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Abstract: The printing quality delivered by a Drop-on-Demand (DoD) inkjet printhead is
mainly limited due to the residual oscillations in the ink channel. The maximal jetting frequency
of a DoD inkjet printhead can be increased by quickly damping the residual oscillations and
by bringing in this way the ink-channel to rest after jetting the ink drop. The inkjet channel
model obtained is generally subjected to parametric uncertainty. This paper proposes a robust
optimization-based method to design the input actuation waveform for the piezo actuator
in order to improve the damping of the residual oscillations in the presence of parametric
uncertainties in the ink-channel model. Experimental results are presented to show the efficacy
of the proposed method.

1. INTRODUCTION

The ability of inkjet technology to deposit materials with
diverse chemical and physical properties has made it an
important technology for both industry and home use.
Apart from conventional document printing, the inkjet
technology has been successfully applied in the areas
of electronics, mechanical engineering and life sciences
[Williams, 2006]. This is mainly thanks to the low opera-
tional costs of the technology. Typically, a drop-on-demand
(DoD) inkjet printhead consists of several ink channels in
parallel. Each channel is provided with a piezo-actuator,
which on application of a voltage pulse can generate pres-
sure oscillations inside the ink channel. These pressure
oscillations push the ink drop out of the nozzle. A detailed
description of the droplet jetting process can be found in
[Wassink, 2007]. The print quality delivered by an inkjet
printhead depends on the properties of the jetted drop, i.e.,
the drop velocity, the jetting direction and the drop vol-
ume. To meet the challenging performance requirements
posed by new applications, these drop properties have to
be tightly controlled.

The performance of the inkjet printhead is mainly limited
due to the residual pressure oscillations. The actuation
pulses are designed to provide an ink drop of a specified
volume and velocity under the assumption that the ink
channel is in steady state. Once the ink drop is jetted,
the pressure oscillations inside the ink channel take several
micro-seconds to decay. If the next ink drop is jetted before
the residual pressure oscillations settle, the resulting drop
properties will be different from the ones of the previous
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drop. Therefore, at a high jetting frequency, drops will
be jetted before the oscillations in the ink channel have
completely disappeared and these residual oscillations will
influence the drop velocity. This can degrade the printhead
performance, since a printhead has to jet drops with a
constant velocity at different frequencies. Given this fact,
an important characteristic is the so-called DoD curve
which represents the ink drop velocity as a function of the
jetting frequency (which is also called the DoD frequency).
Ideally, the DoD curve must be flat. However, for the
above reasons, this DoD curve is far from flat in practice.
Our goal in this paper is to flatten the DoD curve by
redesigning the piezo actuation pulse.

In the literature, we can find various methods [Bogy and
Talke, 1984, Chung et al., 2005, Kwon and Kim, 2007,
Kwon, 2009] to design the piezo actuation pulse. In our
earlier work [Khalate et al., 2010] we have proposed an
optimization-based method to design the actuation pulse.
This is a model-based approach and we have used a
discrete-time model H(q) relating the piezo input voltage
(i.e., the input u) to the velocity of the meniscus (i.e., the
output y). The meniscus is an interface between the ink
and air. In order to design the piezo actuation pulse with
shape constraint, we assume that the possible inputs can
be parameterized as u(k, θ) with θ a parameter vector and
k the discrete time index. Based on the reference meniscus
velocity template yref(k) (i.e., a meniscus velocity profile
with fast decaying residual oscillations) and the transfer
function H(q), an optimal actuation pulse u(k, θopt) is
determined as the one minimizing the performance index
given as follows

Jnominal(θ) =

N
∑

k=0

(

yref(k) − H(q)u(k, θ)
)2

(1)
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where N = T
Ts

, Ts is sampling time, T is chosen equal to
100µs, and q is the forward shift operator.

The optimal actuation pulse designed with this method
was evaluated on an experimental setup at Océ Technolo-
gies, Netherlands. In each experiment we jetted 10 ink
drops from the inkjet channel at a fixed DoD frequency.
The performance of the optimal actuation pulse u(k, θopt)
was analyzed using the DoD-curve. This optimization-
based method is a feedforward control strategy and hence,
it is highly sensitive to model mismatch. The model mis-
match is the major reason for the DoD-curve not being
completely flat.

The dynamical model H(q) from the piezo input to the
meniscus velocity obtained at different DoD frequencies
will not be the same. With the help of this set of dynamical
models at different DoD frequencies, one can think of
designing several optimal actuation pulses, one for every
possible operating DoD frequency. In practice, this solu-
tion to make the DoD curve flat cannot be implemented
due to the hardware limitations. These limitations demand
a single actuation pulse to be designed such that its per-
formance is fairly good over the operating range of the
DoD frequencies. In this paper, we present a very compact
parametric polytopic uncertainty model ∆ ∈ ∆, such
that the uncertain model H(q,∆), encompasses the set of
dynamics at various operating DoD frequencies. Thus, the
robust actuation pulse can be obtained by minimizing the
worst-case norm of the tracking error with the uncertain
system H(q,∆). The choice of the polytopic uncertainty
model enables us to use the classical results on robust H2

filtering.

2. SYSTEM DESCRIPTION AND MODELING

Several analytic and numerical models are available for
the inkjet channel dynamics. For control applications, one
prefers a simple model with sufficient accuracy. Therefore,
we select a simplified discrete-time model H(q) based
on the ‘narrow-gap model’ [Wijshoff, 2008]. We know
that the higher order modes in the meniscus velocity do
not contribute significantly to the drop formation process
[Dijksman, 1984]. Hence, these higher order modes are
neglected in H(q). The discrete-time model H(q) describes
the dynamics from the piezo input voltage u to the
meniscus velocity y. The transfer function H(q) is given
as follows

H(q) = g

(

q2 + b1q + b2

q2 + a1q + a2

)(

q2 + b3q + b4

q2 + a3q + a4

)

(2)

where q is the forward shift operator and the nominal
values of the coefficients are

b1 = −1.2194, b2 = 0.2194, b3 = −1.7170, b4 = 7.0670,

a1 = −1.6480, a2 = 0.8839, a3 = −1.0040, a4 = 0.8971,

g = −0.0074.

The sampling time Ts is chosen equal to 1µs.

Fig. 1 shows the frequency response of the above 4-th
order transfer function H(q). This inkjet system can be
represented in the state-space form as follows
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Fig. 1. Frequency response of the transfer function model
H(q).

xS(k + 1) = ASxS(k) + BSu(k)

y(k) = CSxS(k) + DSu(k) (3)

where

AS =







−a1 −a2 0 0
1 0 0 0

g(b1 − a1) −g(b2 − a2) −a3 −a4

0 0 1 0






, BS =







1
0
g
0







CS = [g(b1 − a1) −g(b2 − a2) (b3 − a3) (b4 − a4)]

DS = [g] .

As discussed in the introduction, at different DoD frequen-
cies, the dynamics from the piezo input to the meniscus
velocity H(q) will be not be the same. This may be due
to the unmodeled refill dynamics or the nonlinear effects
in the drop formation process. In order to investigate this
phenomenon, we have used experimental identification. It
is very difficult to experimentally measure the meniscus
position and the meniscus velocity while jetting an ink
drop. However, the piezoelectric crystal can be simulta-
neously used as an actuator and as a sensor. Therefore,
we have identified a dynamical system from the piezo
input to the piezo-sensor output (which is proportional
to the derivative of the ink-channel pressure) at a fixed
DoD frequency. We have done several such experiments
at various fixed DoD frequencies in the operating range
of the inkjet printhead. The details of the identification
experiments are omitted in this paper due to lack of space.

It is observed that the first resonant mode of the inkjet
system varies a lot compared to the second resonant
mode. Using this information, it can be found that for
the first resonant mode of H(q), the resonance frequency
variation is approximately in the interval [−7% + 7%]
and the damping variation is approximately in the interval
[−70% +30%]. The variation in the second resonant mode
is relatively smaller compared to the first one.

One can obtain more realistic uncertainty model around
the nominal plant H(q) by considering uncertainty on all
the coefficients of the transfer function (2). This helps
to reduce the conservatism in the feedforward control
design. However, for our problem this will increase the
computational burden to compute a robust feedforward
controller. Hence, in order to obtain a simpler and more
compact uncertainty description we assume that only
the first resonant mode is uncertain. This is a valid
assumption since the first mode greatly influences the ink
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drop properties [Dijksman, 1984] compared to the second
mode. The details on the mapping of the uncertainty on
the properties of the resonant mode to the coefficients of
the transfer function (2) can be found in Appendix A. Due
to the uncertain first resonant mode, the coefficients of the
T.F. (2), a1 and a2 are subjected to uncertainty ∆. The
uncertainty ∆ = [∆(1) ∆(2)]T perturbs the coefficients a1

and a2 in the following manner:

a1(∆) = a1,nom(1 + ∆(1)) (4)

a2(∆) = a2,nom(1 + ∆(2)), (5)

where a1,nom = −1.6480 and a2,nom = 0.8839 are the
nominal values of the coefficients a1 and a2. The uncer-
tainty ∆ on the coefficients lie inside the polytope ∆
which is formed by convex combination of the four vertices
∆i, i = 1, 2, 3, 4, i.e. ∆ ∈ ∆= conv(∆1,∆2,∆3,∆4). The
values of ∆1, ...,∆4 can be found in the Appendix A. This
choice of uncertainty enables us to use classical results
available in the literature.

It can be seen that the uncertainty ∆ enters linearly in
the matrices (3). Thus, the matrices of the inkjet system
H(q,∆) for the admissible uncertainty ∆ ∈ ∆ belong to
the polytope

(

As(∆), Bs(∆), Cs(∆),Ds(∆)
)

=

4
∑

i=1

αi

(

Asi
, Bsi

, Csi
,Dsi

)

,

(6)
where the matrices Asi

= As(∆i), Bsi
= Bs(∆i), Csi

=
Cs(∆i), Dsi

= Ds(∆i), i = 1, 2, 3, 4, are the system
matrices of a fixed inkjet system at the i-th vertex of the
polytope and αi are positive scalars such that

∑4
i=1 αi = 1.

In the next section, we use this uncertain model of the
inkjet system H(q,∆) in order to design a robust actuation
pulse.

3. FEEDFORWARD CONTROL DESIGN

In our previous work, [Khalate et al., 2010], we have
designed a template for the desired meniscus velocity
yref(k), i.e., a meniscus velocity profile with fast decaying
residual oscillations. If the actuation pulse u(k) is designed
in such a way that the meniscus velocity y(k) follows
the reference trajectory yref(k), then the channel will
come to rest very quickly after jetting the ink drop. This
will create the condition to jet the ink drops at higher
jetting frequencies. As discussed in the introduction, the
optimization-based method [Khalate et al., 2010] poses
difficulties in the presence of model mismatch. Therefore,
to improve the robustness of the feedforward controller
we propose to recast the problem as a model matching or
filtering problem (see Fig.2).

In the previous Section, the model mismatch has been
described as a compact polytopic uncertainty. This un-
certainty in the inkjet channel model can now be handled
owing to the H2 filtering formulation discussed below. A
robust actuation pulse is obtained as the one minimizing
the square of the worst-case H2 norm of the tracking
error transfer function. In this section, we first present
the design of an unconstrained robust actuation pulse and
subsequently, its extension to the design of a constrained
robust actuation pulse.

3.1 Unconstrained Robust Feedforward Control

For many inkjet printheads, the actuation pulse with
shape constraints may not be very close to the optimal
unconstrained pulse. The performance degradation result-
ing by imposing the shape constraints on the actuation
pulse may become significant. This may enforce the inkjet
printhead manufacturer to relax the shape constraints on
the actuation pulse. Rapid developments in the electronics
field enables them to use more sophisticated electronic
hardware which can generate an unconstrained actuation
pulse. Therefore, it is essential to investigate the possibility
of an unconstrained actuation pulse which will damp the
residual oscillations when the inkjet channel model is sub-
jected to parametric uncertainty. Hence, we first formulate
the feedforward control problem as a filtering problem. As
shown in Fig. 2, we use the model Href(q) to generate
the the reference trajectory yref(k). Design of the model
Href(q) is simpler once we chose a finite impulse response
(FIR) model structure for it.

+

_
δ(k)

u(k) y(k,∆)

yref(k)

e(k,∆)

F (q) H(q,∆)

Href(q)

Fig. 2. Filtering problem for the inkjet printhead.

The state-space representation of the reference model
Href(q) is given as follows

xR(k + 1) = ARxR(k) + BRδ(k)

yref (k) = CRxR(k) + DRδ(k) (7)

where δ(k) is the unit pulse.

We also parameterize the actuation pulse as the pulse
response of a FIR filter F (q, β):

u(k) = F (q, β)δ(k) (8)

with F (q, β) = β0 + β1q
−1 + · · · + βnf

q−nf , β =

[β0, . . . , βnf
]T a vector containing the coefficients of the

FIR filter and δ(k) the unit pulse. The state-space repre-
sentation of F (q, β) is given as follows

xF (k + 1) = AF xF (k) + BF δ(k)

u(k, β) = CF (β)xF (k) + DF (β)δ(k) (9)

where

AF =

[

0 0
Inf−1 0

]

, BF =

[

1
0

]

CF (β) =
[

β1 · · · βnf

]

, DF (β) = β0.

The choice of the filter structure is important, as it
determines the length and the shape of the actuation pulse.
One can choose the filter F (q) as a rational function,
however, this would result in an actuation pulse of an
infinite length because the rational filter has an infinite
pulse response. However, in our problem, it is required to
obtain a finite length actuation pulse. The use of the FIR
structure allows us to set the length of the actuation pulse
a-priori. In addition, the to-be-designed filter coefficient
vector β only appears in the state-space matrices CF
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and DF . This property greatly simplifies the optimization
problem to design the filter F (q).

Note that the inkjet system H(q,∆) is a single input
single output (SISO) system. Hence, the uncertain error
dynamics ν(q, β,∆) =

(

Href(q) − H(q,∆)F (q, β)
)

will
not be changed if we interchange H(q,∆) and F (q),
i.e. ν(q, β,∆) =

(

Href(q) − F (q, β)H(q,∆)
)

, see Fig. 2.
Thus, the state-space representation of the error dynamics
ν(q, β,∆) is given as follows

x(k + 1) = A(∆)x(k) + B(∆)δ(k)

e(k, β,∆) = C(β,∆)x(k) + D(β,∆)δ(k), (10)

where

A(∆) =

[

AS(∆) 0 0
BF CS(∆) AF 0

0 0 AR

]

, B(∆) =

[

BS(∆)
BF DS(∆)

BR

]

C(β,∆) = [−DF (β)CS(∆) −CF (β) CR ] ,

D(β,∆) = [ DR − DF (β)DS(∆) ] .

It can be seen that thanks to the particular choice of the
FIR structure for the filter F (q), only the matrices C and
D of (10) depend on the filter coefficient vector β. Also, as
we assume the uncertainty ∆ to be of a polytopic nature
(∆ ∈ ∆), the state-space matrices of the error system
ν(q, β,∆) belong to following polytope

(

A(∆), B(∆), C(β,∆),D(β,∆)
)

=

4
∑

i=1

αi

(

Ai, Bi, Ci(β),Di(β)
)

. (11)

where the matrices
(

Ai, Bi, Ci(β),Di(β)
)

are the state-
space matrices of the fixed error dynamics νi(q, β) at the
i-th vertex of the polytope and αi are positive scalars
such that

∑4
i=1 αi = 1. Clearly, the uncertain system error

dynamics is a convex combination of the fixed systems at
the vertices of the polytope ∆.

As discussed in the introduction, in our earlier work
[Khalate et al., 2010], the performance index (1) for the
actuation pulse is defined as the square of the H2 norm of
the tracking error. Now, the inkjet system is perturbed
by the uncertainty ∆ ∈ ∆. Therefore, we define the
performance index J (β) as the square of the worst-case
H2 norm of the tracking error transfer function ν(q, β,∆):

J (β) = max
∆∈∆

∥

∥ν(q, β,∆)
∥

∥

2

2

= max
∆∈∆

∥

∥Href(q) − H(q,∆)F (q, β)
∥

∥

2

2
. (12)

The filter coefficient vector βrobust, describing the uncon-
strained robust actuation pulse is thus the solution βrobust

of the following optimization problem

βrobust = arg min
γ, β

γ

subject to J (β) < γ. (13)

The robust actuation pulse defined as the solution of the
above optimization can be obtained using the following
Proposition.

Note that we use ∗ as an ellipsis for terms that can be
induced by symmetry.

Proposition 1. Consider the error dynamics given by (10)
then, the optimal coefficient vector βrobust for the robust

actuation pulse can be determined by solving the following
LMI optimization

βrobust = min
γUB, β, K=KT

γUB

subject to

[

γUB − BT
i KBi ∗

Di(β) 1

]

> 0 (14)

[

K − AT
i KAi ∗

Ci(β) 1

]

> 0, i = 1, 2, 3, 4,

(15)

with Ai, Bi, Ci,Di defined in (11).

Indeed, the above optimization problem delivers an upper
bound γUB

opt for the optimal γ of the problem (13).

Proof: Consider the system (10) for one particular ∆ and
for one particular β. Then, following the same reasoning
as e.g. in the proof of Proposition 2 in [Bombois et al.,
2010], it can be shown that ‖ν(q, β,∆)‖2

2 < γUB if there
exists a positive definite symmetric matrix K such that

B(∆)T KB(∆) + D2(β,∆) < γUB

A(∆)T KA(∆) + CT (β,∆)C(β,∆) < K (16)

These two LMIs can also be rewritten as follows using
Schur’s complement




γUB ∗ ∗
B(∆) K−1 ∗

D(β,∆) 0 1



 > 0,





K ∗ ∗
A(∆) K−1 ∗

C(β,∆) 0 1



 > 0. (17)

The LMIs (17) are affine in ∆ because the matrices
A(∆), B(∆), C(β,∆),D(β,∆) are affine in ∆. In [Boyd
et al., 1994], it is shown that (17) hold for all ∆ ∈ ∆
if (17) hold for ∆ = ∆i, i = 1, ..., 4; in other words if the
following LMIs hold





γUB ∗ ∗
Bi K−1 ∗

Di(β) 0 1



 > 0,





K ∗ ∗
Ai K−1 ∗

Ci(β) 0 1



 > 0 , (18)

for i = 1, 2, 3, 4. Using the Schur’s complement, (18)
reduces to (14) and (15).

Note finally that the expressions (14) and (15) are LMIs
in β since C and D in (10) are affine in CF and DF in (9).
The matrices CF and DF are indeed also linear function
of β. �

3.2 Constrained Robust Feedforward Control

In order to use the unconstrained robust actuation pulse,
the printhead would need a new sophisticated electronic
hardware. Since, most of the printheads can only generate
a constrained actuation pulse (i.e., the shape of the ac-
tuation pulse restricted to trapezoid), we investigate the
possibility of obtaining a constrained feedforward control
by restricting the coefficients of the FIR filter. Similar to
[Khalate et al., 2010], we parameterize the constrained
actuation pulse u(k, θ) using the parameter vector θ =
[trR

twR
tfR

VR tdQ
trQ

twQ
tfQ

VQ]T as shown in Fig. 3.
In order to design the robust trapezoidal actuation pulse,
we restrict the coefficients of the FIR filter F (q, β(θ)) such
that

u(k, θ) = F (q, β(θ))δ(k) (19)

where β(θ) is the filter coefficient vector, which nonlinearly
depends on the trapezoidal pulse parameter vector θ and
δ(k) is the unit pulse.
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trR

twR

tfR

VR

trQ

twQ

tfQ

tdQ

VQ

u(k, θ)

k

Fig. 3. Proposed piezo actuation pulse.

Now, the performance index J (θ), which is defined as the
square of the worst-case H2 norm of the tracking error
transfer function ν(q, β(θ),∆) is given as follows

J (θ) = max
∆∈∆

∥

∥Href(q) − H(q,∆)F (q, β(θ))
∥

∥

2

2
. (20)

For a given parameter vector θ, we can obtain an upper
bound JUB(θ) on the performance index J (θ) using the
optimization problem in Proposition 1. Here, we solve
the optimization problem (14)-(15) with a fixed β asso-
ciated with θ to obtain the optimal γUB. Indeed, we have
JUB(θ) = γUB

opt , with γUB
opt the optimal γUB corresponding

to the optimization problem in Proposition 1.

However, as the dimension of the parameter space of ∆ is
small, we can also easily grid the parametric uncertainty
∆. Let the set S be the grid on the parametric uncertainty
∆, defined as

S = {∆i, i = 1, ...,m, | ∆i ∈ ∆}

Thus, a lower bound JLB(θ) on the performance index
J (θ) can be obtained easily by computing the H2 norm at
each of the m grid elements, i.e.:

JLB(θ) = max
∆i∈S

∥

∥Href(q) − H(q,∆i)F (q, β(θ))
∥

∥

2

2
. (21)

In order to obtain the robust actuation pulse one can
minimize either JUB(θ) or JLB(θ). In the sequel, we will
choose JLB(θ).

Now, the constrained robust actuation pulse parameter
is thus the solution θrobust of the following optimization
problem

min
γ,θ

γ

subject to JLB(θ) < γ and θLB ≤ θ ≤ θUB , (22)

where, θLB and θUB are the vectors containing the lower
and the upper bounds on each element of the parameter
vector θ.

This is a nonlinear optimization problem and can be solved
offline using standard optimization algorithms. We use
gradient-based optimization for this purpose. Gradient-
based optimization is an iterative method. The gradient of
JLB(θ) is computed numerically around the current value
of θ and then the parameter θ is updated in the gradient
direction.

4. EXPERIMENTAL RESULTS

In this section, we present experimental results to show
the improvements in the drop consistency with the robust
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Fig. 4. Experimental DoD curve with the constrained
robust pulse.

actuation pulse. We have solved the robust unconstrained
actuation problem (14)-(15) using the LMI toolbox of
MATLAB. However, as only a constrained actuation pulse
can be used in the current printhead, we have not used
the unconstrained actuation pulse for the experiment. In
order to obtain the constrained robust actuation pulse, the
nonlinear optimization problem (22) is solved by using the
command fmincon from the optimization toolbox of MAT-
LAB. We used a fine grid S on the uncertainty parameter
space ∆ to compute the lower bound on the performance
index JLB(θ). The robust actuation pulse parameter vec-
tor θrobust obtained after solving the optimization problem
(22) is

θrobust = [1.5 2.5 1.5 23.0 6.93 2.74 0.4 3.75 −13.22]
T

Note that in the parameter vector θ, the time parameters
(tr, tw, tf , tdQ

) of the actuation pulse are expressed in µs.
The parameter vector θrobust is provided to the computa-
tional unit of the printhead to generate the robust pulse
urobust(k) = u(k, θrobust).

In each experiment we have jetted 10 ink drops from
the inkjet channel at a fixed DoD frequency using the
robust pulse urobust(k). The drop velocities of each of the
ten drops are shown in Fig.4 as a function of the DoD
frequency (DoD curve) when the robust actuation pulse
is used. It is evident that the DoD-curve with the robust
pulse is considerably flatter compared to the DoD curve
with the optimal pulse [Khalate et al., 2010]. The overall
improvement in the velocity consistency achieved using the
robust actuation pulse has a far reaching consequence for
the print quality. This is because of the proximity of the
inkjet printhead to the printing paper.

5. CONCLUSION

In this paper, we have proposed a compact description
of the model mismatch in the inkjet-channel model as
a parametric uncertainty. In order to damp the residual
oscillations in the presence of this parametric uncertainty,
two optimization-based approches to design a constrained
and an unconstrained robust actuation pulse are developed
using the robust H2 filtering framework. Experimental
results have demonstrated that a considerable improve-
ment in the ink drop consistency can be achieved with
the proposed constrained robust pulse. Applications of the
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proposed method to multi-channel control will be investi-
gated in the future.
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Appendix A. PARAMETRIC UNCERTAINTY

We have to use the information obtained by the iden-
tification experiments to describe an uncertainty model
for the inkjet system. It is intuitive to present the model
uncertainty on the resonant modes of the inkjet system.
The properties of the resonant mode i.e. its frequency
and damping are well understood in the continuous-time
version of a model. Therefore, consider the following
continuous-time model of the inkjet channel

H(s) =

(

g1s(s + α)

s2 + 2ζn1ωn1s + ω2
n1

)(

s2 + 2ζn3ωn3s + ω2
n3

s2 + 2ζn2ωn2s + ω2
n2

)

.

(A.1)

It is possible to convert this continues-time model into
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Fig. A.1. Parametric uncertainty in % of nominal value

the discrete-time model given by (2). Based on the iden-
tification results we find that the first resonant mode is
uncertain. The frequency variation of this mode ωn1 is
approximately in the interval [−7% +7%] from its nominal
value. The damping ratio variation of this mode ζn1 is
approximately in the interval [−70% + 30%] from its
nominal value. These perturbations on ωn1 and ζn1 forms
a box-type uncertainty as shown in Fig. A.1.A. As a result,
the coefficients a1 and a2 of H(q) (see (2)) are perturbed
from their nominal value when ωn1 and ζn1 are perturbed.
The parametric uncertainty in the coefficients ωn1 and ζn1

of the continuous-time transfer function can be translated
into the uncertainty on the coefficients of the discrete-time
a1 and a2 using standard results [Rabbath, 1995]:

a1 = −2r cos θ, a2 = r2 (A.2)

where r = e−ζn1ωn1Ts , θ = Tsωn1

√

1 − ζ2
n1 and Ts is the

sampling time. Fig. A.1.B. shows the box-type uncertainty
in the parameters ωn1 and ζn1 mapped on the parameter
space of the coefficient a1 and a2. We observe that this
is the polytopic uncertainty, which we use for designing
the robust actuation pulse. The four vertices of the box-
type uncertainty on ωn1 and ζn1 are mapped on the
parameter space of a1 and a2 and these four vertices are
∆1 = [5.93/100 8.71/100]T , ∆2 = [1.96/100 8.25/100]T ,
∆3 = [−3.85/100 − 4.32/100]T , ∆4 = [0.55/100 −
2.52/100]T . The convex combination of these four vertices
form a polytope ∆ =conv(∆1,∆2,∆3,∆4).

The uncertainty ∆ = [∆(1) ∆(2)]T =
∑4

i=1 αi∆i (i.e.

∆ ∈ ∆), with
∑4

i=1 αi = 1, will perturb the coefficients
a1 and a2 in the following manner

a1(∆) = a1,nom(1 + ∆(1)) (A.3)

a2(∆) = a2,nom(1 + ∆(2)), (A.4)

where a1,nom = −1.6480 and a2,nom = 0.8839 are the
nominal values of the coefficients a1 and a2. It can be
observed that the uncertainty ∆ ∈ ∆ enters linearly in the
perturbed coefficients a1(∆),a2(∆), and thus in the per-
turbed state-space matrices As(∆), Bs(∆), Cs(∆),Ds(∆).
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