

−

−

−

−

− −

= − −

⎡ ⎤+ −
= ⎢ ⎥−⎣ ⎦

⎡ ⎤+ Δ ⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥− ⎣ ⎦⎣ ⎦
= + = +

,   (17) 

where Δ  is a matrix calculated from the inverse of the upper 
triangle block matrix in (17). Therefore,  

1 1 1
1

1 1 1
1

( ) ( )

        ( ) ( )
rG s C sI T AT T L C F

C sI A T L C F CF s k

− − −

− − −

= − −

= − − = +
     (18) 

Thus, if the gain 1L  is chosen as 
1

1 1L T L−= ,                  (19) 
the original system in (3)  is transformed to the system in (11). 

Remark 3.1: For matrix T m nF R ×∈  ( m n< ), its null space 
( )TN F  contains all vectors z that satisfy  0TF z =  so that 

{ }( ) : 0T n TN F z R F z= ∈ = . ( )n m nF R⊥ − ×∈  is the transpose 

of the basis of ( )TN F  which means the range of ( )T
F ⊥  is 

( )TN F  so that ( ){ }( ) :
TT n m

o oN F F z z R⊥ −= ∈ .  It is thus 

inferred that for all n m
oz R −∈ , one has ( ) 0

TT
oF F z⊥ = , which 

means ( ) ( )0
TT

m n mF F ⊥
× −=  or ( )0 n m mF F⊥

− ×= . 

From (11), it can be seen that the singular values of ( )rG s  are 
1

CFs k −+ Σ , where CFΣ  are the singular values of CF. This 
implies that, if all singular values of CF are equal, the singular 
values of ( )rG s  are also equal to each other. However the 
stability of ( )rG s  cannot be guaranteed. We will show next 
that all systems in the form of 1( ) ( )cG s C sI A LC F−= − − can 
be built based on ( ).rG s  A unitary system thus can also be 
built based on ( ),rG s  if it exists.  

Lemma 2: A system 1( ) ( )cG s C sI A LC F−= − −  can always 
be expressed in the form of 

( )1 11
1 2( )cG I C sI A L C L CF s k

− −−⎡ ⎤= − − − +⎣ ⎦     (20) 
with  

1 2L L L= + ,                  (21) 

where L1 is the gain calculated as in Lemma 1. 

Proof: 
( )cG s  can be expressed as  

1

11 1

( ) ( )

       ( ) ( )

cG s C sI A LC F

I C sI A L C sI A F

−

−− −

= − −

⎡ ⎤= − − −⎣ ⎦
 ,     (22) 

which also means 
1

1 2

11 1
1 2 1

( ) ( )

       ( ) ( )

cG s C sI A L C L C F

I C sI A L C L C sI A L C F

−

−− −

= − − −

⎡ ⎤= − − − − −⎣ ⎦
 (23) 

with 1 2L L L= + .  
By selecting 1L  as shown in Lemma 1, it is derived that 

( )1 11
1 2( )cG I C sI A L C L CF s k

− −−⎡ ⎤= − − − +⎣ ⎦ .    (24) 

Remark 3.2: From Lemma 2 it can be concluded that if there 
exists a unitary system for ( )G s in the form of 

1( )UG WC sI A LC F−= − − , it can be constructed from ( )rG s  

such that 
11

1 2( ) ( )U rG W I C sI A L C L G s
−−⎡ ⎤= − − −⎣ ⎦ . 

Lemma 3: For the following two systems:  
( ) 11( ) ( )rG s C sI A F CF s k −−= − = +         (25) 

1
2 ( ) ( ) ( )rG s G s CF C sI A F CF−= + = − + ,      (26)

 their corresponding systems in the observer form:  
1( ) ( )rcG s C sI A LC F−= − −            (27) 
1

2 ( ) ( ) ( )cG s C sI A LC F LCF CF−= − − + +      (28) 
have the following relation: if the singular values of 2 ( )cG s  
are ( )sΣ , then the singular values of ( )rcG s  are 

1( ) 1 ( )rc s s k s−Σ = + + Σ .             (29) 

Proof: 
The systems in (27) and (28) can also be represented in the 
following forms: 

( )

11 1

1 11

( ) ( ) ( )

         ( )

rcG s I C sI A L C sI A F

I C sI A L CF s k

−− −

− −−

⎡ ⎤= − − −⎣ ⎦

⎡ ⎤= − − +⎣ ⎦

     (30) 

( ) ( )
( )

11 1
2

11

( ) ( ) ( )

( ) 1 /

( ) 1

c

rc

G s I C sI A L C sI A F CF

I C sI A L CF s k s k

G s s k

−− −

−−

⎡ ⎤ ⎡ ⎤= − − − +⎣ ⎦ ⎣ ⎦

⎡ ⎤= − − + + +⎣ ⎦
= + +

 . (31) 

Since the SVD of 2 ( )cG s  is 
~

2 ( ) ( ) ( ) ( )cG s U s s V s= Σ ,            (32) 
it is obvious that 

( ) ~
2( ) ( ) / ( 1) ( ) ( ) / 1 ( )rc cG s G s s k U s s s k V s= + + = Σ + + (33) 

Thus, the singular values of ( )rcG s  are 
1( ) 1 ( )rc s s k s−Σ = + + Σ .             (34) 

Lemma 4 (Zhou et al. 1996):  
( ) ( )1( )cG s C sI A LC F LCF CF−= − − + +      (35) 

satisfies  
( ) ( )~( ) ( ) T

c cG s G s CF CF=             (36) 
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if 

( ) ( ) ( )
1T TTL YC F CF CF CF

−
⎡ ⎤ ⎡ ⎤= − +⎣ ⎦ ⎣ ⎦ ,       (37) 

where Y is a positive-definite solution of the following 
algebraic Riccati equation: 

( ) ( )

( ) ( )

1 1

1 0

T

TT

A F CF C Y Y A F CF C

YC CF CF CY

− −

− −

⎡ ⎤ ⎡ ⎤− + −⎣ ⎦ ⎣ ⎦

− =
.     (38) 

Remark 3.3: A positive-definite Y exists if: 1) (A, C) is an 
observable pair, which is satisfied since system (3) is a 
minimal realization; 2) 1( ) ( )G s C sI A F−= −  does not have 
zeros on the imaginary axis, which is satisfied from the 
condition 2. 

The procedures of constructing a unitary system in the fault 
detection observer form are thus summarized in Theorem 1. 

Theorem 1: Given ( )G s  with a minimal realization of 

( ) 1( )G s C sI A F−= − , where CF is non-singular and 
( )G s does not have finite zeros on the imaginary axis, a 

unitary system with singular values of 11s k −+ + can be 
constructed as 

( ) ( )1 1( )UG s CF C sI A LC F− −= − − ,        (39) 
where L is calculated following the procedures of :  

1). Calculate:   
1( )CF C

T
F

−

⊥

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

,               (40)  

1 11 12

21 22

A A
A TAT

A A
− ⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

;           (41) 

2). Select k and calculate  

( ) 1
11

1 1
21

( )

( )
mkI A CF

L
A CF

−

−

⎡ ⎤− +
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
;          (42) 

3). Calculate 
 1

1 1L T L−= ;                 (43) 
4). Solve the positive definite Y for the Riccati equation 

1 1
1 1

1

( ) ( )

( ) ( ) 0

T

T T

A L C F CF C Y Y A L C F CF C

YC CF CF CY

− −

− −

⎡ ⎤ ⎡ ⎤+ − + + −⎣ ⎦ ⎣ ⎦
− =

;(44) 

5). Solve the gain  

( ) ( ) ( )
1

2
T TTL YC F CF CF CF

−
⎡ ⎤ ⎡ ⎤= − +⎣ ⎦ ⎣ ⎦ ;     (45) 

6). Calculate the gain  
1 2L L L= + .                 (46) 

Proof:  
From Lemma 3, the following two systems: 

1
1 2 2

1 1
1 2

( ) ( ) ( )

( ) ( ) ( )
c

rc

G s C sI A L C L C F L CF CF

G s C sI A L C L C F C sI A LC F

−

− −

= − − − + +

= − − − = − −
(47) 

satisfy  
( ) 1( ) 1 ( )rc cG s s k G s−= + +              (48) 

since  

( ) 11
1( ) ( )rG s C sI A L C F CF s k −−= − − = + .     (49) 

With 2L  calculated from steps 2 and 3, it is derived from 
Lemma 4 that  

( ) ( )~( ) ( ) T
c cG s G s CF CF= ,           (50) 

or equivalently  
( ) ( )1 ~( ) ( ) T

c c mCF G s G s CF I− − = ,          (51) 

which means the singular values of ( ) 1 ( )cCF G s−  are all equal 
to one. From (33), the following equation is obtained: 

( ) ( ) ( )1 1 1( ) ( ) 1 ( )U rc cG s CF G s s k CF G s− − −= = + + .   (52) 
Thus, ( )UG s  is a unitary system with singular values of 

11s k −+ + . Meanwhile it can be derived that 
1 1~

1( ) ( ) 1 ( ) 1 ( )UG s U s s k V s s k U s− −= + + = + +    (53) 

where ~
1( ) ( ) ( )U s U s V s= is also a unitary matrix.  

Theorem 1 is thus proved. 

Remark 3.4: 11s k −+ +  is the magnitude of the transfer 
function 1 / ( 1)s k+ + . The singular values of ( )UG s  
therefore present a first-order magnitude frequency response 
characteristic. The singular values of ( )UG s  thus can be 

assigned as 11s k −+ + or equivalently as a function of 

frequency 2 2 1/2[ ( 1) ]kω −+ +  with a selectable parameter k. 
( 1)k− +  is the pole of the transfer function 1/( 1).s k+ + The 

difference between ( )rcG s  and ( )UG s  is an artificial weight 

of 1( )CF − . The singular values of ( )rcG s  are 11 CFs k −+ + Σ  
which are also magnitudes of first-order transfer functions. 
These transfer functions have the same pole with different 
gains.  
 
3.2 Constructing an approximate unitary system 
 
The non-singularity requirement of CF cannot always be 
satisfied. In such a case, an approximate solution is given in 
this section.  
Lemma 5: For matrices , m mC ×Ψ Φ ∈ , their singular values 
satisfy (Bernstein, 2009): 

( ) ( ) ( )σ σ σΨ ± Φ ≤ Ψ + Φ             (54) 
( ) ( ) ( ) ( ) ( )σ σ σ σ σΨ + Φ ≥ Ψ ± Φ ≥ Ψ − Φ        (55) 
( ) ( ) ( )σ σ σΨΦ ≥ Ψ Φ  .             (56) 

Lemma 6: If , , m mC ×Ψ Φ Γ ∈ , m mU R ×∈ and 1Rσ ∈  satisfy 
the following 3 conditions: 
1. TUU I= ;            
2. ( )UσΓ = Ψ Φ + ;           
3. All singular values of Γ  are equal to σ  as σ σΓ = , then 
the following inequalities hold: 

[ ]2( ) / ( )σ σ σ σ σΨΦ − ≤ Φ −           (57) 
[ ]2( ) ( ) 2 / ( )σ σ σ σ σΨΦ − ΨΦ ≤ Φ −         (58) 

where σ  and σ  denote the largest and smallest singular 
values of a matrix. 
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Proof: 
With UσΨΦ = Γ − Ψ  and ,σ σΓ =  it is obvious from 
inequalities (54) and (55) that:  

( ) ( ) ( )Uσ σ σ σ σ σσΨΦ ≤ + Ψ = + Ψ          (59) 
( ) ( ) ( )Uσ σ σ σ σ σσΨΦ ≥ − Ψ = − Ψ         (60) 

which means ( ) ( )Bσ σ σσΨ − ≤ Ψ and 
( ) ( ) 2 ( )σ σ σσΨΦ − ΨΦ ≤ Ψ .   

From inequality (56) and conditions 2 and 3, one has 
( ) ( )Uσ σ σ σ≥ Ψ Φ +  and thus the inequality 

( ) / ( )Uσ σ σ σΨ ≤ Φ +  holds. From inequality (55), we have 
( ) ( ) ,Uσ σ σ σΦ + ≥ Φ −  which means: 

[ ]( ) / ( ) / ( )Uσ σ σ σ σ σ σΨ ≤ Φ + ≤ Φ −       (61) 
It is thus derived that: 

[ ]2( ) / ( )σ σ σ σ σΨΦ − ≤ Φ −           (62) 

[ ]2( ) ( ) 2 / ( )σ σ σ σ σΨΦ − ΨΦ ≤ Φ −  .        (63) 

Theorem 2: For a linear transfer matrix ( )G s  of m-inputs and 
m-outputs with a minimum realization of: 

1( ) ( )G s C sI A F−= −               (64) 
and its companion system: 

1
2 ( ) ( ) ( )G s G s U C sI A F Uσ σ−= + = − +       (65) 

where U is any real unitary matrix, a feedback gain will 
transform the two systems in (64) and (65) to the systems in 
the following forms: 

1( ) ( )cG s C sI A LC F−= − −            (66) 
1

2 ( ) ( ) ( )cG s C sI A LC F LU Uσ σ−= − − + +
 
.    

 
(67) 

If the singular values of 2 ( )cG s  are all equal and satisfy 

[ ]2 ( )cG sσ σ=                 (68) 
then the singular values of ( )cG s  satisfy the following 
inequalities: 

[ ] [ ]{ }( ) / ( ) / 1cG s G sσ σ σ σ σ− ≤ −          (69) 

[ ] [ ] [ ]{ }( ) ( ) 2 / ( ) / 1c cG s G s G sσ σ σ σ σ− ≤ − .    (70) 

Proof: 

The transfer matrices in (66) and (67) are the same as: 
11 1( ) ( ) ( )cG s I C sI A L C sI A F

−− −⎡ ⎤= − − −⎣ ⎦       (71) 
11 1

2 ( ) ( ) ( )cG s I C sI A L C sI A F Uσ
−− −⎡ ⎤ ⎡ ⎤= − − − +⎣ ⎦ ⎣ ⎦ ,  (72) 

which also means that, with 
11( ) ( )LG s I C sI A L

−−⎡ ⎤= − −⎣ ⎦ :  

( ) ( ) ( )c LG s G s G s=                  (73) 

[ ]2 ( ) ( ) ( )c LG s G s G s Uσ= + .            (74) 
If the singular values of 2 ( )cG s  are equal to σ , all 3 
conditions of Lemma 6 are satisfied with ( )LG sΨ = , 

( )G sΦ = , and 2 ( )cG sΓ = .  Thus (64) and (65) hold.  

Remark 3.5: According to Lemma 4, a gain L can be 
calculated so that the singular values of  2 ( )cG s  are equal to 
those of .Uσ  Since U is a selectable matrix, 2 ( )cG s  satisfies 
inequality (74). With the same L, ( )cG s  will satisfy 

inequalities (69) and (70). As σ  and U  can be chosen as any 
values, an approximate unitary system can be built by 
selecting [ ]( )G sσ σ<<  for all s jω=  in the frequency range 
of interest. The inaccuracy of the approximation can be 
calculated with inequalities (69) and (70).   

Remark 3.6: For ( )G s  with a non-singular CF, only an 
approximate solution is given in this paper. A part of our 
future work is to find an exact solution, where a dynamic gain 
and weight might be required in the form of ( )L s  and ( )W s . 
 
3.3 Solutions to a non-square system 
 
In this section, a non-square system in the following form is 
considered: 

1( ) ( )G s C sI A F−= −               (75) 
where, n nA R ×∈ , n rF R ×∈ and m nC R ×∈  with the 
assumptions of: 1) m r> ; 2) ( )rank CF r=  so that CF has 
full column rank. There are two ways of transforming (75) into 
a unitary system. 

1). Reduce the dimension of C 
For such a system, a corresponding square system can be 
constructed as: 

1
1( ) ( )aG s W C sI A F−= −              (76) 

where, 1
r mW R ×∈  is a real constant matrix so that 

1( ) .rank W CF r=  If ( )aG s  does not have zeros on the 
imaginary axis, a unitary system can be constructed as 

( ) 1 1
1 1( ) ( )uG s W CB W C sI A LC F− −= − − .      (77) 

2). Increase the dimension of F 
Another method is to construct a square transfer matrix as: 

[ ]1( ) ( )b oG s C sI A F F−= −            (78) 

where oF  is selected so that [ ]( ) .orank C F F m=  If ( )bG s  
does not have zeros on the imaginary axis, a unitary system 
thus can be constructed for ( )bG s  in the form of 

[ ]( ) [ ]1 1( ) ( )u o oG s C F F C sI A LC F F
− −= − − .   (79) 

Thus, all non-zero singular values of  

[ ]( ) 1 1
1( ) ( )u oG s C F F C sI A LC F

− −= − −       (80) 
are equal. 

4. AN EXAMPLE OF UNITARY SYSTEM 

In this example, a unitary system   

    
1 1( ) ( ) ( )UG s CF C sI A LC F− −= − −   

is constructed for a system 
    1( ) ( )G s C sI A F−= − , 
which is randomly generated as: 

   

   0.5046    0.0070    0.2952    1.2408
   1.6265    0.4572    0.5554    1.8668
   0.1535    0.0027    0.3623    1.9462
   0.8160    0.3919    0.2873    0.4583

A

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 
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    0.5529    0.6416    0.6332
    0.7702    0.2557    1.4140
    0.3895    0.0384    1.1211
    0.1005    1.4039    0.0108

F

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 

    
    0.7756    0.2396    0.4075    0.4421
    0.7088    0.8486    0.9788    0.3494
    0.6068    0.2505    0.9409    0.6687

C
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

L is calculated following the procedures in Theorem 1: 
1). Calculate (the choice of F ⊥  may be varied)  

1

    2.4183    1.1270   -2.7754   -1.2346
    0.2034   -0.4835    0.4882    0.6940( )
   -1.1166   -0.0796    1.6183    0.4805
   -0.5818    0.6379   -0.4776    0.1628

CF C
T

F

−

⊥

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎣ ⎦

 

and calculate 1 11 12

21 22

A A
A TAT

A A
− ⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

;  

2). Select k=10 and calculate  

( ) 1
2 11

1 1
21

( )

( )

kI A CF
L

A CF

−

−

⎡ ⎤− +
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
; 

3). Calculate the feedback gain 1
1 1L T L−= ; 

4). Solve the Algebraic Riccati equation for a positive- 
definite Y: 

1 1
1 1

1

( ) ( )

( ) ( ) 0

T

T T

A L C F CF C Y Y A L C F CF C

YC CF CF CY

− −

− −

⎡ ⎤ ⎡ ⎤+ − + + −⎣ ⎦ ⎣ ⎦
− =

; 

5). Calculate 
1

2 ( ) ( )( )T T TL YC F CF CF CF
−

⎡ ⎤ ⎡ ⎤= − +⎣ ⎦ ⎣ ⎦ ;  
6) Calculate 

1 2

  -19.9902   -0.3428   10.6200
   -5.0800   -8.5893    6.8353
   16.8744   -4.1290  -12.9409
   -8.6851   14.2991  -16.4507

L L L

⎡ ⎤
⎢ ⎥
⎢ ⎥= + =
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

The singular values plots of ( )G s  and ( )UG s  are shown in 
Fig. 1, from which it can be seen that ( )G s  with three 
different singular values is transformed to ( )UG s  which has 
three equal singular values as 1 / 11s +  or as a function of 

frequency 2 2 1/21 / ( 11 )ω + .  

5. CONCLUSIONS 

In this paper, a unitary system is defined as a multi-input 
multi-output linear time-invariant system whose singular 
values of transfer matrix are equal. A non-unitary system can 
be transformed to a unitary system in the fault detection 
observer form as long as certain requirements are met. The 
singular values of the resulted unitary system are 1| 1 |s k −+ + , 
which is the magnitude frequency response of the transfer 
function 1 / ( 1)s k+ + . With the method presented in this 
paper, the singular values of a unitary system thus can be 
assigned as a function of s in the form of 1| 1 |s k −+ + or 
equivalently, as a function of frequency of 2 2 1/2[ ( 1) ]kω −+ + . 

Singular values related properties, such as H2 norm, H∞ norm, 
and H_ index, can be determined based on this function. The 
study on unitary system therefore not only helps the 
investigation of linear systems, but also has potential 
applications in the areas of robust control, robust estimation 
and robust fault diagnosis, and fault-tolerant control where the 
optimization of singular values related properties are of key 
importance. In the Part II of the paper, we will study the 
application of a unitary system in the combined H∞/ H_ 
optimization for the purpose of fault detection observer 
design. 
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Fig. 1: Singular values: non-unitary ( )G s  vs. unitary ( )UG s   
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