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Abstract: The use of communication networks for the transmission of control system signals
(measurements and actuation) is becoming more widespread. If the communication (or the
sensors and actuators themselves) can be modified by a malicious agent then the control of the
physical plant can be covertly appropriated. A parameterised decoupling structure is introduced
which allows the covert agent a wide range of control actions on the physical plant while
remaining undetectable from the point of view of the original networked controller. The designer
of the covert agent need only have a model of the physical plant; knowledge of the networked
controller is not required. A MIMO process control example (based on the control of irrigation
canals) is used to illustrate the concepts.

1. INTRODUCTION

The ready availability of components for both wireless
and wired network communications has accelerated the
adoption of feedback control systems that operate over
network communication links. Such networks have been
used for monitoring and supervisory control of geograph-
ically widespread or separated processes; the SCADA ar-
chitecture is such an example.

Such systems also have potential security problems. A
malicious agent can more readily gain access to the signals
and information within the control loop and use these
to disrupt or compromise the controlled plant. Such at-
tacks can take place entirely within the communication
network or they may include physical interference with
the actuators and sensors. The problem arises because
the controller receives all of its information about the
operation of the physical plant via potentially modifiable
information channels.

If the objective of the malicious agent is simply the
disruption of the controlled system then there are well
known means of attack via the network, one example
being denial-of-service attacks. In this paper we are more
interested in stealth; the malicious agent does not want to
reveal to the controller that the system is compromised.
The term covert agent is a more fitting description.

In our scenario we assume that the covert agent can modify
the sensing and actuation signals. This may be accom-
plished from within the network, and/or by modification or
augmentation of the physical sensors. It the plant is linear,
time-invariant and known to the covert agent then that
agent can use a parameterised feedback based structure
to gain control of the plant in a manner that cannot be
detected by the controller. From the controller’s point of
view, the effect of every noise and disturbance entering
the physical system is identical to the uncompromised
case. Perfect characterizations of the noise/disturbance

characteristics and/or probing signals are unable to detect
the presence of the covert agent. In this sense, the actions
of the covert agent are invisible to the controller. In this
paper we present a covert agent architecture that gives
these properties.

As networked control architectures becomes more preva-
lent the security of these systems is a matter of growing
concern. There is a significant research effort on the vul-
nerability of SCADA systems from a computer security
point of view (Igure et al. [2006]). See also Amin et al.
[2010], Chabukswar et al. [2010] and Sandberg et al. [2010].
Several aspects of this prior work are relevant here. Amin
et al. [2010] uses a detailed model and design procedure
for an irrigation channel in order to compromise its op-
eration. They make the observation that the attack will
be harder to detect if the downstream measurements are
also modified. Sandberg et al. [2010] studies the detection
of attacks in large-scale MIMO systems and observes that
(from at least a measurement point of view) attacks which
are consistent with the dynamics will not be detected.
The parameterisation given in the current work modifies
both the actuation and sensing signals in a way that is
consistent with the dynamics from the point of view of
the controller and drives the physical plant to an operating
point of the covert agent’s choosing.

2. COVERT CONTROLLER PARAMETERISATION

The nominally controlled system is illustrated in Figure 1.
This is a standard feedback control system; the network
serves to emphasize that the only information received by
the controller is the measured signal, ym, transmitted via
the network.

In order to be able to write closed-loop transfer functions
we assume that the controller is linear and time-invariant.
The results given below still hold for a nonlinear or time-
varying controller. Consider the controller to given by,
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Fig. 1. Nominally connected networked control system.
The controller, C, is assumed to receive all infor-
mation about the physical plant, P , via potentially
modifiable communication links.

uc = [Cy Cr]

[
ym
yref

]
,

where r is a reference signal. The measurement, ym, is
comprised of the plant output, additive noise, n, and the
effects of a disturbance, w.

ym = Pu u + Pw w + n. (1)

In the uncompromised case the actuation is faithfully
reproduced giving,

u = uc.

This leads to closed-loop transfer functions given by,

ym = (I − PuCy)−1PuCr yref

+ (I − PuCy)−1 n + (I − PuCy)−1Pw w. (2)

We assume that Cy and Cr have been chosen to give
the appropriate trade-off between closed-loop stable noise,
disturbance and reference tracking responses. It is assumed
that any additional delays or communication noise intro-
duced in the network is accounted for in the design of Cy
and Cr.

Note that in (2) we have expressed the transfer functions
in terms of ym. The purpose of doing this is to show
them in terms of signals that are available to the controller
during operation. In doing the design one would instead
work with transfer functions in terms of y in order to
distinguish between the effects of sensor noise and output
disturbances.

2.1 Model of the Covert Agent

We now consider the case where a covert agent can
both measure and corrupt the signals transmitted via
the network, ym and uc. This not only applies to the
case where the signals are intercepted on the network;
it also considers the situation where either the actuators
or sensors are compromised. Because the parameterisation
given here is in a feedback form we will also refer to the
covert agent as a covert controller.

In the following we assume:

1. The covert agent has a model of the plant’s control
to output mapping, denoted by Πu;
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Fig. 2. Interconnection diagram illustrating the covert
agent’s parameterisation. The use of decoupling and
feedback makes the covert agent’s actions, specified
by Θ and ξref, undetectable by the controller, C.

2. The covert agent can only measure and add to exist-
ing control or measurement signals; and,

3. The plant is linear and time-invariant.

The analysis given below will assume that the covert
agent’s model of the plant is exact; Pu = Πu. In practice
it is sufficient that any error between Pu and Πu be
smaller than the allowable robustness margins for which
the controller was designed.

The assumption that the covert agent can only add to the
signal is not particularly restrictive but makes it clear that
this configuration also addresses the case where the plant
actuation is compromised by connecting another actuator
in parallel.

The covert agent model is illustrated in Figure 2. The
agent measures uc and ym and adds to these the signals µ
and γ respectively. The internal structure of the agent is
given in this form in order to derive its effect in terms of
a decoupled control action.

The Φ decoupling block is given by,[
γ
ξ

]
= Ψ

[
y + n
ζ

]
=

([
0 1

(1− λ)/λ −1

]
⊗ Iny

) [
y + n
ζ

]
,

where ⊗ denotes the Kronecker product and Iny is an
identity matrix of the same dimension as y. Similarly,
define Inu as an identity matrix of dimension equal to that
of u. The Φ decoupling block is then given by,[

µ
η

]
= Φ

[
uc
ν

]
=

([
(λ− 1) λ
(1− λ) −λ

]
⊗ Inu

) [
uc
ν

]
,

Both Φ and Ψ are functions of a parameter λ 6= 0 that
can be chosen by the covert agent. It will become clear
that 1−λ determines the amount of disturbance rejection
control handled by the covert controller. The choice of λ
also has consequences on the range of decoupled control
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actions available to the covert controller. These issues will
be discussed later and it will be seen that for practical
purposes λ = 1 is a good choice.

To see the effect of this decoupling consider the system in
terms of the measurements and actuator for the controller,
C. The measurement vector is now given by,

ym = y + n + γ

= Pu u + Πu(1− λ)uc + Πu(−λ) ν + n + Pw w,

= Πu uc + λ(Pu −Πu)(uc + ν) + n + Pw w,

and if Pu = Πu, then,

ym = Pu uc + Pw w + n. (3)

Note that this is exactly the case for the uncompromised
closed-loop given in (1). Using,

uc = Cy ym + Cr yref,

gives the closed-loop response,

ym = (I − PuCy)−1PuCr yref

+ (I − PuCy)−1Pw w + (I − PuCy)−1 n.

As expected, from the point of view of the controller, this
is identical to uncompromised closed-loop given in (2).
However, as we will subsequently see the action on the
true plant output, y, is very different.

Note that the derivation of ym in (3) used only the linearity
of Pu and Πu and the static equations given by the
decoupling blocks Ψ and Φ. No assumptions were made
about the controller.

2.2 Design Parameterisation of the Covert Agent

In the structure illustrated in Figure 2 the degrees of
freedom available to the covert agent are the value of
λ, the choice of operator Θ, and the signal ξref. We will
interpret the last two as a controller and reference signal
respectively.

For simplicity in the following, the Θ operator will be taken
to be a linear time-invariant operator of the form,

ν = [Θξ Θr]

[
ξ
ξref

]
.

From the definition of Ψ we have,

ξ =

(
1− λ
λ

)
(y + n) − ζ

=

(
1− λ
λ

)
(Pu u + Pw w + n) − Πu η.

Substituting,

u = uc + µ = λuc + λ ν,

and
η = (λ− 1)uc − λ ζ,

leads to,

ξ = (Pu + λ(Πu − Pu)) ν + (1− λ)(Pu −Πu)uc

+
1− λ
λ

(n + Pw w).

We again use the assumption that Pu = Πu to get,

ξ = Πu ν +

(
1− λ
λ

)
(n + Pw w).

Note that ξ and ν are the input and output (respectively)
of Θ. We can therefore interpret the function of Θ as
closing a feedback loop around Πu with the objective of
tracking ξref. Using this interpretation gives as a closed-
loop transfer function,

ξ = (I −ΠuΘξ)
−1ΠuΘr ξref

+
1− λ
λ

(I −ΠuΘξ)
−1 (Pw w + n). (4)

The only constraint that is placed on Θ is that the closed-
loop transfer functions in (4) are stable. We can express the
“design” of the covert agent in terms of the design of the
closed-loop transfer functions above. Section 2.3 discusses
the actions available to the covert agent in more detail.

From the above we can see that the actuation signals,
uc and ν, and measurement signals, ym and ξ, give a
decoupled representation of the compromised system.[

ym
ξ

]
=

[
Pu 0
0 Πu

] [
uc
ν

]
+[
Pw 1

Pw(1− λ)/λ (1− λ)/λ

] [
w
n

]
. (5)

The decoupled representation allows us to design the
covert controller, Θ, without being required to know the
networked controller, C.

2.3 Covert Agent Control Options

The only constraint that we have on design of the covert
controller is that Θ stabilizes Πu. This allows a wide range
of control actions for the covert controller.

However the convert controller’s objectives are stated in
terms of the variable ξ which is not the same as the
physical output of the plant, y. From the definition of Ψ
and the interconnection shown in Figure 2 we have,

y = λξ + λym − n. (6)

If the covert controller knows the networked controller’s
reference, yref, then this information can be used to specify
a ξ reference value, ξref, that gives a desired value for y.
For simplicity assume that w and n are both zero mean
and that the networked controller, C, has been designed
such that,

lim
t−→∞

E{y} = yref,

where E{ } denotes the expected value. The design of the
networked controller, C, assumes that,

lim
t−→∞

E{y} = lim
t−→∞

E{ym}

but in fact C controls only ym giving instead,

lim
t−→∞

E{ym} = yref.

In the absence of the covert controller this would be
sufficient to ensure the desired performance of plant in
closed-loop with the networked controller.

Suppose now that the covert controller’s objective is to
instead set the output y to a covert reference value of ys.
Then implementing Θ as a reference tracking controller
such that,

lim
t−→∞

E{ξ} = ξref,

gives (via Equation 6),

lim
t−→∞

E{y} = lim
t−→∞

E{λξ + λym − n} = λξref + λyref.
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Fig. 3. Illustration of the irrigation canal system. The
canals are narrow (2.5 m.) compared to their length.

Now by choosing, ξref = (ys − λ yref)/λ, we have,

lim
t−→∞

E{y} = ys.

In this manner the covert controller can effectively reset
the reference tracking set-point to any desired value.

We note here that the choice of λ = 1 in the decoupling
parameterisation makes the selection of ξref simpler. In this
case

lim
t−→∞

E{y} = yref + ξref.

This allows the covert control to specify its reference plant
output, ys, with respect to the controller’s reference value,
yref. In the application example we will use this choice to
give a covert controller that drives the plant output to a
fixed value less than the reference controller.

3. AN APPLICATION EXAMPLE

The covert controller parameterisation is illustrated on
an irrigation canal control example described by Sánchez-
Peña et al. [2009]. This class of problem has also been stud-
ied from a network security point of view by Amin et al.
[2010]. Because the sensing and actuation is geographically
separated applying closed-loop control to irrigation canals
often requires networked control systems.

The system described by Sánchez-Peña et al. [2009] is
briefly outlined here for context, and is illustrated in
Figure 3. A reservoir is assumed to be at a fixed height
(3.5 m.) and its outlet flow is controlled by a sluice gate
with the gate height, u1, proportional to the flow. The
second actuator is a sluice gate controlling the flow from
canal 1 to canal 2. The actuation variable is the gate
height, u2. Both sluice gates are constrained to a maximum
opening of 0.9 metres. The second canal is terminated
by a fixed height spillway. The two measured variables
of interest for control purposes are the heights at the
downstream ends of each canal; h1 and h2 respectively.

The full model is described by a pair of partial differential
equations known as the Saint-Venant equations. Sánchez-
Peña et al. [2009] give a simplified model derived using
the approach described by Litrico and Fromion [2004]. The
linearized plant is described by,

y =

[
h1
h2

]
= Pu u

=

[
1 0
0 e−t2s

]
4.87

1800s+ 1

−4.35

2100s+ 1

1.20

1900s+ 1

1.40

1500s+ 1

[e−t1s 0
0 1

]
u,

where t1 = 7 minutes and t2 = 15 minutes.
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Fig. 4. Canal water levels under closed-loop control by
the nominal networked controller. A step reference
change in h1 (from 0.64 to 0.94) is commanded at
300 minutes. No change is commanded for h2. A flow
disturbance on at gate 1 (shown in Figure 5) begins
at 600 minutes.

The networked reference tracking controller for this plant
is based on a robust MIMO Smith-predictor method de-
scribed by Sánchez-Peña et al. [2009]. The controller in-
corporates an integral term for zero steady-state tracking
error of h1 and h2. In the simulations presented here an
Internal Model Control (IMC) implementation is used (see
Morari and Zafiriou [1989] for details). The networked con-
troller is designed to be robust with respect to variations
in the time delays within the plant. This feature would
also be useful for handling the delay uncertainty within
the communication network.

The closed-loop simulation given in Figures 4 and 5
establishes a baseline for the performance of the networked
control system. A reference step change in h1 (from an
initial value of h1 = 0.64 m. to a value of h1 = 0.94 m.)
occurs at 300 minutes. The second canal level is held
constant at h2 = 0.96 m. No sensor noise is included
in these simulations so that the networked controller’s
responses can be more clearly seen.

The closed-loop system exhibits a well damped response
and zero steady-state tracking errors. There is relatively
little cross-coupling between the h1 and h2 channels. The
flow disturbance on u1 (from 600 to 1000 minutes) is
equivalent to raising sluice gate 1 by 0.01 metres. It gives
rise to a disturbance in h1 of approximately 0.02 metres
which is then rejected by the networked controller.

The above simulation scenario is now repeated with a
covert controller actively manipulating the actuation and
measurement signals. The covert controller structure is
that illustrated in Figure 2. The decoupling blocks, Φ and
Ψ, use the parameter λ = 1.0. This has several advantages
in this application. The first is that the covert controller’s
objective can be specified with respect to the networked
controller’s objective. In this case the covert controller’s
objective will be to maintain canal 1 height at of 0.1 metres
below the networked controller’s h1 reference value.
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Fig. 5. Gate position actuation signals under closed-loop
control by the nominal networked controller. A step
reference change in h1 is commanded at 300 minutes.
At 600 minutes a flow disturbance of 400 minutes
duration is introduced.
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Fig. 6. Canal water levels in the presence of the covert
controller. The command and disturbances signals
are identical to those shown in Figures 4 and 5.
In this case the covert controller (using λ = 1)
introduces a controlled reduction in the level of h1.
The commanded reduction is 0.1 metres and begins
at 50 minutes.

The second advantage is that the covert controller need
not know the linearization biases (steady-state values of
u and y at the linearization point) used by the networked
controller, C. If λ 6= 1 these biases must be subtracted
from the uc input to Φ and added to the γ output of Ψ. A
corollary of this observation is that Πu can be a linearized
model of the plant P .

The results of the simulation with the covert controller are
shown in Figures 6 and 7. The covert controller’s reference
objective is,

60030050 1000 1500
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0.01

0.3

0.4

0.5

Time [minutes]

Gate positions [metres]

u   (commanded)
1

u   (actual)
2

u   (actual)
1

u   (commanded)
2

1Disturbance on u

Fig. 7. Gate position actuation signals in the presence of
the covert controller. Shown here are the actual gate
level commands (u1 and u2) as well as the commands
generated by the networked controller.

ξref =

[
−0.1

0

]
,

and this step is commanded at the 50 minute time point.
As described above this has the effect of reducing the
actual canal 1 height, h1, to 0.1 metres below the h1
reference being maintained by the networked controller,
C. The canal 2 height, h2, is held at the level specified by
the networked controller.

Figure 6 shows that these objectives have been accom-
plished by the covert controller. At the 50 minute time
point h1 (for the plant) drops from h1 = 0.64 to h1 = 0.54.
The offset of 0.1 metres on h1 is maintained when the
networked controller raises its h1 reference value to 0.94
at 300 minutes.

The heights measured by the networked controller are
also shown on Figure 6. The largest difference between
the covert controller scenario and the baseline scenario
in Figure 4 is a 10 minute deviation of 0.03 metres in
the measurement of h2 at the 50 minute point. This is
due to the transient coupling between the height channels
when the covert controller turns on. This deviation is
significantly smaller than that due to the flow disturbance
at the 600 minute point and would be undetectable in
presence of noise and small flow disturbances.

The sluice gate actuation signals, u, (shown in Figure 7)
differ from the commanded actuation signals, uc, from
the 50 minute point onwards. The difference between
commanded and actuals signals is due to the action of
the covert controller.

Figures 8 and 9 illustrate the operation of the covert con-
troller by showing its internal signals ξ and ν respectively.
Using the decoupled representation in (5) we have,

ξ = Πu ν +
1− λ
λ

(Pw w + n),

and with λ = 1 this becomes,

ξ = Πu ν. (7)
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Fig. 8. Measurement and reference signals (ξ and ξref) for
the covert controller. In this implementation λ = 1
and the signal ξ is the difference between the covert
controller’s reference plant output and the networked
controller’s reference plant output.
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Fig. 9. Actuation signal, ν, for the covert controller, Θ.
With λ = 1 this actuation signal is added to the
networked controllers actuation commands and the
covert controller does not react to the flow distur-
bance.

The design of the covert controller is accomplished by
designing Θ as a reference tracking controller for the
linearized model Πu in (7). In this example a linearized
version of the networked controller, C, was used for Θ. It
is important to note that this need not be the case; Θ can
be any controller designed for operation with Πu.

The ability of the (Πu,Θ) closed-loop to track a ξ1 = −0.1
step command is illustrated here. Note that with λ = 1 the
covert controller does not respond to the flow disturbance
at the 600 minute point. This is evident in the Θ output
signals, ν.

The simulation illustrates another important point about
the covert controller parameterisation. Although the de-

coupling is exact when Πu = Pu we do not assume that
the state of covert controller’s model, Πu, matches the
state of Pu. This is demonstrated by the effect of the
flow disturbance at 600 minutes. The physical plant states
clearly respond to the disturbance, yet the states of the
covert model, Πu, clearly do not. The reason for this is the
linearity and time-invariance assumptions; the Πu model
compensates only for the effect of the covert controller’s
actuation on the plant. These effects can be added to those
of the networked controller, C, irrespective of the time.

4. DISCUSSION AND FUTURE WORK

Covertly appropriating a networked control system re-
quires only access to both the sensing and actuation sig-
nals, and a model of the plant being controlled. The plant
model need not be identical to that used for the design
of the networked controller but the difference between Pu
and Πu should be less than the robustness margins used in
the design of the networked controller, C. A more detailed
quantification of this constraint is an area for future work.

This work illustrates the importance of secure communi-
cation links and the physical security of the actuators and
sensors in a networked control system. A malicious agent
need only use the formulation given here to covertly take
control of a physical plant. Intrusion detection based on
the measurement, actuation or probing signals will not
detect such agents.
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MIMO Smith predictor: Global and structured robust
performance analysis. J. Process Control, 19:163–177,
2009.
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