Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

A Quasi-separation Principle and Newton-like
Scheme for Coherent Quantum LQG Control *

Igor G. Vladimirov,

Ian R. Petersen

School of Engineering and Information Technology, University of New South
Wales at the Australian Defence Force Academy, Canberra, ACT 2600,
Australia (i.vladimirov@adfa.edu.au, i.r.petersen @ gmail.com)

Abstract: This paper is concerned with constructing an optimal controller in the coherent quantum
Linear Quadratic Gaussian problem. A coherent quantum controller is itself a quantum system and is
required to be physically realizable. The use of coherent control avoids the need for classical measure-
ments which inherently entail the loss of quantum information. Physical realizability corresponds to the
equivalence of the controller to an open quantum harmonic oscillator and relates its state-space matrices
to the Hamiltonian, coupling and scattering operators of the oscillator. The Hamiltonian parameterization
of the controller is combined with Frechet differentiation of the LQG cost with respect to the state-space
matrices to obtain equations for the optimal controller. A quasi-separation principle for the gain matrices
of the quantum controller is established, and a Newton-like iterative scheme for numerical solution of

the equations is outlined.
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1. INTRODUCTION

Sensitivity to observation is an inherent feature of quantum
mechanical systems whose state is affected by interaction with
a macroscopic measuring device. This motivates the use of co-
herent quantum controllers to replace the classical observation-
actuation control loop by a measurement-free feedback which
is organized as an interconnection of the quantum plant with
another quantum system. If such a controller is implemented
using quantum-optical components (for example, optical cav-
ities and beam splitters) mediated by light fields (Gardiner &
Zoller (2004)), then it is dynamically equivalent to an open
quantum harmonic oscillator which constitutes a building block
of quantum systems described by linear quantum stochastic
differential equations (QSDEs) (Parthasarathy (1992); Petersen
(2010)). This leads to the notion of physical realizability which
imposes quadratic constraints on the state-space matrices of the
controller (James et al. (2008); Nurdin et al. (2009); Shaiju &
Petersen (2009)), thus complicating the solution of quantum
control problems which are otherwise reduced to appropriate
unconstrained problems for an equivalent classical system. The
links between classical control problems and their quantum
analogues are known, for example, for Linear Quadratic Gaus-
sian (LQG) and H..-control. The Coherent Quantum LQG
(CQLQG) problem seeks a physically realizable quantum con-
troller to minimize the average output “energy” of the closed-
loop system per unit time. This problem has been addressed
in (Nurdin et al. (2009)) where a numerical procedure was pro-
posed for finding suboptimal controllers to ensure a given upper
bound on the LQG cost. Instead, the present paper focusses on
necessary conditions for optimality and second order conditions
for local strict optimality of a physically realizable controller
and computation of the optimal controller. Both approaches
make use of the fact that the CQLQG problem is equivalent
to a constrained LQG problem for a classical plant, with the
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LQG cost computed as the squared Ho-norm of the system in
terms of the controllability and observability Gramians satis-
fying algebraic Lyapunov equations. We utilize a Hamiltonian
parameterization that relates the state-space matrices of a phys-
ically realizable controller to the free Hamiltonian, coupling
and scattering operators of an open quantum harmonic oscil-
lator (Edwards & Belavkin (2005)). To obtain equations for the
optimal quantum controller, we employ an algebraic approach,
based on the Frechet differentiation of the LQG cost with re-
spect to the state-space matrices from (Vladimirov & Petersen
(2010)) and similar to (Skelton et al. (1998)). The resulting
equations for the optimal controller involve the inverse of spe-
cial self-adjoint operators on matrices that requires the use of
vectorization (Magnus (1988)). Their spectral properties play
an important role in the present study. Although the optimal
CQLQG controller does not inherit the control/filtering separa-
tion principle of the classical LQG control problem, a partial
decoupling of equations for the gain matrices still holds. This
quasi-separation property leads to a Newton-like scheme for
numerical computation of the quantum controller that involves
the second order Frechet derivative of the LQG cost which is
related to the perturbation of solutions to algebraic Lyapunov
equations.

2. QUANTUM PLANT

We consider a quantum plant with an n-dimensional state
vector z;, a p-dimensional output y; and inputs wy, 71, of
dimensions m1, mo. The state and the output are governed by
the QSDEs:

d(L’t = A{Iitdt + Bldu}t + Bgdnt7 (1)
dyt = tht + det; (2)
Zt = CLUt. (3)

Here, A € R™*"™, B, € R"*™k C ¢ RPX"™ D ¢ RP*X™1 gre
constant matrices, and z; is a “signal part” of y,. The state di-
mension n and the input dimensions my, mo are even: n = 2v,
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my, = 2ug. The plant state vector x; is formed by self-adjoint
operators (similar to the position and momentum operators)
and, in the Heisenberg picture of quantum mechanics, evolves
in time t. The entries of the mj-dimensional vector w; are
self-adjoint quantum Wiener processes (Parthasarathy (1992))
whose infinitesimal increments compose with each other ac-
cording to the Ito table

dwdw] = Fdt. @)
Here, F' is a complex positive semi-definite Hermitian matrix
which, on the right-hand side of (4), is a shorthand notation for
F ® Z, with 7 the identity operator on the underlying boson
Fock space and ® the tensor product. We assume that vectors
are organized as columns unless indicated otherwise, and the
transpose (-)T acts on vectors and matrices with operator-
valued entries as if the latter were scalars. Also, (-) := ((-)#)7
denotes the transpose of the entry-wise adjoint (-)#. Associated
with the Hermitian matrix F' from (4) are real matrices S :=
(F+F)/2=ReFandT := (F—F)/i = 2ImF, where (),
Re(+) and Im(-) are the entry-wise complex conjugate, real
and imaginary parts, and 7 := \/—1 is the imaginary unit.
The symmetric matrix S contributes to the evolution of the
covariance matrix of the plant state vector x;, whilst 7' is
antisymmetric and affects the cross-commutations between the
entries of x; through [dw;, dw}] = dwidw! — (dwdwl)™ =
(F — FT)dt=4Tdt. Here, the commutator [, 8] := aff — Ba
applies entry-wise, and the relation F'T = F is ensured by
F = F*. In what follows, it is assumed that S = I,,,,, and
T is canonical in the sense that

Ti=1,23  3=° )

where I, is the identity matrix of order r. That is, 7" is a block
diagonal matrix with py copies of J over the diagonal. By
permuting the rows and columns, the matrix 7" from (5) can
be brought to an equivalent canonical form
0 1,

r=deh,= [ ) ©
where 0,. denotes the (r X r)-matrix of zeros. The canonical
antisymmetric matrix J of any order satisfies J? = —1I. Quan-
tum Wiener processes will be assumed to have the canonical Ito
matrix F' =1 +4J/2.

3. COHERENT QUANTUM CONTROLLER

A measurement-free coherent quantum controller is another
quantum system with a n-dimensional state vector &; with self-
adjoint operator-valued entries whose interconnection with the
plant (1)—(3) is described by QSDEs

d&; = a&ydt + bydw; + badys, (N
dn; = ¢dt + dwy, €]
Gt = ;. 9

Here, a € R™*", by € R™¥™2 py € R"*P ¢ € R™2X" and
wy 1s a mo-dimensional vector of self-adjoint quantum Wiener
processes which commute with the plant noise wy in (1) and (2).
The combined set of equations (1)—(3) and (7)—(9) describes
the fully quantum closed-loop system in Fig. 1, whose output
observables form a py-dimensional process

Zy = Coxy + DoGy, (10)
where Cy € RPO*™ and Dy € RP9*"2 are given matrices. The

2n-dimensional combined state vector X; := [z} ¢F]T and the
output Z; of the closed-loop system are governed by the QSDEs

dX, = AX,dt + BAW,,  Z, =CAX,. (11)

w
e
%
plant le——
contr.
n

Y
Fig. 1. The quantum closed-loop system described by (1)—(3)

and (7)—(9), where the plant and controller noises w and w
are commuting quantum Wiener processes.

Here, the combined quantum Wiener process W; := [wi wi]T

has a block diagonal Ito table. The matrices A, B3, C of the
closed-loop system (11) are given by

AlB A Baoc| B1 B2 A Bac
|:+C 0:| = bQC a b2D bl = bC a
where

Co Doc] 0 0
b:=[b1 bs], B:=[B1 By], C:= [g} D= [g é] (13)

B

D |, (12)
Co Doc‘ 0

The dependence of A, B, C on the controller matrices a, b, ¢ is
equivalently described by
. Jab
= [ 0}.

A B
I:= [C 0} =T¢ + 17T,
The affine map v — I is completely specified by the plant (1)—
(3) through the matrices

A 0 B 0 Bo 01 0
To:=|0 0n 0|, Tyi= |In 0 ,szz[c 6113] (15)
Co 0 O 0 Do

Using the terminology introduced formally in Section 7, the
map vy — "1y in (14) is a grade one linear operator [[I'y, '3 ].

(14)

4. PHYSICAL REALIZABILITY

A controller (7)—(9) is called physically realizable (PR) (James
et al. (2008); Nurdin et al. (2009)), if its state-space matrices
satisfy

ado + JoaT +bJbT =0, by = Joct Js. (16)

Here, J is a block-diagonal matrix, partitioned in conformance
with the matrix b from (13) as
Ji1 0 J: 0
J::D[Ol JJDT:[; DJlDT} (17

and Jy, Ji, Jo are fixed real antisymmetric matrices of or-
ders n, m1, ms, which specify the commutation relations for
the controller state variables & and the plant and controller
noises w and w. For convenience, Jy, Ji, Jo are assumed
to have the canonical form (5) or (6). The relations (16) de-
scribe the equivalence of the controller to an open quantum
harmonic oscillator and the possibility of its quantum optical
implementation (Gardiner & Zoller (2004)). The first of these
equations is the condition for preservation of the canonical
commutation relations for the state variables of the quantum
harmonic oscillator. The second PR condition, which relates
the matrices by and c by a linear bijection, describes the unitary
transformation of the quantum Wiener process at the input of
the quantum harmonic oscillator. The first of the PR conditions
(16), which is a linear equation with respect to a, determines a
as a quadratic function of b up to the subspace of Hamiltonian
matrices {a € R™ " : aJy + Joa™ = 0} = JoS, = SuJo,
with S,, the subspace of real symmetric matrices of order n:

JoR +  bJbTJy/2. (18)

~— ——
Hamiltonian matrix

particular solution
Here, R € S,, specifies the free Hamiltonian operator H =
¢LFRE; /2 of the quantum harmonic oscillator (Edwards &

a =
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Belavkin, 2005, Egs. (20)—(22) on pp. 8-9). Since the matrix
bJbT is antisymmetric, b.JbT .Jy is skew-Hamiltonian. There-
fore, (18) describes an orthogonal decomposition of the matrix
a into projections onto the subspaces of Hamiltonian and skew-
Hamiltonian matrices in the sense of the Frobenius inner prod-
uct of real matrices (X,Y) := Tr(XTY) = (XT,YT), with
| X := +/(X,X) the Frobenius norm. From the second PR
condition in (16) and the canonical structure of Jy and Js, it
follows that the matrix c is related to b; by

= [é} (19)

c= Jobl Joy = JLITHT Jy,
where, in view of (13), the matrix I “extracts” b; from b as
by = bl. In combination with the decomposition (18), this
implies that, for a physically realizable quantum controller, the
matrix vy in (14) is completely parameterized by the matrices R
and b as

(20)

JoR+bJbTJo/2 b
J2ITbT gy J'
In view of the physical meaning of R, we will refer to (20)
as the Hamiltonian parameterization of the coherent quantum
controller, with the S,, x R™*(m2%P)_yalued parameter [R b];
see Fig. 2. The PR conditions (16) are invariant under the

Fig. 2. This directed acyclic graph describes the dependence of
the LQG cost E of the closed-loop system on the matrices
R and b. An oriented edge @— () signifies “S depends
on . The dashed lines encircle the matrix triples v and I'
defined by (14). The emergence of R and the dependencies
indicated by double arrows represent the PR conditions
for the quantum controller, with a, b, ¢ being otherwise
independent.

group of similarity transformations of the controller matrices
(a,b,c) — (cac™!,ob,co™'), where o is any real symplectic
matrix of order n (that is, o Jyo T = Jy). This corresponds
to the canonical state transformation & — o0&;; see also
(Simon, 2000, Egs. (12)—(14)). Any such transformation of a
physically realizable controller leads to its equivalent state-
space representation, with the matrix R transformed as R —
o~ TRo™ %

5. COHERENT QUANTUM LQG CONTROL PROBLEM

The Coherent Quantum LQG (CQLQG) control problem (Nur-
din et al. (2009)) consists in minimizing the average output
“energy” of the closed-loop system (11):

FE:= lim

t
(1 / E(z;fzs)ds> — Tr(CPCT)
t—+oo \ t 0 °

= Tr(BTQB) = —2(A, G) — min. 1)
The minimum is taken over the n-dimensional controllers (7)—
(9) which make the matrix A in (12) Hurwitz and satisfy the
PR conditions (16). Here, EX := Tr(pX) is the quantum
expectation over the underlying density operator p, and P :=
lim;_, 1 o ReE(X; X;1) is the steady-state covariance matrix of
the state vector of the closed-loop system. Also, we use the
shorthand notation

G :=QP,
with P and @ satisfying the algebraic Lyapunov equations
AP+ PA" +BB" =0, ATQ+QA+C'C=0, (23)
so that these matrices are the controllability and observability
Gramians of the state-space realization triple (A, B,C). The
fact that E coincides with the squared H,-norm of a classical
strictly proper linear time invariant system enables the CQLQG
problem (21) to be recast as a constrained LQG control problem
for an equivalent classical plant. We will employ the smooth
dependence of the cost E' on the matrices R and b which
govern the Hamiltonian parameterization (20) of a physically
realizable stabilizing controller. The conditions of optimality,
obtained in Section 8, utilize the Frechet differentiation of the
LQG cost with respect to the state-space realization matrices
(Vladimirov & Petersen (2010)) assembled into matrices with
a specific sparsity pattern and an auxiliary class of self-adjoint

operators introduced in Sections 6 and 7.

(22)

6. THE I' SPARSITY STRUCTURE

The subsequent considerations involve Frechet differentiation
with respect to state-space realization matrices assembled into
matrices of the “I"-shaped” sparsity structure (14). We denote
by

Crmp i= {[f g} cpeR™T o e RV T € Rp”} 24)

the Hilbert space of real (r + p) x (r 4+ m)-matrices whose
bottom-right block of size (p x m) is zero. The space [, p.
which is a subspace of R("+P)*("+m) “inherits the Frobenius
inner product of matrices. Let I, ,, , denote the orthogonal
projection onto I ,,, ,, whose action on a (r 4+ p) x (r + m)-
matrix consists in padding its bottom-right (p x m)-block

with zeros:
SO 24) I

The subscripts in I, ,, ,, and I1,.,,, , will often be omitted for
brevity. The Frechet derivative Ox f of a smooth function I' 5
[f g} =: X — f(X) €Ris an element of the same Hilbert space
(24) and inherits the sparsity structure: dx f = [g“”]]: 8‘6f } .

7. SPECIAL SELF-ADJOINT OPERATORS

For the purposes of Section 8, we associate a linear operator
[, B] : RP>*9 — R*** with a pair of matrices @ € R**? and

€ R™' b

’ Y [ BIX) = X8 (26)
The map («, 8) — [, 8] from the direct product of the matrix
spaces to the space of linear operators on matrices is bilinear. If
s = pand ¢t = g, then the spectrum of the operator [, 3] on
RP*4 consists of the pairwise products A1, of the eigenvalues
Als...,Apand py,. .., 1g of the matrices o and 3, so that their
spectral radii are related by

r([lor, ) = r(e)r(B). 27

Furthermore, for any positive integer r and matrices s, . . . , @,
€ R**Pand B34, ..., 3 € R™¥ we def;ne a linear operator

(28)

for, Br: oo B = o, Bill,
k=1

where the colons separate the pairs of matrices. Of importance
will be self-adjoint linear operators on the Hilbert space RP*4
of the form (28) where a,...,qa, € RP*P and By,...,05, €
R?*%9 are such that for any k = 1,...,r, the matrices oy, and
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By are either both symmetric or both antisymmetric. Such an
operator (28) will be referred to as a self-adjoint operator of
grade r. The self-adjointness is understood in the sense of the
Frobenius inner product on R?*? and follows from the property
that, in each of the cases (aT, 8T) = (+a,+/3), the adjoint
[, B]T = [[@, 8] coincides with [, 5]. In these cases, as
for any self-adjoint operator, the eigenvalues of [, 5] are all
real.

Lemma 1. If o« € RP*P and B € R?*7 are both antisymmetric,
then the spectrum of o, 8] is symmetric about the origin. If
« and 3 are both symmetric and positive (semi-) definite, then
[lev, B] is positive (semi-) definite, respectively.

Proof. If o and g are both antisymmetric, then their eigenval-
ues Aq,...,Apand i, ..., g are all pure imaginary and sym-
metric about the origin (Horn & Johnson (2007)). Hence, the
eigenvalues \;uy, of [lor, B]) also form a set which is symmetric
about the origin. By a similar reasoning, if « and [ are real
positive (semi-) definite symmetric matrices, then their eigen-
values are all real and (nonnegative) positive, and hence, so are
the eigenvalues of [Ja,, S]] which implies its positive (semi-) def-
initeness. Alternatively, the second assertion of the lemma also
follows from the relation [Jo, 3] = [[v/a, v/B]]* which holds
for any positive semi-definite symmetric matrices o € RP*P
and 8 € R9%9, so that (X, aX ) = ||[v/aX/B||* = 0 for any
X eRP¥i 1

Whilst the operator (26) with nonsingular « and [ is straight-
forwardly invertible: [Jo, 3] 7' = [a~t, 7], the inverse of
M = a1, B¢ ... ¢ ap, Br]] from (28) for r > 1 (except for
the case . [lay, Bkl = [>2; oy, >°4 Brll which reduces to
a grade one operator, or special Lyapunov operators [Jo, I] +
[1,a] with o = T which are treated by diagonalizing the ma-
trix o) can only be computed using the vectorization of matrices
(Magnus (1988)) as M~ 1(Y) = vec 1 (E~Lvec(Y)), provided
that the matrix 2 := Y, _, BF ® ay is nonsingular. Here,
vec : RP*9 — RPY is a linear bijection which maps a matrix X
to the vector obtained by writing the columns X1, ..., Xeq Of
the matrix one underneath the other. The invertibility conditions
for grade two operators is discussed in Appendix A.

8. EQUATIONS FOR THE OPTIMAL CONTROLLER

The necessary conditions for optimality in the class of n-
dimensional physically realizable stabilizing controllers are
obtained by equating the Frechet derivatives of the LQG cost
with respect to R and b to zero. In view of Fig. 2, the chain rule
allows the differentiation to be carried out in three steps. First,
the matrices A, B, C of the closed-loop system are considered to
be independent variables. Below is an adaptation of Lemma 7
from Appendix B of (Vladimirov & Petersen (2010)) whose
proof is given to make the exposition self-contained.

Lemma 2. Suppose the matrix 4 in (12) is Hurwitz. Then the
Frechet derivative of the LQG cost E from (21) with respect to
the matrix I" from (14) is

%E:2E;%? (29)

Here, the matrix G is defined by (22) using the Gramians P, ()
from (23).

Proof. As discussed in Section 6, the Frechet derivative Op F
inherits the block structure of the matrix I':

OnE — {BAE 8BE]

aE 0 (30)

We will now compute the blocks of this matrix. To calculate
O4FE, let B and C be fixed. Then the first variation of E with
respect to A is dE = (CTC,6P) = —(ATQ + QA,6P) =
—(Q, AP + (6P)AT) = (Q, (JA)P + PSAT) = 2(G,5.A),
which implies that OAE = 2G. 31)

To compute OgE, suppose A and C are fixed. Then the ob-
servability Gramian (), which is a function of A and C, is
also constant, and the first variation of £ with respect to B is

SE = (Q,5(BBT)) = (Q, (0B)BT + BsBT) = 2(QB,B),

and hence, 9sE — 208, 32)
The derivative J¢ E is calculated by a similar reasoning. As-
suming A and B (and so also the controllability Gramian
P) to be fixed, the first variation of E with respect to C is
SE = (P,6(CTC)) = (P, (6C)TC+CTsC) = 2(CP,C), which

implies that
tmphies tha 9cE = 2CP. 33)
Now, substitution of (31)—(33) into (30) yields (29). B

We will now take into account the dependence of the closed-
loop system matrices .4, 13, C in (12) on the controller matri-
ces a, b, ¢, with the latter still considered to be independent
variables. In what follows, the Gramians P and @ in (23), and
the associated matrix G, defined by (22), inherit the four-block
structure of the matrix A from (12). Their blocks have size
(n x n) and are numbered as follows:

—n—<n— +—2n—
. [Gu1 G2l a7 o _ [Gie]2"™
G = [G21 G22]$n B [G°1 G°2] ™= |:G2.:|In )
The block (-)11 is related to the state variables of the plant,
while (-)22 pertains to those of the controller. The blocks of the
matrix G in (34) are expressed in terms of the block rows of )
and block columns of P as Gji, = Qe Pek.

Lemma 3. Suppose the matrix A in (12) is Hurwitz. Then the

Frechet derivative 0,F = {g‘lg QBE} of E from (21) with

respect to the matrix ~y from (14) is
_ G2z G21CT 4+ Q2BDT
0yE = 2{35012 + D3 CPas 0 ’ (33)
where the matrices 'y, I's are defined by (15); G, P, @ are
given by (22)—(23), and the notation (34) is used.

(34)

Proof. Since F is a composite function of a, b, ¢ which enter
(21) through the closed-loop system matrices .4, B, C, the chain
rule gives

0,E = (0,11 (0rE) = N(TTop ETY). (36)
Here, (-)' is the adjoint in the sense of the Frobenius inner
product of matrices, and [1 is the orthogonal projection onto
the subspace [ defined by (24)—(25). Indeed, the first variation
of the affine map v + I, defined by (14)—(15), is given by
0" = T'1(67)T'2, which implies that 0,I' = [I';,T'2]]. Hence,
(N(PTOrETY), §7), which establishes (36). Substitution of the
matrices I'y and I's from (15) and Op E from (29) into the right-

hand side of (36) yields
o CT
I, O
o DT

B 0 I, 0][C OB
0B =20 ({BQT 0 Dg} [CP 0}
G21CT + QQ.BDT}

—9 Ga2
BEG'12+D(?CP02 0

where Lemma 2 and the notation (34) are also used, which
proves (35). H
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Finally, we will utilize the Hamiltonian parameterization (20)
which makes E a function of the matrices R and b; see Fig. 2.

Theorem 4. A physically realizable stabilizing controller, with
Hamiltonian parameterization (20), is a critical point of the
LQG cost E from (21) if and only if there exists a real anti-
symmetric matrix ® such that

Ga=—2Jy, (37)
M(b) + G21C" + Q2 BD™T
+Jo(G1yBa + Py Cf Do) JoIT = 0. (38)

Here,

M :=[@,J : Qaz, DD : JyPaoJy, 12Dy Do JoI'] (39)
is a self-adjoint operator of grade three in the sense of (28).
Proof. In view of (20), the symmetric matrix R enters the
controller only through a. Hence,

ORE = (—Jo0u E+(=Jo0.E)1) /2 = Gy Jo — JoGaa, (40)

where the relation 0, F = 2G o5 from Lemma 3 is used. Unlike
R, the matrix b both enters a and completely parameterizes c,
and hence,

dE/db= ((0.E)Jo + Jo(0.E)")bJ/2 + O E
+Jo(0.E) T JoIT
= (Ga2Jo + JoGan)bJ + 2(Go1 CT + Q2.BDT)
+2Jo(BY Gra + DECPy) T Jo17, (41)

where (35) of Lemma 3 is used again. By introducing a real
antisymmetric matrix

® = (GaaJo + JoG3,)/2,
and recalling (12), (13) and (34), it follows from (41) that
(dE/db)/2 = ®bJ + G21CT + Q21 BDT + QbDDT
+Jo(G1yBy + Py Cf Do) JoI"
+Jo P Job1Ja D Do JoIT
=G2CT 4+ Q1 BD"
+Jo(G13Ba + Po1Cy Do) JoIT + M(b),

where (19) and (39) are also used. Therefore, dE/db = 0 is
equivalent to (38). The definition (42), which is considered as
an equation with respect to GGa2, determines uniquely the skew-
Hamiltonian part —®.Jy of G2, so that G5 can be represented
as

(42)

Gag = (¥ — @)Jo, (43)
where T
‘I’ = (J()GQQ — G22J0)/2 (44)

is a real symmetric matrix of order n. Direct comparison of (44)
with (40) yields

OrE = —2Jy¥ J,. (45)
Hence, OrE = 0 holds if and only if ¥ = 0, in which
case, (43) takes the form of (37). Therefore, the property that
the controller is a critical point of E (that is, g F = 0 and
dE/db = 0) is indeed equivalent to the fulfillment of (37) and
(38) for a real antisymmetric matrix ® of order n. B

For a given matrix b in the Hamiltonian parameterization (20)
of the controller, (44) defines a map R(b) > R — ¥ € S,, on

the set
R():={R €S, : Ais Hurwitz}. (46)
In view of (45), the Frechet derivative of this map with respect

to R is expressed in terms of the second order Frechet derivative
of the LQG cost of the closed-loop system as

1
OrY = —5 [0, JoJORE, (47)

where we have also used the property that [[.Jy, Jo] is involutory
since [[Jo, Jo[|>=[J¢, J&] =1, —I] is the identity operator.

9. A QUASI-SEPARATION PRINCIPLE

The operator 91, which is defined by (39) and acts on the
controller gain matrix b from (13), can be partitioned as

M(b) = [M1(b1) Ma(b2)] (48)
into two operators acting separately on the submatrices b, and
bs. Here,

My = [®, 2 : Qua, I : JoPaoJy, JoDg Do o],  (49)
My :=[®, DJ,DT : Qa0, DD (50)

are self-adjoint operators of grades three and two. This allows
the equation (38) for d£/db = 0 to be split into

My (1) + QB2 + JO(G1T232 + lecoTDo)J2 =0, (5D

My (b) + G21C" + QuuBiDT =0, (52)
which are equivalent to dE/db; = 0 and dE/dbs = 0. Note
that (51) corresponds to the equation for the state-feedback
matrix of the standard LQG controller, while (52) corresponds
to the equation for the observation gain matrix, which, in the
conventional LQG control problem, are found by solving two
independent control and filtering algebraic Riccati equations.
The fact, that (51) and (52) are independent linear equations
with respect to b; and by, as well as the original partition
(48), can be interpreted as an analogue of the classical LQG
control/filtering separation principle for the CQLQG problem.
In turn, each of the operators 91 from (49) and (50) can be split
into the sum of self-adjoint operators 5 and 931'{ of grades
one and less one:

me m
—
My = [, Jo] + [Q22, I : JoPazJo, J2Dg Do o], (53)
My := [®, DJ1 D] + [Q22, DD™]. (54)

mg m}

By applying Lemma 1, it follows that the spectrum of 9t}
is symmetric about the origin, while zm; = 0. Moreover, if
Q22 > 0, 0r Pos = 0and Dy in (10) is of full column rank,
then zm{ > 0. Indeed, the fulfillment of at least one of these
conditions implies positive definiteness of at least one of the
positive semi-definite operators on the right-hand side of the
representation

M = [Qaz, 1] + [JoPe2Jy , J2Dg Do Jy] (55)
which follows from Jyp and J, being antisymmetric matrices.
Similarly, the conditions that ()22 > 0 and D is of full row
rank ensure that 95 = 0. In particular, by adapting Lemma 5
from Section VIII of (Vladimirov & Petersen (2010)), it follows
that if, in addition to the rank conditions on Dy and D, the
controller state-space realization is minimal, then Q22 > 0 and
Psy = 0 and hence, M| = 0 and M = 0. Therefore, in the
cases discussed above, the invertibility of the operators 9J1; and
My in (53)—(54) can only be destroyed by the presence of the
indefinite operators 9t and 913 if the matrix & is large enough
compared to (J22. This can be formulated in terms of the matrix

A=Qy ® (56)

whose spectrum is pure imaginary and symmetric about zero.
Lemma 5. Suppose the matrix D in (2) is of full row rank and
Q22 > 0. Also, suppose the spectral radius of the matrix A
from (56) satisfies r(A) < 1. Then the operators 2t; and i,
in (49) and (50) are positive definite.

4725



Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

Proof. Since [IIJOPQQJO, JQDgDOJQ]H = 0, and I]:[QQQ, I]]] =0
(in view of the assumption Q22 > 0), then (53) and (55) imply
that

My = MT + [Qa2, 1] = (1 — r(A))[Qa2,I]- (57)
Here, use is made of the relation r([[Qa2, I]7*90S) =
r(A)r(Jz) = r(A) which follows from (27) and the property
that the eigenvalues of the canonical antisymmetric matrix .J,
are +i. Therefore, if r(A) < 1, then (57) implies that 0t; > 0.
By a similar reasoning, under the additional assumption that
D is of full row rank (that is, DDT & 0), it follows from
(54) and (56) that My = (1 — r(A))9MF = 0. Indeed,
r((MM3)~MS) = r(A)r(DJ, DT (DDT)™!) < r(A) since
—I =< iJy < I and all the eigenvalues of the Hermitian ma-
trix (DDT)~Y/2D(iJ;)DT(DD™)~'/2 belong to the interval
[~1,1],so thatv(DJ; DT (DDT)"1) < 1.1

Assuming invertibility of the operators 9t; and 915 (for ex-
ample, the fulfillment of conditions of Lemma 5 that ensure
a stronger property — positive definiteness of these operators),
the equations (51) and (52) can be written more explicitly for
by and bsy:

by = =M H(Q21 B2 + Jo(G13Ba + ParCy Do) J2), (58)

by = —ﬂ)?gl(GleT + leBlDT). 59)

These two equations are, in principle, amenable to further
reduction (to be discussed elsewhere) and will be utilized as
assignment operators in the iterative procedure of Section 11
for finding the optimal controller.

10. SECOND ORDER CONDITION FOR OPTIMALITY

A second order necessary condition for optimality of the con-
troller with respect to the matrix R of the Hamiltonian param-
eterization (20) is the positive semi-definiteness 612%E = 0 of
the appropriate second Frechet derivative of the LQG cost (21).
Moreover, the positive definiteness 0% F > 0 is sufficient for
the local strict optimality. To compute the self-adjoint operator
0% F, which acts on the subspace S,, of real symmetric matrices
of order n, we define a linear operator ;7 : R**" — R27x2n

by J = M[I?J Jo, [0 1] (60)

Its adjoint is J T = —[[Jo[0 I.], [IO ] ]I since Jp is antisymmetric.

Lemma 6. Suppose the matrix 4 in (12) is Hurwitz. Then the
second Frechet derivative of E from (21) with respect to the
matrix R from (20) is

OXE = AT (QLASP + PLuSQ)JT. (61)
Here, £4 and S are the inverse Lyapunov operator and sym-
metrizer from (B.1), (B.2), and Q := [[Q, ] and P := [[I, P]
are grade one self-adjoint operators (see Section 7) of the left
and right multiplication by the observability and controllability
Gramians () and P of the closed-loop system from (23).

Proof. The matrix R only enters the cost E through the matrix
A of the closed-loop system, and A depends affinely on R, with
OrA = J the constant operator from (60). Hence, (61) follows
from 0% F = J10% EJ and Lemma 10 of Appendix C. B

11. ANEWTON-LIKE SCHEME

The equations (58)—(59) can be combined with iterations for
solving the equation ¥ = 0 for the matrix ¥ from (44), which
is equivalent to the stationarity of the LQG cost E' with respect
to the matrix R of the Hamiltonian parameterization. The latter

part of the scheme, which finds aroot R € R(b) of the equation
¥ = 0 from the set (46), can be organized in the form of
Newton-Raphson iterations
R~ R— (0g¥)"'0. (62)

Here, OrV is a self-adjoint operator computed in (47) whose
inverse is given by

(aR\Ij)_l = —2(812:{E)_1[”:J0, J()]]], (63)
where we have again used the involutional property of the
operator [[.Jo, Jo], and the second order Frechet derivative 0% F
is provided by Lemma 6. If the local strict optimality condition
812%E > 0 is satisfied, this ensures well-posedness of the inverse
in (63). Thus the equations (58)—(59), considered as assignment
operators for by and bo, and (62) for R, constitute a Newton-
like iterative scheme for numerical computation of the state-
space realization matrices of the optimal CQLQG controller.
These three assignment operators are alternated with updating
the Gramians of the closed-loop system via the appropriate
Lyapunov equations in (23). The order of this alternation will
influence the overall convergence rate of the scheme and is an
important computational resource to be explored. A specific
feature of the algorithm (which is currently under development)
is that it requires the inversion of special self-adjoint operators
on matrices which, in general, can only be carried out via the
vectorization mentioned in Section 7.

12. CONCLUSION

We have obtained equations for the optimal controller in the
Coherent Quantum LQG problem by direct Frechet differen-
tiation of the LQG cost with respect to the pair of matrices
which govern the Hamiltonian parameterization of physically
realizable quantum controllers. We have investigated spectral
properties of special self-adjoint operators whose inverse plays
an important role in the equations and can only be carried out
by using matrix vectorization. We have established a partial
decoupling of these equations with respect to the gain matrices
of the optimal controller, which can be interpreted as a quan-
tum analogue of the standard LQG control/filtering separation
principle. Using this quasi-separation property, we have out-
lined a Newton-like iterative scheme for numerical computation
of the quantum controller. The scheme involves a yet-to-be-
explored freedom of choosing the order in which to perform
iterations with respect to the Hamiltonian and gain matrices of
the controller to optimize the convergence rate. The existence
and uniqueness of solutions to the equations for the state-space
realization matrices of the optimal CQLQG controller also re-
mains an open problem and so does their further reducibility.
This circle of questions is a subject of ongoing research and
will be tackled in subsequent publications.
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Appendix A. INVERTIBILITY OF GRADE TWO
SELF-ADJOINT OPERATORS

Lemma 7. Let r = 2 in (28), and let both matrices oy and 3y
be nonsingular. Then the operator M := [Jaq, 31 : as, B2] is
invertible if and only if the eigenvalues Aq,..., A, of al_lag
and the eigenvalues i1, . . ., piq of 8257 ! satisfy

Ajp #—1 forallj=1,...,p, k=1,...,q. (A.1)
Proof. If r = 2, the operator (28) can be represented as
M = Jag, B+ ag, Bo]] = My Ma, where My = o, £1]
and My = [I,I : aj'as, BB ]. The operator M; is

invertible in view of the nonsingularity of the matrices oy and
B, with M7 ' = [lag*, B '] Hence, the invertibility of M is
equivalent to that of M. In turn, the operator M is invertible
if and only if its spectrum {1+ A jui 0 1 < j<p, 1 <k <gq}
does not contain 0, which is equivalent to (A.1). B

By Lemma 7, the nonsingularity of the matrix Zi:l BE ® ay,
of order pq reduces to a joint property of individual spectra of
two matrices of orders p and ¢. This reduction does not hold for
r> 2.

Appendix B. PERTURBATION OF INVERSE LYAPUNOV
OPERATORS

We associate an inverse Lyapunov operator L 4 with a Hurwitz
matrix A € R™*", so that £, maps a matrix M € R"*"
to the unique solution N of the algebraic Lyapunov equation
AN + NAT + M =0:

—+o0
La(M):= / AN e tdt. (B.1)
0
Its adjoint is CB = L. Since L4 commutes with the trans-
pose, that is, L4(MT) = (£La(M))?, then it also commutes
with a symmetrizer S defined by
S(M) = (M+M")/2. (B.2)

The operator S : R™"*"™ — §,, is the orthogonal projection onto
the subspace of real symmetric matrices of order n.

Lemma 8. The Frechet derivatives of the controllability and
observability Gramians P and ) of an asymptotically stable

system (A, B, C') with respect to the matrix I’ := {é ]03
expressed in terms of (B.1) and (B.2) as
rP=2L48[l1 0], | 2o |l, orQ=2L42S]@ 7], m]]]
(B.3)

} are

P
BT

Proof. The Frechet differentiability of P and @ is ensured by
the assumption that A is Hurwitz. The first variation of the
algebraic Lyapunov equation AP + PAT + BBT = 0 yields
(0A)P 4 ASP + (0P)AT + PSAT + (6B)B™ + B6BT =

ASP+(SP)AT+2S8 ([6A 4B 2.1 ) =0. This is an algebraic

BT
Lyapunov equation with respect to d P with the same matrix
A, which proves the first of the relations (B.3) in view of the
identity [A B] = [I 0]T. The second equality in (B.3) can
be obtained by a similar reasoning from the first variation of
the Lyapunov equation for the observability Gramian @, or by
using the duality between P and ). B

Appendix C. SECOND ORDER FRECHET DERIVATIVE
OF THE LQG COST

Lemma 9. The second Frechet derivative of the squared #o-
norm E := ||(A, B,C)||3 of an asymptotically stable system

A B . ted
c o 1S computed as

RE =4[], 1P BIILAxSTlIQ ), [g]1
+A1[&] 17 o1£aSTl 0], | gr |1

Q0] [00] [ooO] [PO
a3 ) o3 o) [6 9]
Here, L4 and S are the inverse Lyapunov operator and sym-

metrizer from (B.1), (B.2), and P, @ are the controllability and
observability Gramians of the system.

with respect to the matrix I' :=

P
BT

(C.1)

Proof. Lemma 2 implies that the first variation of the Frechet
derivative OpF is computed as 00prE/2 = (5[@13 QB] -

CP 0
! Q[P B] + @ SP[I 0] + 0 @B . Hence, (C.1) can
0 c (5C)P 0

be obtained by using the Frechet derivatives of the Gramians
0 QéB] B

from Lemma 8 of Appendix B and the identity [( 5C)P 0

5 7Jorfo ] + o 7)or(o 7] m

Lemma 10. The second Frechet derivative of the squared Hs-

norm E := ||(A, B,C)|3 of an asymptotically stable system
with respect to A is
04 E = 4R, R := QLASP +PLASQ. (C.2)

Here, Q := [[Q, I]) and P := [[I, P]| are grade one self-adjoint
operators (see Section 7) of the left and right multiplication by
the observability and controllability Gramians of the system.

Proof. In view of Lemma 8, the first variation of 94 F =
2QP with respect to A is 004F = 2(QJP + (6Q)P) =
4(QLAS((6A)P)+L 4rS(Q(0A)) P), which establishes (C.2).
Alternatively, (C.2) can be obtained from (C.1) of Lemma 9. Bl

At least some eigenvalues of the self-adjoint operator R in
(C.2) are positive, since R(A) = —QP and (A, R(A4)) =
—(4,QP) = ||(4,B,0)|3/2 > 0.
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