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Abstract: Neurons have been always considered as the active and main players in the brain’s activities all 

the time. However, According to recent studies in the neuroscience field, the glial cells is playing a more 

and more important role in the brain’s activities and the brain should be regarded as a system consisted of 

both neurons and glial cells. Furthermore, it has been proved to be related to the growth of neurons. In this 

paper, a new artificial neuron model called EAN Model (Energy Artificial Neuron Model) which is based 

on the energy concept from the glial cells is proposed, and a way to demonstrate EAN model in 

mathematics is suggested. Based on EAN model, a self-growing and self-organizing neural network called 

ESGSONN (EAN Based Self-growing and Self-organizing Neural Network) is realized, which has 

following features: rapid growing, density persevering, no or less dead neurons and incremental learning. 

New features of ESGSONN have been shown by comparable experiments. 
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1. INTRODUCTION 

The active vertebrate brain always represents highly self-

organizing. To simulate the mechanism of the biological 

activities, researchers began their studies from 1970s (D. J. 

Willshaw, 1976). Self-organizing Feature Map (SOFM) was 

proposed at 1982 (Kohonen, T, 1982, J. Kangas& T. Kohnen, 

1990). The basic SOFM takes an unsupervised learning and it 

has a solid structure of the network which usually consists of 

a set of neurons arranged in a 2-D structure. Each neuron is 

attached to a reference vector that is adjusted during the 

training procedure. When training process is completed, 

SOFM divides the input space into several regions which 

represent corresponding clusters in the input space. The 

density probability of input data is preserved in those regions. 

SOFM has been widely used in many areas, such as pattern 

recognition, image processing, solving TSP and etc. But 

some limitations have been noted: First, dead neuron, a 

neuron which will not learn in any case, may exist if the input 

data distribute as a complex structure. Second, SOFM can’t 

overcome the so-called stability-plasticity dilemma. Third, 

SOFM must pre-define the map size, which usually results in 

difficulties of selecting the appropriate map size.  

To solve those drawbacks, another kind of self-organizing 

neural networks, self-growing and self-organizing networks, 

have been proposed. This kind of network has a feature of 

growing, and it means that they can dynamically change their 

structures according to the input data. Some of those 

networks are considered below. 
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Growing Cell Structures (GCS) (Fritzke B, 1994): GCS is an 

algorithm motivated by SOFM, but it uses a triangle network 

which is defined by the connections of nodes instead of the 

two-dimensional grid. Each triangle cover the area of input 

space of nonzero distribution, and the whole network try to 

cover all over those areas. The algorithm begins with a 

random triangle and inserts new nodes to decrease the local 

highest error until the terminal conditions are reached. 

However, because the whole process is performed in the 

input space, visualizing high-dimensional data into a two-

dimension plane with their topology cause a problem. 

Growing Neural Gas (GNG) (Fritzke B, 1995): GNG is an 

algorithm based on neural gas algorithm, which begins with 

two neurons. During the training procedure, new nodes are 

added as the way in GCS and two nodes with the highest 

activity are moved together with a link created between them. 

The algorithm ends when stopping criterions is reached. 

Because of preserving the topology in the input space, GNG 

also has the visualizing problem as GCS. 

Cell Splitting Grid (CSG) (Tommy W.S, 2004): CGS is a 

new approach of self–growing network, which simulate the 

mechanism of cell splitting in biological organs. Each neuron 

has an activation level which is decreased when its weight 

vector is adjusted. A neuron is split up into four neurons 

when its activation level equals zero. The algorithm starts 

with one neuron and split existing neurons. CGS results in a 

regular square structure which can easily reflect the density in 

the input space. 

More algorithms of self-growing and self-organizing 

networks are considered below: Self-creating and Organizing 

Neural Networks (SCONN) (Doo-Il Choi et al, 1991); 

Dynamic Self-organizing Map (DSOM) (D. Alahakoon et al, 

2000); Self-organizing Incremental Neural Network (SOINN) 

(Shen F and Hasegawa O, 2006);  
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These algorithms try to overcome the limitation of fixed 

structure of SOFM and some other drawbacks 

aforementioned. Unfortunately, they also have the limitation 

of slow growing which is partly due to using Local Error as 

the condition of growing, or Mean Quantization Error as the 

convergence condition of the network. 

In this paper, a new artificial neuron model called EAN 

(Energy Artificial Neuron) model is proposed based on the 

energy concept from the glial cells according to the recent 

discoveries in the neuroscience field. We demonstrate EAN 

model in mathematics. Additionally, we implement a new 

self-growing and self-organizing neural network based on 

EAN model called ESGSONN (EAN Based Self-growing 

and Self-organizing Neural Network). ESGSONN considers 

the energy in EAN, the entropy productions in the network 

and the measure of similarity as its conditions of growing as 

well as competitions. Its main features are described as below: 

rapid growing, density persevering, no or less dead neurons 

and incremental learning. New features of ESGSONN have 

been shown by comparable experiments with other self-

organizing network. 

2. THE ENERGY ARTIFICIAL NEURON MODEL 

2.1  Recent discoveries in the neuroscience field on glial cells 

The cells that construct central nervous system (CNS) can be 

separated into two kinds: neurons and glial cells. In the past 

biologic researches, neurons were regarded as the active and 

main objects in the neural activities. And glial cells were 

viewed as passive elements which just provide structural and 

metabolic support to the neurons. However, recent studies 

show that glial cells may play a very important role in the 

information processing and it has been proved that glial cells 

are related to the growth of neurons: Glial cells may increase 

the amount of synapse and enhance the synaptic efficacy 

violently (Pfrieger FW& Barres, 1997). BA. Ulian has 

demonstrated that the glial cells are necessary to sustain the 

synapses in his experiment (Ullian EM et al, 2001). And 

astroglias (a kind of glial cell) can apparently induce the 

neurogenesis (Song H. et al, 2002). Furthermore, glial cells 

around synapses are essential for the growing of synapses 

(Slezak M, Pfrieger FW, and et al, 2006). One of the major 

functions of glial cell is its energy support to neurons. Glial 

cell can enhance transfer efficiency of glucose through 

oxidative metabolism and release lactic acid, which creates 

energy in the form of ATP (Joachim W. Deitmer, 2000, 2001) 

that can modulate neurons around the glial cell. This 

modulation can present activation or inhibition (Eric A. 

Newman, 2003, Joachim W. Deitmer, 2006) and provides a 

foundation to other complex functions.  

Those biologic researches demonstrate that glial cells are 

responsible to complex and important functions in nervous 

system, such as growing of synapse, constructing nervous 

system, learning and memories. So, in a brief conclusion, the 

brain should be regarded as a system consisted of both 

neurons and glial cells (Paola Bezzi and Andrea Volterra. 

2001). And these features of biological glial cell should be 

also useful to set up an artificial network for the neurons. 

2.2  The Energy Artificial Neuron Model (EAN Model) 

In this part, we introduce a new artificial neuron model called 

EAN (Energy Artificial Neuron) model, which brings the 

concept of energy to the traditional M-P artificial neuron 

model. The main contribution of EAN model is providing the 

threshold of network growing. However, to avoid increasing 

the complexity of the network system, only energy feature is 

extracted and implemented. 

Definition 1 An EAN model can be defined by a 7-tuple as 

below: 

    〈                 〉 

where  

  is the input vector, such as    (         )
 . 

  is the output vector, such as   * ( )+.  

  is a unit of local memory which has two components:  

        

where     * + is the STM (Short Term Memory) and 

   *  *  +   
   + is the LTM (Long Term Memory). 

  is the integrated mapping. 

  is the activation mapping which could be: 

   (∑        
   ). 

    is the total energies of the current neuron. 

    represents the generalized Hebb learning rule. 

The EAN model is an improved model of M-P model, and 

the structure of EAN model is illustrated as Fig. 1. 

 

Fig. 1. The structure of the EAN model. 

Definition 2 The total energy of each       is defined as    
( )

: 

   
( )

     
           ( )

    
       ( )

 

There are two parts to compose an     . One is 

    
           ( )

, which shows the energy consumption when 

two EANs establish a connection between each other. 

   
           ( )

 {   |           }  where      is the 

energy consumption when       connects to       at the 

moment of t+1. And the other is    
       

 which is the surplus 

energies in an EAN. 

Definition 3 In the Definition 2, we has demonstrated the 

energy consumptions as    
           ( )

, so each      in the 
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           ( )

 can be calculated by           ̅, where  ̅ is 

the average expectation for the energy consumption when the 

connection is established between      and     , and     is 

a factor for this energy consumption. As a result, if 

each       wants to create a connection to       , all the 

factors of EANs in the network can be demonstrated as a 

matrix, such as   : 

    [

          

          

    
          

] 

Then, the total energies’ consumption of       can be 

calculated by this formula below: 

   
           ( )

  ∑  ̅     
 
     

And the      
       ( )

 can be calculated by:  

     
       ( )

    
( )

    
           ( )

 

According to the Definition1 to Definition 3, the EAN model 

has two features below: 

Feature 1 If             ̅       
       

, in another word, if 

            ̅       
       

, the connection cannot be created. 

Feature 2 The energy mechanism in EAN model could 

provide a threshold in the network growing. However, if the 

connection has been established, the connection-strength 

between two EANs is determined by their connection weights, 

not the energy consumption. 

3. ESGSONN： A EAN BASED SELF-GROWING AND 

SELF-ORGANIZING NEURAL NETWORK 

3.1  Basic Concepts of ESGSONN 

It is different from the other SONNs (Self-organizing Neuron 

Network, SONN). The ESGSONN use the EAN model as its 

neurons and it started from TNU (Treble Neuron Unit, TNU). 

Here are some basic concepts of ESGSONN: 

Definition 4 NU (Neuron Unit) is the fundamental unit in the 

procedure of network growing. (See Fig. 2 (a)) A NU can be 

defined as 3-tuple as below: 

        〈   
           

    (   )〉, 

where:  

     
     is a graph that is composed of six EANs placed as 

hexagon structure in 2-D. A    
     can be detailed 

as:    
     〈     〉, where    *              + is 

a set of EANs and    {               } is a set of 

borders which start from      and end at     . 

    is a matrix of weights which are attached to the 

corresponding neurons. 

    
    (   ) is the entropy production of         at 

the moment of t+1, however,    
    (   )  is a 

property of         at the moment of t. 

A NU has two features below: 

 The amount of energy in each EAN of NU is four, and 

the expectation of energy-consumption is one. Every 

energy-consumption for the connection establishing is 

the same. In another word,               must 

meets: 

       
           ( )

    
       ( )

  ,    [
   
   
   

] 

 The incremental entropy production in         can be 

calculate by Shannon Entropy: 

   
    (   )    ∑  (    )      (    )

   ( )

  

where the  (    ) is determined by the    
       

 at the 

moment of t. 

 

Fig. 2. Each black point in this Fig. presents one ‘energy’ in 

EAN model. (a) A NU (Neuron Unit) topological graph. (b) 

A TNU (Treble Neuron Unit) topological graph; and a CN 

(Central Neuron) locates in the center topological graph.  

Definition 5 TNU (Treble Neuron Unit) has thirteen nodes in 

total including four public nodes. The TNU defined as below. 

          〈   
            

     (   )〉 

The TNU’s structure is shown in Fig. 2 (b). 

Definition 6 CN (Central Neuron) is a neuron which locates 

at the central of TNU’s topological graph. Usually, CN is a 

neuron that has max count of learning-circles; however, 

because of the limitation of the energy, a CN cannot be a 

public node or connect to other neurons. A CN is shown in 

Fig. 2(b). 

Definition 7 GP (Growing Point) is the place where network 

could add new nodes. It can be described as 2-tuple as below: 

   〈     〉, 

where: 

    {                } is a set of EANs in GP. 

    {               }  is a set of connection 

between      and      which exist in GP. 

Moreover, a GP must meet two conditions below: 

1. The topological graph must be a proper sub-graph of NU; 

the nodes existing in GP and the new nodes must be 

placed in a hexagon-topology strictly. In another word, 

each EAN in GP must meets: 

            (   )      
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where    is the current network topology. And   (   ) is the 

new topology after grown at the moment of t+1. 

2. Each EAN in GP must have enough energy. So 

according to the feature1 of EAN model,          

must meet: 

∑  ̅      
 
      

       
  

A GP has two features below: 

 New nodes must be created in a GP. Existing nodes in 

GP will become public nodes when network is growing. 

In addition, a new NU will be created by these public 

nodes and the new nodes after grown. 

 The energies in EAN will reduce when the network is 

growing because new connections have been established. 

The energy decrement     
     can be calculated by: 

    
      ∑     

           ( ) 
    ∑  ̅   

          

where     
           ( )

 is each energy decrement, and 

according to Definition 4, the     
     can be simply 

calculated by the amount of nodes in GP: 

    
     ∑     

           ( ) 
       

where n is the amount of nodes in GP. 

Definition 8 OGP (Optimal Growing Point) is an optimal 

growing point at the moment of t. It is possible that there are 

many GPs when the network is growing. A GP which wants 

to become the OGP must win in the competition. The 

competition rule is described as below: 

 The GP which will become OGP must insure that the 

production entropy of current network must be the 

minimum one among all the GPs at the moment of t+1. 

 The weight of the neuron which located in the central of 

GP’s topological graph must have the max similarity 

with the input data, which is similar with SOFM 

competition rule. 

So, in another word, if any GP meet this condition below will 

become an OGP: 

  
        
 

    (   )     
  
 

    (   ) 

    ‖           ‖    ‖     
‖. 

where   
  is any GP in the moment of t, and    

 is the weight 

of any GP’s central node in the moment of t. 

Definition 9 CDN (Cover Domain Neuron) is a neuron 

whose weight is the best matching unit. The CDN represents 

the activity of a certain neuron to a corresponding input 

data    . We can simply calculate the Euclidian distance 

between them as the similarity. If such distance is smaller 

than a threshold  , we can call this neuron CDN. 

‖    ‖      

The CDN usually reflects a hyper-sphere in the high-

dimension space. The weight of the neuron is the 

corresponding centre of this hyper-sphere and the parameter   

is the corresponding radius of this hyper-sphere. Thus, this 

hyper-sphere represents the space occupation of this neuron 

in the high-dimension space when the mapping procedure is 

terminated. 

3.2  The Architecture of ESGSONN 

ESGSONN has three layers in its network architecture: the 

Input Layer, the Growing & Competition Layer and the 

Combine & Output Layer.  

 Input Layer is composed of several input nodes, which 

is similar with SOFM. 

 Growing & Competition Layer is made up by EANs. It 

will take an unsupervised learning and EANs participate 

in the competition here. Also, EANs will be generated 

or deleted in this layer. 

 Combine & Output Layer contains output neurons. Each 

output neurons will be generated after obtaining a 

decision domain. 

The architecture of ESGSONN is shown in Fig. 3. 

 

Fig. 3. The architecture of ESGSONN. 

3.3  Training Algorithm 

There are mainly eight steps in ESGSONN algorithm:  

Step 1 Input a sample data    from    randomly. After 

executing step1, other sample data can be input in a certain 

order or randomly. 

Step 2 Initialize the network by generating a TNU structure, 

        
     , which has to meet that: 

              
            

Step 3 Obtain an OGP according to the Definition 8. 

Step 4 If a neuron becomes a CDN or the count of learning 

steps has reached to a threshold  , the network will generate 

a new NU at the OGP at the moment of t. the weights of new 

EANs added in new NU can be calculated by: 

     {
  

         
  

                        
                            

 

where the    is the weight of CN in the new TNU. And the 

          is the weight of neurons in the OGP, which is 

adjacent to the new ENA at the moment of t+1. 
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If the neuron in the central topological graph becomes a CN 

at the moment of t+1, the weights of neurons in OGP will be 

adjusted by: 

 (   )  {

 ( )          ̂  

 ( )            ̂  

 ( )            ̂  

     

         

         

 

where        and        are two neurons which are adjacent 

to the CN. In addition,   is the learning-efficiency, where 

      ,        and      are three different learning-

efficiency corresponding to       ,        and   . Make sure 

that      is the biggest one. The   ̂   is a unit vector 

towards the sample data   , which can be calculated as below: 

  ̂   
     

‖     ‖

 

(

 
  

    
 

√∑ (  
 
   

 
)
 

 
   

 
  

    
 

√∑ (  
 
   

 
)
 

 
   

  
  

    
 

√∑ (  
 
   

 
)
 

 
   )

 

 

 

Step 5 If a neuron becomes to a CDN, reserve its weight and 

generate a new NU, then input next sample until all the 

samples have been input into the network, or go back to the 

Step3. 

Step 6 After all the samples have been input into the network, 

delete the neurons and its adjacent neurons if this neuron did 

not become to a CN and its adjacent neurons were not CDN 

neither. After the delete operating, we can obtain different 

clusters.  

Step 7 Combine all the adjacent neurons and calculate the 

decision domains,   , which are the volumes of 

corresponding hyper-spheres in the high-dimensional space. 

   ⋃       

 

   

 

Step 8 Generate the output neurons in the Combine & Output 

Layer, and make sure that each output neurons has a 

corresponding decision domain. 

4. EXPERIMENTAL RESULTS 

4.1  The Stability of Dataset with Complex Structures 

It is a general problem that if the input dataset represent a 

complex distribution, in this case, the network based on 

competitive learning algorithm will become unstable, such as 

SOFM’s limitations. It often easily gets dead nodes that 

appear in the zero density-distributions of the input dataset 

and there exists more neurons around center than the edge. 

To check the stability of ESGSONN in this case, we use two 

groups of data which distribute in a complex structure. The 

first group of data is composed by 3243 samples distributing 

in a spherical band structure. (See Fig. 4 (a)). And the second 

group of data is composed by 9173 samples, which distribute 

as an irregular structure. (See Fig. 4 (b)). 

In this experiment, we see that SFOM has lots of dead nodes 

outside the input data distribution. (See Fig. 5. (a), (c)) These 

dead nodes could hardly be activated. In addition, boundary 

effect is visible, there are more nodes around the center than 

the edges, because the nodes around the center could be 

easily activated and it can learn more than the nodes around 

the edge. However, ESGSONN could reflect the input data 

distribution more precisely. The experimental result of 

ESGSONN is shown in Fig. 5. (b), (d). 

 

Fig. 4. Distributions of two different input data. (a) The input 

represents as a spherical band. (b) The input distribution represents 

as an irregular structure.
 

 

Fig. 5. The experiment result of stability to the complex input 

data distribution. (a) The result of SOFM by the group1 data. 

(b) The result of ESGSONN by the group1 data. (c) The 

result of SOFM by the group2 data. (d) The result of SOFM 

by the group2 data. 

Since the weight of neurons in ESGSONN is updated by unit-

vector in every learning-circle, there is no relationship of 

similarity between    and   . It is affected only by the 

topological structure and a few nodes in OGP will be 

adjusted in every learning-circle. Hence there are few dead 

nodes after learning. 

4.2  Incremental learning 

Incremental learning is a very important feature for SONNs. 

Usually the weights of neurons will change when they adapt 

new data. As a result, the network structure will be destroyed 

after further learning. In this experiment, we use three simple 

sequence groups of data and input them in order. The 
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experimental result of SOFM is shown in Fig. 6. We see that 

in each incremental learning, the weight of previous network 

changed in every learning-circle.  

 

Fig. 6. The procedure of SOFM learning. 

 

Fig. 7. The procedure of ESGSONN learning. 

However, because of the algorithm of ESGSONN, each 

learning-circle can be seen as an incremental learning. In 

other word, the whole procedure of ESGSONN learning is 

composed of small incremental learning-circles. (See Fig. 7). 

5. CONCLUSIONS 

The artificial neuron model is a fundamental element in the 

neural computation. In this paper, we proposed a new 

artificial neuron model called EAN model (Energy Artificial 

Neuron Model) based on the energy concept from the glial 

cells according to the recent achievements in the 

neuroscience field. EAN model can provide an energy-

threshold during the network growing. Additionally, we 

suggest a way to demonstrate EAN model in mathematics. 

Based on the EAN model, we realized a self-growing and 

self-organizing neural network called ESGSONN, which has 

these features as below:  

1) ESGSONN has no or less dead nodes after training and 

it has less boundary-effect than SOFM. 

2) The algorithm of ESGSONN is simple. Each growing 

will generate a new NU structure, and only few nodes in 

OGP will be adjusted. The algorithm will terminate 

when all the data have been input into the network. And 

it less depend on the initialization of the network. 

3) Each learning-circle for every input data can be 

considered as an incremental learning.  

Future work will considerate on applying EAN model in 

different kinds of self-organizing neural networks and further 

verify the features of EAN model and ESGSONN in different 

fields of application. 
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