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Abstract: The kinematics and dynamics of two planar rigid manipulators handling a rigid
object are studied. The system dynamics is formulated by combining the dynamics of manip-
ulators and the object. A regressor based sliding mode control scheme is developed for the
control of object to reach the desired position and orientation. The main advantages of the
proposed robust control scheme are that, it can handle quickly varying parameters and alleviate
the problem of choosing the upper bounds of the uncertainties in the robust approaches; it also
does not need persistency of excitation, and guarantees the exponential convergence of transient
behavior. The main problem with this type of control is chattering, which is eliminated with the
help of adding boundary layer thickness in the control law. Simulations are performed which
confirm the effectiveness of the proposed control approach.
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1. INTRODUCTION

A single robot alone is not able to grasp and move a long
object in a safe and efficient way. Owing to the single
arm structure, present day robots are called “handicapped
operators” for performing complex tasks. Most tasks in
assembly/disassembly, handling large or heavy objects
are done efficiently with two robot arms. Collaborative
manipulators have many advantages compared to single
arm manipulators such as increased load carrying capac-
ity, greater dexterity and manipulability, reduced need
for extra auxiliary equipments, efficient use of available
workspace and increased productivity by operating each
robots in parallel to achieve different tasks at the same
time. The first master/slave teleoperated manipulator was
used in the nuclear industry (Goertz (1952)) and thereafter
the need for two robots for various applications has been
realized.

Many control methods for the coordinated motions of
manipulator have been developed. In 1980’s researchers
dealt with master/slave approach, see for example, Luh
and Zheng (1989). However, master/slave approach failed
due to the kinematic and dynamic uncertainties in un-
calibrated slave robot joint measurements. The Hybrid po-
sition/force approach was used by various researchers in-
cluding Hayati (1986) and Dauchez et al. (1989) to achieve
coordination between the manipulators when handling an
object. Other recent approaches for the coordinated con-
trol may be found in Caccavale et al. (2008) and Moosavian
and Papadopoulos (2010). However, all these approaches
need the accurate information of the dynamic parameters.
� The first author would like to thank Govt. of India for the financial
support.

In order to alleviate these problems, both adaptive and
robust control algorithms were employed.

In order to adapt to the uncertainties of the model, since
late 1980’s, adaptive and robust approaches have been
introduced. The early works may be found in, for example,
Hu and Goldenberg (1989), Walker et al. (1989) and Zribi
et al. (2000). It is worth mentioning that until now the
adaptive and robust approaches are still the dominant
control strategies to deal with the uncertainties in the the
coordinated motions of manipulators. Relevant literature
includes Gueaieb et al. (2003), Uzmay et al. (2004), Azadi
et al. (2006), Gueaieb et al. (2007) and Yagiz et al. (2010)
and references therein. However, for adaptive approach, it
is evident from Zribi et al. (2000) that, nine parameters
are generally required to estimate for each robot and
it increases computation burden. For robust approach,
the determination of upper bounds for the uncertainties
are generally very conservative, which may lead to large
control magnitudes.

In order to handle quickly varying parameters and al-
leviate the problem to choose the upper bounds of the
uncertainties, a regressor based control algorithm was pro-
posed by Su et al. (1993) for a single manipulator, where
the upper bound can easily be determined. In addition
to this advantage, it also does not need persistency of
excitation, guarantees the exponential convergence of tran-
sient behavior and it is robust against uncertainties in the
model. This approach was then extended to the tracking
control of uncertain nonholonomic robotic systems (Oya
et al. (2003)). In the present paper, we attempt to extend
this approach to the control of uncertain collaborative
manipulators handling a long and rigid object.
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This paper presents a study on the collaborative manip-
ulation of two planar manipulators each with three rigid
links used to move an object in the desired position and
orientation. The remaining content of the paper is orga-
nized as follows. In Section 2, kinematics and dynamics of
manipulators and the object are introduced. A regressor
based sliding control is developed and exponential stability
proof is presented in section 3. In order to validate the
proposed controller, simulations are carried out and the
results are discussed in section 4. Finally, section 5 presents
the conclusion.

2. MODELING OF THE SYSTEM

2.1 Kinematics of the Manipulators

The kinematic relations of each manipulator can be writ-
ten with respect to transformation matrices of each links.
Fig. 1 shows two planar manipulators with corresponding
end-effectors grasping an object. The co-ordinate frame
X1Y1 and X2Y2 shown in Fig. 1 are fixed frames and
xy-frame is a moving coordinate frame which is attached
to the beam. Xe1Ye1 and Xe2Ye2 are the end-effector
frames attached at each end of the end-effectors. The
end-effector positions and orientations e1 = {x1, y1, θ}

T

and e2 = {x2, y2, θ}
T , are represented with respect to a

reference frame X1Y1, respectively. In general, velocity of
each end-effector of the manipulator is related to joint
velocity of the manipulator through Jacobian matrix.
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Fig. 1. Two planar rigid manipulators grasping an object

For the two manipulators, the end-effector velocities ė1 and
ė2 and manipulator joint velocities q̇1 and q̇2 are related
through Jacobian matrices J1 and J2 as follows,

{ė} = [J ]{q̇} (1)

Differentiating (1) gives,

{ë} = [J̇ ]{q̇} + [J ]{q̈} (2)

where,

{ė} =

{
ė1
ė2

}
; J =

[
J1 0
0 J2

]

2.2 Dynamics of the Manipulators

In general, Lagrange dynamic equation of manipulator in
joint space can be expressed as,

Mi(qi)q̈i + Ci(qi, q̇i)q̇i +Gi(qi) = τi + JT
i fi (3)

Mi(qi) (i = 1, 2) represents symmetric positive definite
inertia matrix, Ci(qi, q̇i)q̇i is the vector due to coriolis
and centrifugal components, Gi(qi) represents the vector
of gravitational components, τi is the vector of input
torque applied at each joint of the manipulator, fi is the
interaction forces/moment between the manipulator and
object, Ji is Jacobian matrix of manipulator and qi is the
vector of joint angles.
Assembling the equations for the two manipulators in joint
space we have,

Mrq̈ + Cr q̇ +Gr = τ + JT f (4)

where,

Mr =

[
M1 0
0 M2

]
; Cr =

[
C1 0
0 C2

]
; Gr =

{
G1

G2

}

τ =

{
τ1
τ2

}
; J =

[
J1 0
0 J2

]
; f =

{
f1
f2

}
; q =

{
q1
q2

}

2.3 Kinematics of the object

Consider a beam of length L and mass m which is rigidly
grasped by the two manipulators. The mass center position
and orientation (pose) with respect to reference frame
X1Y1 is represented as c0 = {x0, y0, θ}

T . All kinematic
relations are written with respect to X1Y1 frame.
The left end pose of the beam is given by,

{e1} = {co} − {
L

2
cosθ

L

2
sinθ 0}T (5)

and the right end pose of the beam is given by,

{e2} = {co} + {
L

2
cosθ

L

2
sinθ 0}T (6)

Differentiating (5) and (6) yields as,

{ė} =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
L

2
sinθ

0 1 −
L

2
cosθ

0 0 1

1 0 −
L

2
sinθ

0 1
L

2
cosθ

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎨
⎩
ẋ0

ẏ0
θ̇

⎫⎬
⎭

{ė} = [R]{Ẋ} (7)

Differentiating (7) gives the acceleration as,

{ë} = [Ṙ]{Ẋ} + [R]{Ẍ} (8)

where R is the transformation matrix which relates the
end-effector velocity and object velocity.
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2.4 Dynamics of the object

In general, the Euler dynamic model of the rigid beam can
be written as,

MbẌ + CbẊ +Gb = Fb(−f) (9)

Mb =

⎡
⎢⎣
m 0 0
0 m 0

0 0
mL2

12

⎤
⎥⎦ ; Ẍ =

⎧⎨
⎩
ẍ0

ÿ0
θ̈

⎫⎬
⎭ ; Gb =

{
0
mg
0

}

Fb =

⎡
⎢⎣

1 0 0 1 0 0
0 1 0 0 1 0

L

2
sin θ −

L

2
cos θ 1 −

L

2
sin θ

L

2
cos θ 1

⎤
⎥⎦

whereMb is the inertia matrix of the beam. Assuming that
the beam does not experience any centrifugal and coriolis
forces (Zribi et al. (2000)) results in Cb = {0, 0, 0}T . The
gravitational force is represented by Gb and Fb denotes
the grasp matrix. The negative sign (−f) indicates the
reaction forces/moments at the two ends of the beam due
to the applied forces/moments by the manipulators.

2.5 Combined Dynamics

In order to obtain the combined system dynamics, the
dynamic equations of manipulators and beam must be
combined. However, the dynamic equation of beam is
represented in cartesian space and should be converted
into joint space. The resulting joint space dynamics of
beam can be combined together with the manipulators
dynamics (4) which is already given in joint space. Here
in this section, initially the beam dynamics is transformed
into joint space and finally combined dynamic equations
will be developed.

Using (1), (7) can be rewritten as,

Ẋ = R†Jq̇ (10)

Differentiating (10) gives,

Ẍ = Ṙ†Jq̇ +R†(J̇ q̇ + Jq̈) (11)

Substituting (11) into (9) gives us the beam dynamics in
the joint space,

MbR
†Jq̈ +Mb(Ṙ†J +R†J̇)q̇ +Gb = Fb(−f) (12)

Incorporating (12) into (4) gives the combined dynamics
(manipulators and beam dynamics) in joint space,

Mjsq̈ + Cjsq̇ +Gjs = τjs (13)

where,

Mjs = (Mr + JTF
†
bMbR

†J)

Cjs = Cr + JTF
†
bMb(Ṙ†J +R†J̇)

Gjs = Gr + JTF
†
bGb

where R† and F †
b represents the pseudo inverse matrices.

The combined dynamics (13) has following properties
which are essential for designing control algorithm and
stability analysis and these properties can be proved.
Property 1 : Mjs is a symmetric positive definite matrix.

Property 2 : The matrix Mjs and Cjs in (13) satisfies

XT
1

(Ṁjs − 2Cjs)X1 = 0, ∀X1 �= 0 (14)

where X1 is any arbitrary vector. That is (Ṁjs − 2Cjs) is
a skew-symmetric matrix.

Property 3: There exists a vector αjs ∈ Rv which solely
depends on manipulator and beam dynamic parameters
(lengths, masses and moments of inertia etc.) such that

Mjsq̈ + Cjsq̇ +Gjs = Yjs(q̈, q̇, q)αjs (15)

where Yjs ∈ RuXv is called regressor (Slotine and Li
(1991)) of the combined dynamic system represented in
joint space.

3. CONTROLLER DESIGN

3.1 Sliding Mode Control

The control law is formulated in such a way that the object
will move from the given initial pose to final pose and
simultaneously the two manipulators are also moved in a
prescribed way. In order to handle bounded uncertainties
of the parameters, a robust control algorithm is developed.
Defining the tracking error as,

err = q − qd (16)

the auxiliary trajectory can also be defined as,

q̇r = q̇d − λjserr (17)

where λjs is a positive definite matrix whose eigenvalues
are strictly in the right half of the complex plane.
The sliding surface can be chosen as,

Sjs = q̇ − q̇r = ėrr + λjserr (18)

The sliding mode controller can be given as,

τjs = Yjsψjs −KDSjs (19)

whereKD is a positive definite gain matrix, Yjs(q̈r, q̇r, q̇, q)
is regressor matrix, αjs is the parameter vector and ψjs =
[ψ1....ψm]T are the switching functions which are given by,

ψjs = −βjs

Y T
js Sjs

‖Y T
js Sjs‖

(20)

where βjs ≥ ‖αjs‖ and βjs is upper bound of αjs which
can easily be determined and shows the main advantage
over the other robust approaches in the literature.

3.2 Stability analysis:

Differentiating the sliding surface (18) with respect to time
gives,

Ṡjs = q̈d − q̈r (21)

Mutiplying both sides of (21) by Mjs and utilizing (13),
(21) can be rewritten as,

MjsṠ = τjs − Cjsq̇ −Gjs −Mjsq̈r (22)

Adding and subtracting Cjs q̇r in (22) and utilizing (18),
(22) can be rewritten as,
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MjsṠjs = τjs − Yjs(q̈r, q̇r, q̇, q) − CjsSjs (23)

Consider a Lyapunov function candidate as,

V (t, Sjs) =
1

2
ST

jsMjsSjs (24)

Differentiating (24) with respect to time gives,

V̇ (t, Sjs) = ST
jsMjsṠjs +

1

2
ST

jsṀjsSjs (25)

Substituting (23) into (25) and also utilizing property 2
given in (14), above equation yields into,

V̇ (t, Sjs) = ST
js[τ − Yjs(q̈r, q̇r, q̇, q)αjs] (26)

where,

Mjsq̈r + Cjsq̇r +Gjs = Yjs(q̈r, q̇r, q̇, q)αjs

Substituting the control law given in (19) and (20) into
(26) one can have,

≤ −ST
jsKDSjs − β1‖Y

T
js Sjs‖ + ‖ST

jsYjs‖‖αjs‖ (27)

Taking transpose of ‖ST
jsYjs‖ and also β1 ≥ ‖αjs‖ gives us

V̇ (t, Sjs) ≤ −ST
jsKDSjs (28)

It is well known that KD = Mjsκ1 where κ1 can be
considered as a least eigenvalue.
Hence, (28) can be rewritten as,

dV (t, Sjs)

dt
≤ −ST

jsMjsκ1Sjs (29)

Using (24), (29) can be rewritten as,

dV (t, Sjs)

dt
≤ −2κ1V (t, Sjs) (30)

The solution of the above equation is,

V (t, Sjs) ≤ V (0, Sjs(0))e−2κ1t (31)

It is evident from the above equation that the sliding
surface will converge exponentially to zero. Thus the
sliding surface is related to the tracking error err in (18)
which also converges exponentially to zero.

4. SIMULATION

The two planar manipulators each with three links move
the rigid beam from initial position and orientation of
center of mass (Ahmad and Zribi (1993)) (0.51m; 0.36m;
90◦) to final position and orientation (0.55m; 0.36m; 90◦)
is considered for the simulation. The motion of each joint
angles of first manipulator from (0◦; -45◦; -45◦) to (-
10.35◦; -21.5◦; -58.2◦) and correspondingly the second
manipulator from the initial joint angles (0◦; 45◦; 45◦) to
final joint angles (10.35◦; 21.5◦; 58.2◦) are considered. The
parameters of identical manipulators and beam are given
in tables 1 and 2. Also, the control parameters are given
in table 3.

It is observed from the Fig. 2 that, the beam approaches
towards its final position along X directions within 0.3 secs
and along Y directions as shown in Fig. 3. Due to highly
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Fig. 2. Motion of Beam along X direction
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Fig. 3. Motion of Beam along Y direction
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Fig. 4. Orientation of Beam
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Fig. 5. Joint-1 of Manipulator-1
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Fig. 6. Joint-2 of Manipulator-1
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Fig. 7. Joint-3 of Manipulator-1
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Table 1. Parameters of the manipulators

Link Length (m) Mass (kg) Moment of inertia (kg · m2)

1 0.3 1.0 0.30
2 0.3 1.0 0.30
3 0.05 0.4 0.15

Table 2. Parameters of the beam

Parameter Value

Mass (m) 1.0 kg
Length (L) 0.1 m

Moment of Inertia (I) 0.2 kg · m2

Table 3. Control parameters

Parameter Value

KD diag(20)
λjs diag(50)
βjs 3
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Fig. 8. Joint-1 of Manipulator-2
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Fig. 9. Joint-2 of Manipulator-2

nonlinear presence of the parameters, a small deviation to
the final value occurs initially. It can be also seen from
Fig. 4 that, orientation of the beam reaches its desired
value after 0.2 secs. These results are comparatively better
than the results presented in Zribi et al. (2000) and
also parameter estimation is avoided. Due to strict space
limitations, the regressor matrix for the combined dynamic
system is not provided and this can be available upon
request. Fig. 5 - 10 show that, the manipulators also
achieved their desired joint angular motions.

Due to the sliding condition given in (20), the control
law (19) is discontinuous across the sliding surface and
this causes the chattering phenomenon. Chattering is the
undesirable phenomenon of oscillations which has finite
frequency and amplitude. The chattering leads to high
control activity and correspondingly low control accuracy,
high wear of moving mechanical parts and also high heat
losses in electrical power circuits (Utkin and Lee (2006)).
It may excite unmodeled high frequency dynamics which
are not considered during initial modeling of the systems.
This phenomenon is observed in all the sliding surfaces.
For example, the sliding variable 6 shown in Fig. 11 has
chattering effect. This phenomenon is also observed in the
input control torques which are shown in the Figs. 12
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Fig. 10. Joint-3 of Manipulator-2

and 13. We have not shown sliding behavior for all the
sliding variables and control torques. However, this kind
of behavior also exists in the simulation results.
In order to overcome the chattering, the discontinuous
control law can be replaced with continuous one inside the
boundary layer (Su et al. (1993) and Oya et al. (2003)).
This can be done by adding a boundary layer thickness εt
in the switching function which is given by,

ψjs = −βjs

Y T
js Sjs

‖Y T
js Sjs‖ + εt

(32)

It can be seen from the Figs. 14 - 16 that, the chatter-
ing is completely reduced by adding the boundary layer
thickness of εt = 0.75 and this will lead us to avoid the
problems mentioned earlier due to chattering.
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Fig. 11. Sliding variable 6 with chattering
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Fig. 12. Control torque of joint 1 of manipulator 1 with
chattering
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Fig. 13. Control torque of joint 2 of manipulator 2 with
chattering
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Fig. 14. Sliding variable 6 without chattering
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Fig. 15. Control torque of joint 1 of manipulator 1 without
chattering
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Fig. 16. Control torque of joint 2 of manipulator 2 without
chattering

5. CONCLUSION

In this article, a sliding mode control scheme has been
developed for the collaborative manipulators to move a
long, rigid object towards its desired position and orienta-
tion. The advantages of the proposed controller is that, the
upper bounds of the uncertainties for the controller design
can easily be determined, which is generally difficult in
sliding mode controller designs. The problem of estimating
the parameters as in the case of adaptive law is avoided
which reduces the calculations. It also does not need per-
sistency of excitation and the convergence of the transient
is exponential which is evident from the stability proof
presented. In order to avoid chattering, a smooth control
law is adopted with the help of boundary layer thickness.
Simulation results show that the proposed controller is an
effective choice.
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