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Abstract: The analysis and recovery of the epipolar geometry is a crucial step to perform
a 3D reconstruction of a scene. This work uses two uncalibrated images as input to compute
the epipolar geometry of a scene. This is done in two steps: 1. automatically feature points
extraction and 2. feature points mapping determination. The feature points from the two images
are automatically extracted through the SIFT algorithm. The ICP algorithm is used to compute
an initial correspondence among the feature points by comparing their associated information.
A novel robust mapping determination algorithm is proposed to speed up the matching process
while the accuracy is maintained. The main idea is that the order in which three visible feature
points in the 3D are seen must be the same independently of the camera position. The Delaunay
triangulation creates coherently oriented triangles from the obtained inliers. Inliers that defined
non coherently triangles are removed. The convex hull of the Delaunay triangulation is used to
determined a new set of 8 points and a new set of inliers is determined. The proposed algorithm
was tested and showed to be robust. Copyright c©2011 IFAC.

Keywords: Epipolar geometry, 3D reconstruction, affine transformation, Delaunay
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1. INTRODUCTION

The estimation of 3D information is a very important
problem in computer vision. At present, there are two main
approaches to accomplish this task. The first approach
is based on a previous camera calibration. So that, the
imaging sensor model that relates 3D object points to
their 2D projections on the image is known (Ito, 1991).
Calibration cannot be used in active systems due to its
lack of flexibility, as optical and geometrical characteristics
of the cameras might change dynamically. The second ap-
proach is based on computing either the epipolar geometry
between both imaging sensors (Hartley and Zisserman,
2000) or an Euclidean reconstruction (Hartley, 1993). An
application of scene reconstruction using epipolar geome-
try was first published by Longuet-Higgins (1981).

The human vision system can easily distinguish a 3D
object from the background in an image due to some previ-
ous knowledge like colors, texture, shadow and geometric
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context. Thus, the objective of 3D reconstruction is to
automatically extract useful information from images in
a similar way as the human visual system.

Recovering epipolar geometry between uncalibrated cam-
eras usually is realized in three steps: determination of fea-
ture points, finding reliable corresponding feature points,
and estimation of the epipolar geometry. In this work,
the Scale Invariant Feature Transform (SIFT) algorithm
proposed by Lowe (2004) is used to determine the fea-
ture points from both images. The epipolar geometry is
determined by matching feature points in both images.
This is very difficult task, and it is generally accepted that
incorrect matches cannot be avoided in the first stage of
the process.

The well known standard RANdom SAmple Consensus
(RANSAC) proposed by Fischler and Bolles (1981) does
not model the matching process, it is a black box that gen-
erates several random tentative correspondences. Several
robust estimation algorithms have been proposed to over-
come this problem: adaptive real time RANSAC (Ragu-
ram et al., 2008), MLESAC (Torr and Zisserman, 2000),
PROSAC (Chum and Matas, 2005), and others. Those
algorithms try to remove mismatches created by repetitive
patterns, occlusions and noise.
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In this paper, the computational cost is diminished by
grouping the feature points in triangles and their topo-
logical orientation is determined. It is assumed that the
orientation of three visible feature points must be the
same independently of how they are seen. The triangles
are consistently created using the Delaunay triangulation
algorithm and the winged-edge data structure (Baumgart,
1972). The epipolar geometry is determined using at least
8 pairs of feature points. Then, the proposed algorithm will
create iteratively and semi-randomly 8 pairs of consistently
oriented feature points to determine the epipolar geometry,
the solution is given by the candidate subset that maxi-
mizes the number of consistent points and minimizes the
residual.

This paper is structured as follows. Section 2 explains the
feature points detection and mapping. Section 3 explains
the fundamental matrix evaluation and the proposed algo-
rithm is in section 4. Section 5 presents some results and
the conclusions are in section 6.

2. FEATURE POINTS MAPPING

The first step in the determination of the epipolar ge-
ometry is the determination of feature points and their
matching. The feature points are determined using the
SIFT algorithm (Lowe, 1999, 2001, 2004) that is a ro-
bust method to extract and describe feature points. This
approach transforms an image into a large collection of
local feature vectors, each of which is invariant to image
translation, scaling and rotation, and partially invariant
to illumination changes and affine or 3D projection. The
steps are described as follow:

2.1 Scale-Space Extrema Detection

The feature points are detected using a cascade filtering
approach that can identify locations in image scale space
that are invariant with respect to image translation, scal-
ing, rotation and are minimally affected by noise and small
distortions. Lindeberg (1994) has shown that under some
assumptions on scale invariance, the Gaussian kernel and
its derivatives are the only possible smoothing kernels for
scale space analysis. To achieve rotation invariance and a
high level of efficiency, Lowe (2004) has chosen to select
key locations at maxima and minima of a difference of
Gaussian function applied in scale space. The scale space of
an image is defined as a function, L(x, y, σ) = G(x, y, σ) ∗
I(x, y), that is produced from the convolution of a variable
scale Gaussian, G(x, y, σ), with an input image, I(x, y).

To identify the stable keypoint locations in the scale space,
the difference-of-Gaussian (DoG) convolved with the im-
age D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y) will be
used. The DoG will be computed from the difference of
two nearby scales separated by a constant multiplicative
factor k.

The DoG provides a close approximation to the scale-
normalized Laplacian of Gaussian σ2∇2G. As shown by
Lindeberg (1994) and by Mikolajczyk (2002), the normal-
ization of the Laplacian with the factor σ2 is required for
true scale invariance and the maximum and the minimum
of σ2∇2G is the most stable image features compared to
a range of other possible image functions, such as the

gradient, Hessian, or Harris corner function (Mikolajczyk
et al., 2005).

2.2 Keypoint Location Determination

The local maxima and minima of D(x, y, σ) is found by
comparing each sample point to its 8 neighbors in the
current image and 9 neighbors in the scale above and
below. A sample point is selected as a key point candidate
only if it is larger than all of these 26 neighbors or smaller
than all of them. After finding a keypoint candidate, the
next step is to perform a detailed fit to the nearby data
for location, scale, and ratio of principal curvatures. This
information allows points that have low contrast (and are
therefore sensitive to noise) or are poorly localized along
an edge, to be rejected.

The low contrast criteria is not sufficient to reject the
keypoints because the DoG function will have a strong
response along edges, even if the location along the edge
is poorly determined and therefore unstable to small
amounts of noise (Lowe, 2004).

2.3 Orientation Assignement

Local extrema detected in DoG scale-space are called key-
points after the operations of improving positioning accu-
racy and eliminating low-contrast points. To determine the
keypoint orientation, an orientation histogram is formed
from the gradient orientations of sample points within a
region around the keypoint. The peaks in the orientation
histogram correspond to the dominant directions of local
gradients. The highest peak in the histogram is detected,
and then any other local peak that is within 80% of the
highest peak is used to also create a keypoint with that
orientation. Therefore, for locations with multiple peaks of
similar magnitude, there will be multiple keypoints created
at the same location and scale but different orientations
(Lowe, 2004).

2.4 Keypoints Descriptor

Once an image location, scale, and orientation have been
assigned to each keypoint it is possible to impose a 2D
coordinate system to describe the local image region and
provide invariance with respect to these parameters. The
next step is to compute a descriptor for the local image
region that is distinct yet invariant to additional variations
such as change in illumination and 3D pose.

2.5 Keypoints Mapping

After the SIFT algorithm has been applied to the images,
it is possible to determine the correspondence among
the keypoints. The mapping happens by comparing each
keypoint descriptor that is formed from a 4 × 4 array of
histograms with 8 orientation bins in each. Therefore, each
keypoint has a feature vector with 4×4×8 = 128 elements.

The match assignment can be done by computing a sim-
ilarity metric between descriptors. Commonly used simi-
larity metrics includes sum of square differences, sum of
absolute differences, normalized correlation, and Maha-
lanobis distance metrics. Tests performed with the nearest-
neighbor method (Muja and Lowe, 2009) showed that the
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Fig. 1. Epipolar Geometry of two images. Here we have
the two camera centres C and C ′, the 3D point M e
the two projection planes V and V ′.

number of corresponding points with false matches in-
creases as the displacement between the images increases.

Therefore, the Iterative Closest Point (ICP) was used.
The ICP algorithm was originally introduced to register
3D data sets by Chen and Medioni (1992) and Besl
and McKay (1992), it is also used with 2D data sets
to register images mainly on medical applications. The
ICP algorithm iteratively performs two operations until
convergence: the data matching and the transformation
estimation to align the data sets. The ICP algorithm takes
two data sets as input representing salient points of a
reference image I1 and a target image I2. The goal is to
compute the parameters of the transformation matrix M
that best aligns the transformed points. For 2D Euclidean
transformation the parameters are the rotation matrix R
and the translation vector t = (tx, ty).

3. FUNDAMENTAL MATRIX EVALUATION FROM
FEATURE POINTS PAIRS

The epipolar geometry exists between any two-camera
systems. Consider the case of two cameras as shown in
Fig. 1. Let C and C ′ be the optical centers of the first
and second cameras, respectively. Given a point m in the
first image, its corresponding point in the second image
is constrained to lie on a line called the epipolar line of
m, denoted by l′m. The line l′m is the intersection of the
plane T , defined by m, C and C ′ (known as the epipolar
plane), with the second image plane V ′. This is because
image point m may correspond to an arbitrary point on
the semi-line CM (M may be at infinity) and that the
projection of CM on V ′ is the line l′m. Furthermore, one
observes that all epipolar lines of the points in the first
image pass through a common point e′, which is called the
epipole.

If m (a point in V ) and m′ (a point in V ′) correspond
to a single physical point M in space, then m, m′, C and
C ′ must lie in a single plane. This is the well-known co-
planarity constraint in solving motion problems when the
intrinsic parameters of the cameras are known (Longuet-
Higgins, 1981).

The mathematical expression that relates corresponding
points in two different images is (Luong et al., 1993):

mT · F ·m′ = 0 (1)

where F is a 3 × 3 matrix called fundamental matrix, m
is an image point and m′ is its corresponding point in
the other image. In particular, for m = (x, y, 1)T and
m′ = (x′, y′, 1)T , each pair of corresponding feature points
give us a linear equation.

Considering n pairs of corresponding points and denoting
f the 9 elements vector made up of the entries of F, it is
possible to obtain a set of linear equations of the form:

A · f = 0 (2)

where A represents a homogeneous set of equations, and f
can only be determined up to scale. For a solution to exist,
the matrix A must have rank at most 8, in this case the
solution is unique and can be determined by the generator
of the right null-space of A.

The fundamental matrix can be recovered using the nor-
malized 8 points algorithm and performs as well as the
best iterative algorithms (Karlstroem and Takase, 2005).
The 8 points algorithm solution involves the solution of
a set of linear equations where the linear least squares
minimization can be used.

4. PROPOSED ALGORITHM

As mentioned before, several approaches were published to
overcome the RANSAC inability in modeling the matching
process. In this work, it is considered that some topological
characteristics must be preserved in both images. The
order of three feature points that are present in both
images must be coherent (see Fig. 2). It is relevant to
mention that three collinear feature points can not be used
in the determination of the fundamental matrix.

Before explaining the proposed algorithm, we will present
the plane model (Mäntylä, 1988) that can represent co-
herently oriented polygons in the plane (see Fig. 3). Plane
models are used to represent B-Rep solid models in the 3D
space and Voronoi diagrams in the 2D space. Plane models
can be constructively created using Euler Operators and
can be represented by the winged edge data structure.

The proposed algorithm is shown in Fig. 4. In the first
step, 8 correspondent feature points are selected and a
planar graph is created. Initially, three coherently oriented
feature point pairs are selected. Next, one feature point
pair is selected at a time and a new triangle is added to
the structure. If the new triangle pair is not coherently
oriented then a new feature point pair is picked. Fig. 3
shows the created structure in the first image.

In the second step, the fundamental matrix is evaluated
and the inliers and outliers are identified. The inliers are
the data which approximately can be fitted to the epipolar
geometry model, while the outliers are the data which
cannot be fitted. If the maximum number of iterations has
been reached, a new set of 8 correspondent feature points
is selected.
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Fig. 2. Given that triangle ∆ = [P1, P2, P3] is in the first
image, and that triangles ∆ = [P ′1, P

′
2, P

′
3] and ∆ =

[Pa′1, Pa
′
2, Pa

′
3] are in the second image. Consider two

possible correspondences between the feature points
from both images: C1 = [P1 ↔ P ′1, P2 ↔ P ′2, P3 ↔ P ′3]
and C2 = [P1 ↔ Pa′1, P2 ↔ Pa′2, P3 ↔ Pa′3]. The
correspondence defined by C1 is wrong because both
triangles have incoherently orientations. On other
hand, C2 is correct.

Fig. 3. A plane model represents 8 feature points selected
from the first image. All triangles are coherently
oriented. The feature points were selected according
to the crescent index order.

In the third step, it is create the Delaunay triangulation
(de Berg et al., 2008) in the first image using the de-
termined inliers (see Fig. 5). This way, it is possible to
check all inliers with a minimum set of non intersecting
coherently oriented triangles in a structure similar to the
one shown in Fig. 3. Now, it is possible to verify if all
corresponding triangles are coherently oriented in both
images. As all triangles are coherently oriented in the first
image, it is necessary to exclusively check the orientation
in the second image. Incoherently triangles are marked,
and incoherent feature points are removed. Fig. 6 shows
two possible situations and how they are processed.

A threshold is defined for determining whether feature
point pairs are inliers or outliers, this threshold represents
the maximum algebraic distance for which a pair is de-
clared inlier. The inlier rate defined by

pin =
nin
N

(3)

where nin is the number of inliers and N is the total
number of determined feature point pairs. If pin is greater
than a threshold then the algorithm is stopped. Other stop
criteria similar to the one proposed in PROSAC (Chum

Fig. 4. The proposed algorithm.

Fig. 5. Delaunay triangulation created with the inliers
determined in the first image.
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(a)

(b)

Fig. 6. It is shown two possible situations where a false
inlier is present. (a) In this case the false inlier is
internal to a triangle. After removing the false inlier,
a polygon is created. (b) In this case the false inlier is
at the boundary of the Delaunay triangulation. The
inlier with less adjacent triangles is removed.

and Matas, 2005) or MLESAC (Torr and Zisserman, 2000)
can be used here.

The convex hull of the remaining Delaunay triangulation is
determined. By using feature points preferentially from the
convex hull boundary the resulting fundamental matrix
maps the far away points accurately and possibly the
number of inliers increases.

5. RESULTS

The epipolar geometry automatic recover involved several
algorithms implementation: the SIFT used in the feature
points determination, the ICP used fo define an initial
correspondence between the feature from both imagens,
the proposed algorithm used in the correspondence points
refining and the fundamental matrix determination.

Initially the SIFT algorithm were applied in both images
to obtain an initial set of corresponding points. The result
of the SIFT algorithm can be viewed in the Figs. 7.(a)
and 7.(b), the first image shows a correctly recognized
corresponding point and the second image shows a fail
in the recognition.

After the initial matching of corresponding feature points,
the proposed algorithm is executed and the fundamental
matrix is estimated to the bigger set of corresponding
points. Fig. 8.(a) shows the outliers and the inliers at
the beginning and at the end of the iteration. Through
the analysis of Fig. 8.(a), it is possible to notice that the
number of outliers decreases as the number of iteration
increases showing that a robust matching was performed.

At the end of the proposed algorithm, it is possible to
recover the epipolar geometry of the two images. Fig. 8.(b)
shows the epipolar lines of the first and the second image.
Although the nearest point algorithm failed to matching
the corresponding points when the displacement between
the two images increase, the ICP algorithm could retrieve a

(a) (b)

Fig. 7. (a) Images with a corresponding point recognized
(initial matching) showing a correct matching. (b) Im-
ages with a mismatched corresponding point (initial
matching) showing a failed matching.

(a) (b)

Fig. 8. Inliers (yellow) and outliers (blue) at the beginning
(above) and at the end of iteration (below). (b)
Epipolar lines of first and second images are shown.

considerable number of corresponding points in the initial
match and could recover the epipolar lines (Fig. 8.(b)).

Figures 9.(a) and 10.(a) show the initial matching of cor-
responding feature points in two additional examples. At
the end of the proposed algorithm, the epipolar geometry
was recovered as can be seen in Figs. 9.(b) and 10.(b).

6. CONCLUSION

From the results it is possible to verify that the SIFT
algorithm can identify a large number of feature points.
Tests showed that the performance of the ICP algorithm
was better than the nearest-neighbor method in the initial
matching of feature points.

The proposed method based on triangle coherence mainte-
nance among images showed to be effective by eliminating
mismatches. The epipolar geometry was determined with
fewer iterations when compared with the RANSAC algo-
rithm.

For the future work, it is necessary to quantify the ob-
tained results through the error analysis. Moreover, it is
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(a) (b)

Fig. 9. (a) Images with a corresponding point recognized
(initial matching). (b) Epipolar lines of first and
second images are shown.

(a) (b)

Fig. 10. (a) Images with a corresponding point recognized
(initial matching). (b) Epipolar lines of first and
second images are shown.

necessary to recover the camera parameters to generate
the points cloud in the space and to perform a 3D recon-
struction.
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