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Abstract: We present a method for guidance of a Dubins-like vehicle towards a target in a cluttered
maze-like environment. The vehicle is strongly information and memory limited. In particular, it has
no knowledge about the environment and is not capable of memorizing its characteristics. The sensor
system provides only the distance to the nearest obstacle if this distance is within the given sensor range,
and also gives a partial access to the target relative bearing angle. We examine the simple memoryless
static local controller that implements the simple pursuit guidance at a large distance from the obstacles
and combines this guidance with collision avoidance activity in a vicinity of obstacles. This activity is
undertaken when and only when the distance to the obstacle is decreasing and consists in a maximally
sharp turn. At the start of this turn, its direction is randomly chosen; evidence in favor of the random
choice option is presented. Mathematically rigorous analysis of this law is provided and it is proved that
the vehicle necessarily reaches the destination. Convergence and performance of the proposed controller
are confirmed by computer simulations.
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1. INTRODUCTION

Unmanned aerial and ground vehicles have been extensively
used in recent past for a variety of applications in hazardous
and complex environments or plenary surveillance mainly due
to their lightweights, inexpensive components, and low power
consumptions, see e.g. Quigley et al. [2005], Ahmadzadeh et al.
[2006], Girard et al. [2004], Wang et al. [2008] and references
therein. Such applications often involve limitations on commu-
nications that require the vehicle to operate autonomously for
extended periods of time and distances. In these situations, the
unmanned vehicles should be equipped with control systems
by which they can move autonomously and safely operate in
populated and a priory unknown environments.

In order to operate in a cluttered environment, an autonomous
vehicle should be able to detect and avoid the obstacles. Online
motion planning is theoretically well understood and practically
solved in many settings. Current guidance approaches can be
generally classified as global or local path planners Lapierre
et al. [2007]. Global sensor-based planners use a priori and
sensory information to build a complete model of the envi-
ronment and then try to find the best solution Belkhous et al.
[2005]. Alternatively, local path planners use onboard sensors
to locally observe a small fraction of an unknown environ-
ment to generate the trajectory Deng et al. [2007], Teimoori
and Savkin [2010]. The short calculation time in these strate-
gies allows them to be applied in real-time guidance systems.
Marginal situation where the open-loop path planning collapses
into infinitesimally short time intervals is represented by lo-
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cal reactive controllers. Examples of such planners, which are
alike in flavor to our approach, are the biologically inspired
DistBug algorithm Kamon and Rivlin [1997] and Pledge al-
gorithm Abelson and diSessa [1980]. They are members of
the Bugs family approaches Lumelsky and Stepanov [1990],
Kamon et al. [1991], motivated by bugs behavior on crawling
along a wall. Similar to ours, in DistBug algorithm the vehicle
directly travels towards the target and bypasses the enroute
obstacles by following their boundaries in close range. The
Pledge algorithm assumes that the searcher is equipped with
a compass and is able to follow the obstacle boundary while
counting its turning angles. In practice, however, a problem
with these strategies is that kinematic equations of the vehicles
and their nonholonomic constraints were not taken into account
in these algorithms, which is a severe limitation. Theoretical
results and performance guarantees concerning these strategies
typically suffer from idealistic assumptions, which fulfillment
in a practical setting may at least constitute a separate engi-
neering problem and at most be impossible due to kinematic,
dynamic, or sensing constraints. For example, this may con-
cern the instructions like ”follow along the obstacle boundary”,
”on reaching the obstacle, turn right without collision”, etc.
At the same time, the implications of real-life kinematic and
dynamic constraints were well understood within the classic for
the robotics research approach that is to decouple the problem
into open-loop path planning and design of a controller to fol-
low the proposed path; see e.g., LaValle and Kuffner [2001],
Chakraborty et al. [2009] and the literature therein. However,
this approach is computationally more demanding as compared
with the local reactive algorithms and typically assumes some
a priori knowledge about the environment, which may be a
serious limitation for real-time guidance systems.
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This paper deals with reactive guidance of an autonomous
vehicle towards a target through an unknown cluttered maze-
like and arbitrarily shaped environment, with respecting a pre-
specified safety margin. The kinematics of the vehicle are
described by the standard model of the Dubins-like car, i.e.
a nonholonomic system moving with a constant longitudinal
speed along planar paths of upper limited curvature without
reversing the direction Dubins [1957]. In the literature, this
model is applied to many mechanical systems such as wheeled
robots, aerial vehicles, missiles and underwater vehicles; see
e.g., Fossen [1994], Ben-Asher and Yaesh [1998], Manchester
and Savkin [2004], Low et al. [2007] and references therein.
The vehicle is strongly information and memory limited. It has
access only to the distance to the nearest obstacle if this distance
is within the given sensor range, the rate at which this reading
evolves over time, and also to the target relative bearing angle.
All measured quantities are related to this frame; in particular,
the vehicle has no access to an ’absolute’ direction, unlike
the classic Pledge algorithm. The vehicle is also unable to put
landmarks or memorize the visited parts of the environment,
either in full or in the form of their partial characteristics.

Under minor technical assumptions, we prove that despite all
constraints and limitations, the problem is solved by a very sim-
ple reactive local control law. It combines the pursuit guidance
with the simplest obstacle avoidance algorithm. During the pur-
suit guidance, the vehicle heading is rotated towards the target
line-of-sight at the maximal velocity; if the vehicle is headed
towards the target, it moves in a straight line. Whenever a threat
of collision with an obstacle is detected, this guidance law is
replaced by the sharpest turn in a randomly chosen direction;
which turn is terminated and the pursuit guidance is again put in
use as soon as the threat vanishes. The threat situation is defined
as that where the distance to the obstacle does not exceed a
given threshold and is decreasing. Overall, the proposed strat-
egy does not involve computationally intensive determination
of a route to avoid a pop-up obstacle but instead consists in
very simple reactions on the current sensor readings. Unlike
many other papers in the area of robotic guidance with obsta-
cle avoidance, mathematically rigorous justification of the pro-
posed strategy is offered; we prove that the vehicle inevitably
reaches the target with respecting the safety requirement even
in complex maze-like environments. The applicability of this
law is confirmed by extensive computer simulations.

The body of the paper is organized as follows. Section 2 of-
fers the system description and problem statement, the main
assumptions are given in Section 3. Section 4 presents the pro-
posed control law and the main result of the paper, whereas Sec-
tion 5 illuminates the performance of the closed-loop system
during obstacle avoidance maneuvers and provides an evidence
in favor of the random choice option. Simulation results are pre-
sented in Section 6, whereas Section 7 offers brief conclusions.

2. SYSTEM DESCRIPTION AND PROBLEM SETUP

We consider a planar vehicle modeled as unicycle. It travels
with a constant speed v and is controlled by the angular velocity
u limited by a given constant u. There is a steady point target
T and a complex obstacle D 6∋ T . The objective is to drive
the vehicle to the target through the obstacle-free part of the
plane R

2 \ D. To accomplish this, the vehicle has access to the

current distance d(t) to the obstacle and the rate ḋ(t) at which
this measurement evolves over time. Here

d(t) := distD[r(t)] := min
r∗∈D

‖r∗ − r(t)‖, (1)

‖ · ‖ is the standard Euclidian norm, and r(t) = col[x(t), y(t)]
is the vector of the vehicle Cartesian coordinates in the world
frame. The measurements d and ḋ are available if d does not
exceed the sensor range: d ≤ drange. The vehicle has access
to the angle β from the vehicle forward centerline ray to the
target. 1 During the entire maneuver, the distance from the
vehicle to the obstacle should exceed the given safety margin
d(t) ≥ dsafe > 0 ∀t, where dsafe < drange.

Remark 1. The reading β continuously evolves over time.

We employ the following unicycle-like robot model:

ẋ = v cos θ,
ẏ = v sin θ,

θ̇ = u ∈ [−u, u]
,

r(0) = r0 6∈ D
θ(0) = θ0

, (2)

where θ gives the vehicle orientation in the world frame. The
minimal turning radius of the vehicle is thus given by

R = v/u. (3)

The problem to be considered is as follows. Find a control law
that drives the vehicle to the target ∃t∗ : r(t∗) = T through the
obstacle-free part of the plane so that the safety requirement
d(t) ≥ dsafe > R is always satisfied.

3. ASSUMPTIONS

A domain is the closure of a non-empty open connected set. The
domain is said to be simple if it is bounded and its boundary ∂D
is a simple, connected, and piece-wise analytical curve.

Assumption 2. The complex obstacle D is composed of finitely
many disjoint simple domains D = D1 ∪ . . . ∪ Dk.

Hence ∂D =
⋃

i ∂Di and there is a path from r0 to T in the
obstacle-free part of the plane.

Our proposed navigation strategy consists in switching between
the pursuit guidance towards the target and obstacle avoidance
maneuvers. Such a maneuver is performed when the vehicle
is in a pre-specified vicinity of the obstacle and is based on
the measurements of d. To handle the situation where the
minimum distance d is attained at two different points of the
boundary, special control decisions are required. We postpone
their discussion as a topic of further research by assuming that
the avoidance maneuvers can be confined to a d⋆-vicinity of
the obstacle in which such a situation is not encountered. We
also slightly enhance this requirement: the minimum distance
cannot be attained at a point that may be viewed as two
infinitesimally close minimum distance points. This holds for
the so called focal locations r 6∈ D, i.e., such that ∃r∗ ∈ ∂D :
r = r∗ − Rκ(r∗) · N(r∗) and κ(r∗) < 0. Here κ(r∗) is the
signed curvature and Rκ(r∗) := |κ(r∗)|

−1 is the (unsigned)
curvature radius of the boundary ∂D at the point r∗ ∈ ∂D, and
N(r∗) is the inner unit normal to ∂D at r∗. It is assumed that
the boundary ∂D is positively oriented, i.e., when traveling on
it one always has the curve interior D to the left. So κ(r∗) > 0
for convexity points and κ(r∗) < 0 for concavity points. It is
tacitly assumed here that the point r∗ is such that ∂D is smooth
in its vicinity. We also put κ(r∗) = ∞, Rκ(r∗) := 0 for the
outer corner points r∗ and assume that 0−1 := ∞.

To state the assumptions concerned with the issue of unique-
ness, we introduce the following.

1 This assumption will be relaxed; see (ii) in Remark 7.
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Definition 3. Let d⋆ > 0 be such that any point r 6∈ D at
the distance distD[r] < d⋆ from the obstacle is not focal and
distD[r] is attained at only one point r∗ ∈ D. The supremum
d⋆(D) of all such d⋆ is called the uniqueness distance of the
obstacle D; if there are no such d⋆, we put d⋆(D) := 0.

It should be noted that d⋆(D) > 0 if and only if the following
claim is true, which is assumed throughout the paper.

Assumption 4. The obstacle boundary ∂D does not contain
inner corner points 2 .

For convex domains, d⋆(D) = ∞; for non-convex ones,

d⋆(D) ≤ RD := inf
r∈∂D:κ(r)<0

Rκ(r). (4)

Our proposed navigation strategy combines the pursuit guid-
ance towards the target and obstacle avoidance activities. The
latter are commenced as the vehicle comes close enough to
the obstacle: d ≤ dtrig. The avoidance control law may turn
the vehicle through the angle up to π radians. As a result,
the distance to the obstacle may appear to be no grater than
dtrig − 2R. With the safety requirement in mind, it is natural to
demand that dtrig−2R ≥ dsafe. On the other hand, this maneuver
is welcome to be within the obstacle uniqueness and visibility
margins, as was discussed: dtrig < d⋆(D), drange. By excluding
the controller parameter dtrig, we arrive at the following.

Assumption 5. Both d⋆(D) and drange exceed dsafe + 2R.

The next assumption is unnecessary and is induced by the paper
length limitations.

Assumption 6. The infimum RD from (4) exceeds dsafe + 3R.

By (4) and Assumption 5, RD > dsafe + 2R. Assumption 6
enhances this inequality by adding one more R on the right.
The infimum over the empty set is defined to be +∞.

If all parts Di of the complex obstacle D are convex, RD =
+∞ and there are no focal points. So Assumption 6 is true
and d⋆(D) equals half of the minimal distance between two
different obstacle parts Di and Dj, i 6= j (if there is only one
such part, d⋆(D) = ∞).

Assumptions 5 and 6 imply that dsafe < d⋆(D), drange, RD.
Conversely, if these inequalities hold, Assumptions 5 and 6 can
be ensured by adjustment of the vehicle cruise speed v:

0 < v < umin

{

min{d⋆(D); drange} − dsafe

2
;
RD − dsafe

3

}

.

This can be used for tuning or even adaptive adjustment of v, if
the cruise speed v > 0 is tunable and limited by only an upper
bound v ≤ v, and estimates of d⋆(D) and RD are available.

If not only v but also the safety margin dsafe is tunable and
limited only by the lower bound dsafe > R, Assumptions 5, 6
can be always satisfied by a proper choice of v and dsafe. Then
they should be viewed as recommendations on this choice.

4. THE NAVIGATION AND GUIDANCE STRATEGY

The proposed control strategy combines obstacle bypasses with
the simple pursuit guidance u = u · sgn β to the target T.
The latter means that the vehicle heading is rotated towards the
target line-of-sight at the maximal velocity. When the vehicle

2 When passing such a point in the positive direction, the vector tangential to

the boundary ∂D abruptly turns clockwise.

is headed towards the target β = 0, it moves in a straight line
to T. By the above concise formula for the pursuit law, this is
implemented as sliding motion, though the equivalent control
u = 0 Utkin [1992] can be directly applied.

To avoid collision with the obstacle, maximally sharp turn
u = −σu is performed, where σ = ± gives its rotational
direction. This maneuver is undertaken only if there is a threat
of collision: the distance to the obstacle is decreasing.

The above two guidance laws are combined in different ways
determined by a controller variable, which is called mode
and takes two values A and B. In the pursuit mode A, only
the pursuit guidance is used. In the avoidance mode B, this
guidance is used if it gives the firm guarantee of no collision

with the obstacle ḋ ≥ 0; otherwise, the companion control
law is put in use. The transition A 7→ B occurs whenever the
distance d from the vehicle to the obstacle reduces to the pre-
specified margin d = dtrig. The converse switch holds when the
distance increases to dtrig. In brief, this control strategy can be
expressed as the following discontinuous control law:

u = u ×







sgn β | if d > dtrig
{

sgn β if ḋ ≥ 0

−σ if ḋ < 0

∣

∣

∣

∣

if d ≤ dtrig

. (5)

Whenever d reduces to dtrig and so A 7→ B, the parameter σ
is updated. The updated value is picked randomly and indepen-
dently of the previous choices from {+,−}, with the value +
being drawn with a fixed probability p ∈ (0, 1).

When mode B is activated, ḋ ≤ 0. Even if ḋ = 0, at first the
controller is probationally set to the ’turn’ submode u := −σu.
The parameter dtrig is chosen so that

dsafe + 2R < dtrig < d⋆(D), drange, RD − R. (6)

Such a choice is possible thanks to Assumptions 5 and 6.

Remark 7. (i) It can be shown that the times when σ is
updated do not accumulate.

(ii) The control law (5) does not employ the full knowledge
of the target bearing β. Formally, only its sign is needed,
i.e., the sensor system should recognize whether the target
is on the left or right with respect to the vehicle center-
line. However due to Remark 1, the vehicle should also
recognize whether the transition from the left to the right
target view and vice versa holds in the heading-to-target
or heading-off-target orientation. To meet these require-
ments, it for example, suffices that the vehicle has access
to only the quadrant containing the current target bearing.

The control law (5) is discontinuous in the mode B. The
solution of the closed-loop system is in the Fillipov’s sense.

Now we are in a position to state the main result of the paper.

Theorem 8. Let Assumptions 2, 4—6 hold and both the vehicle
initial location and the target be far enough from the obstacle:
distD[r(0)] > dtrig + 2R, distD[T] > dtrig + ε. Then for any
p ∈ (0, 1), the vehicle arrives at the target ∃t∗ : r(t∗) = T with
respecting the safety margin distD[r(t)] ≥ dsafe ∀t ∈ [0, t∗]
with probability 1 if the complex obstacle contains only one
part (k = 1 in Assumption 2) or all these parts Di are convex.

The requirement to r0 can be relaxed distD[r0] > dtrig if the
vehicle is initially directed towards the target β(0) = 0.

The proofs of the results stated in this paper will be given in its
full version and are available upon request.
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The control law (5) does not involve a feedback from the dis-
tance value d itself. A partial reason for this is that by Theo-
rem 8, the distance at which the vehicle bypasses the obstacle
is of minor importance for the overall success. Despite the fact
that as will be shown in the next section, the obstacle bypass
is basically implemented as a sliding motion, which is widely
acknowledged as highly robust to disturbances and noises, the
above lack of feedback carries a potential of unacceptable shift
to and trespass of the safety margin dsafe due to the sensor
errors, especially systematic ones. However, unacceptable im-
plications of noises and disturbances do not necessarily hold,
as is demonstrated by our simulations; see Section 6. Otherwise
modifications of the proposed controller may be required, e.g.,

ḋ − ν(d) can be put in place of ḋ in (5), where ν(d) may be
a positive constant or a barrier function (i.e., ν(d) > 0 for

d ≈ d+
safe and ν(d) vanishes at a distance from dsafe).

Because of switching between two algorithms, the proposed
control law is discontinuous and belongs to the class of sliding
mode ones Utkin [1992]. Due to the well-known benefits such
as high insensitivity to noises, robustness against uncertainties,
good dynamic response, etc. Utkin [1992], the sliding mode
approach attracts a growing interest in the area of motion con-
trol. The major obstacle to implementation of sliding mode
controllers is a harmful phenomenon called ”chattering”, i.e.,
undesirable finite frequency oscillations around the ideal tra-
jectory due to un-modeled system dynamics and constraints.
The problem of chattering elimination and reduction has an
extensive literature (see Edwards et al. [2006], Lee et al. [2009]
for a survey). It offers a variety of effective approaches, includ-
ing smooth approximation of the discontinuity, inserting low-
pass filters/observers into the control loop, combining sliding
mode and adaptive control or fuzzy logic techniques, higher
order sliding modes, etc. Whether chattering be encountered in
applications of the proposed controller, it can be subjected to
treatment under the framework of the above general discipline.

From now on, the assumptions of Theorem 8 are supposed to
be valid.

5. OBSTACLE AVOIDANCE MANEUVER

Now we illuminate the performance of the proposed control law
during obstacle avoidance. We focus on a particular obstacle
avoidance maneuver (AM), which is defined as the motion
within uninterrupted mode B. Due to (6), only one part Di of
the complex obstacle D is partly visible and it is not altered
during the entire AM. With a slight abuse of notation, we drop
the index i in Di, thus making D to stand for Di.

We start with preliminaries. The δ-equidistant curve C(δ|D) of
D is the locus of points r at the distance distD[r] = δ from
D. For 0 < δ < RD , this curve is C1-smooth and piece-
wise C2-smooth Kreiszig [1991]. So for r ∈ C(δ|D), the one-
sided signed 3 curvatures κ±(r|δ) of C(δ|D) are well-defined.
If distD[r] < d⋆(D) and this distance is attained at r∗ ∈ ∂D,
we have κ±(r|δ) = κ±(r∗) + δ if r∗ is not a corner point;
such points contribute circular arcs of the radius δ into C(δ).

By picking δ > 0 small enough, expanding D to the domain
encircled by C(δ|D), and correcting the measurements and
controller parameters d := d − δ for d := d, dsafe, dtrig, drange,
we keep all assumptions true and do not alter the operation of

3 The orientation of C(δ|D) is induced by the positive orientation of ∂D.

the closed-loop system. Hence without any loss of generality,
we can assume that ∂D is C1-smooth in our analysis.

Let s denote the curvilinear abscissa of the point on the bound-
ary ∂D; s ascends in the positive direction. This abscissa is
cyclic: s and s + L correspond to a common point, where L
is the length of ∂D. We also introduce the natural parametric
representation ρ(s) of ∂D and notationally identify s and ρ(s);
so κ(s) := κ[ρ(s)], etc. For any r 6∈ D within the uniqueness
margin distD[r] < d⋆(D), the symbol s(r) stands for the
curvilinear abscissa of the point r∗ closest to r; we also put
s(t) := s[r(t)], where r(t) is the vehicle location at time t.

Writing f(η∗±
≈0) > 0 means that there exists δ > 0 such that

f(η) > 0 if 0 < ±(η − η∗) < δ. The similar notations, e.g.,
f(η∗ ±

≈0) ≤ 0, are defined likewise.

5.1 Vehicle Performance during Avoidance Maneuvers

Now we are in a position to state the main result of the section.

Proposition 9. Let the vehicle be driven by the control law (5)
and mode B be activated with zero target bearing β(t∗) = 0 at
a time t∗. Then the following statements hold:

(i) There exists τ ≥ t∗ such that the vehicle moves with
the maximal steering angle u ≡ −uσ and the distance

to the obstacle decreases ḋ ≤ 0 until τ , and at t = τ ,
the sliding motion along the equidistant curve (SMEC)
C (distD[τ ]|D) 4 is started with σṡ > 0 and βṡ > 0;

(ii) SMEC holds until β arrives at 0 at a time when κ[s(t) +
σ≈0] > 0, which sooner or later holds and after which a
straight move to the target (SMT) 5 is commenced;

(iii) During SMT, the vehicle first does not approach the

obstacle ḋ ≥ 0 and either the triggering threshold dtrig

is ultimately trespassed and so mode B is switched off, or

a situation is encountered where ḋ(t) = 0 and κ[s(t) +
σ≈0] < 0. When it is encountered, the vehicle starts
SMEC related to the current distance;

(iv) There may be several transitions from SMEC to SMT and
vice versa, all obeying the rules from (ii), (iii);

(v) The number of transitions is finite and finally the vehicle
does trespass the triggering threshold dtrig, thus terminat-
ing the considered avoidance maneuver;

(vi) Except for the initial turn described in (i), the vehicle
maintains a definite direction of bypassing the obstacle: ṡ
is constantly positive if σ = + (counterclockwise bypass)
and negative if σ = − (clockwise bypass).

By (5), AM is commenced with ḋ(t∗) ≤ 0. In the marginal case

where ḋ(t∗) = 0, the initial turn may have the zero duration
τ = t∗, as is specified in the following.

Remark 10. If ḋ(t∗) = 0, the initial turn has the zero duration
if and only if σṡ(t∗) > 0. Then the following claims are true:

(1) If κ[s(t∗) + σ ·≈0] < 0, SMEC is immediately started;
(2) If κ[s(t∗) + σ ·≈ 0] ≥ 0, the duration of SMEC is zero,

and SMT is continued.

The assumption β(t∗) = 0 of Proposition 9 holds for the first
AM due to the assumption distD[r(0)] > dtrig + 2R from
Theorem 8: since distD[r0] > dtrig + 2R, the pursuit guidance
law turns the vehicle towards T earlier than the threshold dtrig

4 In the system state space, this is sliding motion along the surface ḋ = 0
5 In the system state space, is sliding motion along the surface β = 0
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for activation of AM is encountered. It also holds for all other
AM’s since any AM ends in course of SMT by Proposition 9.

The behavior described in Proposition 9 is illustrated in Fig. 1.

Bypass of a given obstacle may include several AM’s. This
is illustrated in Fig. 2: during the second SMT, the vehicle
trespasses the uniqueness distance d⋆(D) to the obstacle and
thus the threshold dtrig by (6). So mode B is switched on and
off twice. At the same time, Proposition 9 guarantees that if the
entire obstacle is convex, the vehicle performs at most one AM.

5.2 The Importance of Being Random

It follows that in the case of a single convex obstacle, the target
is reached irrespective of the choice of σ = ±1. However
this may not be the case if the obstacle boundary is concave
at some points or the obstacle is complex, e.g., is composed
of several convex parts. This is illustrated in Fig. 3 for some
particular scenarios. Moreover, insufficient is any deterministic
finite-memory algorithm of updating σ:

σ(t+i ) := Σ
[

m(t−i ),
{

β(j)(t−i )
}p

j=0
,
{

d(j)(t−i )
}q

j=0

]

,

m(t+i ) := M

[

m(t−i ),
{

β(j)(t−i )
}p

j=0
,
{

d(j)(t−i )
}q

j=0

]

.
(7)

Here f(t±) stands for the one-sided limit, f (j) is the jth
derivative, the element m of a finite memory alphabet M
represents the current state of the memory device (its initial
state m(0) = m0 is given), and ti are the times when the switch
A 7→ B is implemented. The integers p ≥ 0, q ≥ 1 are given;
p > 0 or q > 1 means that even more sensing capabilities
are assumed as compared with our basic assumptions. The
algorithm (7) is coupled with the basic control law (5).

The aforementioned insufficiency is justified by the following.

Lemma 11. For any algorithm of the form (7), there exist a
complex obstacle D composed of finitely many convex parts
Di, the target location T, and the vehicle initial location r(0)
for which the vehicle driven by this algorithm does not reach the
target. Specifically, since some time instant it becomes involved
in a periodic motion along a path not containing the target. This
obstacle and locations can be chosen so that Assumptions 2,
4—6 are satisfied and the distances from D to T and r(0), as
well as from T to the above periodic path are as large as desired.

By Theorem 8, randomization carries a potential to overcome
the discussed insufficiency of deterministic algorithms, espe-
cially if physical generator of randomness is employed. Ran-
domization aids to cope with uncertainty about complex scenes.
If the scene is relatively simple, even the simplest deterministic
algorithms may be successful Matveev et al. [2011].

6. SIMULATIONS

To verify the proposed control law, simulations were carried
out in a range of scenarios. For all of them, the control was
updated every 0.1 s and the following parameters were chosen:

dtrig = 12m, umax = 1rads−1, v = 3ms−1.

In Fig. 4(a), σ was chosen three times, every time it was
the counter-clockwise direction around the obstacles. In other
words, σ successively took the values +1, +1, +1. Note that
the distance to the obstacle changes after the vehicle passes its
concavity. Due to the random choice of σ, many other paths are
possible. Fig. 4(b) depicts another path through the same set
of obstacles, where σ ran through the sequence [−1, +1,−1].
Fig. 4(c) shows that the randomized decision making ensures
that the vehicle eventually finds the target in a more complex
and unknown environment. In this case, σ = +1,−1,−1, +1.

(a) (b) (c)

Fig. 4. Navigation with a fairly simple scenario; (b) An alterna-
tive path; (c) More complex environment.

Though Theorem 8 deals with the steady target, the proposed
controller is still able to achieve good results when the target
moves. This is illustrated in Fig. 5. In both cases, the target
was modeled as unicycle whose speed and maneuverability are
less than those of the pursuer. Furthermore, the target does not
react to the pursuer. The dotted path corresponds to the target,
whereas the path of the pursuer is filled with small rectangles.
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Fig. 5. Capturing a moving target.

A random Gaussian white noise was also added as both the
sensor error and system disturbance. The standard deviations

of the noises in ḋ and θ̇ are 1.8m/s and 0.7rad/s, respectively.
These are relatively large errors, which would be unlikely to be
met in the real world. It can be seen in Fig. 6 that the control law
still satisfactory guides the vehicle. Various paths in this figure
correspond to various realizations of the noises.

Fig. 6. Performance under random noises.

7. CONCLUSIONS AND FUTURE WORK

A sliding mode based method for a unicycle-like vehicle control
has been proposed and justified both theoretically and by com-
puter simulations. Future work includes theoretical analysis of
the sensor noise and external disturbance implications with
elaboration of modified and more robust versions of the pro-
posed control law. Extension of this law on the case where the
minimal distance to the obstacle is attained at not necessarily
unique point is on the agenda. Detailed analysis of the perfor-
mance of the closed-loop system for dynamic environments and
moving target is also on the way.
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