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Abstract: In this paper the control problem of a quadrotor vehicle experiencing a rotor failure
is investigated. First we derive a nonlinear mathematical model for the quadrotor including
both translational and rotational drag terms. Then we use a feedback linearization approach
to design a controller whose task is to make the vehicle enter a constant angular velocity spin
around its vertical axis, while retaining zero angular velocities around the other axis. These
conditions can be exploited to design a second control loop, which is used to perform trajectory
following. The proposed double control loop architecture allows the vehicle to perform both
trajectory and roll/pitch control when a rotor failure is present.
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1. INTRODUCTION

Quadrotors are small aerial vehicles propelled by four
rotors arranged to the extremities of a X-shaped frame,
where all the arms make an angle of 90 degrees with one
another. They are commonly designed to be used as Un-
manned Vehicles (UVs) due to their high maneuverability,
low maintenance cost and simple design.

In order to fly autonomously quadrotors must rely on
sensors that provide information about the external en-
vironment or the internal system states and a controller
that drives the actuators according to the measurements
and the task that need to be accomplished. Both sensors
and actuators, however, may be subject to faults or failures
and it is important that the vehicle can be also controlled
in a faulty scenario. The capability of dealing with faults
is of vital importance for UVs, however in the case of the
unmanned quadrotor vehicle only few researches have been
devoted to the problem of Fault Detection and Isolation
(FDI) Rafaralahy et al. (2008); Berbra et al. (2008a);
Freddi et al. (2009) as well as to the problem of Fault
Tolerant Control (FTC) Nejad et al. (2009); Berbra et al.
(2008b). Moreover, at the best of the authors knowledge,
a fault tolerant controller has never been proposed in case
of actuator faults for this kind of vehicle.

The main contribution of this paper is to successfully
develop a control law to apply in case of loss of one of the
actuators in order to stabilize the attitude of the quadrotor
and make it reach a desired position in space (usually a
specified point on the ground), supposing that the vehicle
is already equipped with a FDI module capable to detect,
isolate faults and switch the controller from the fault-free
to the faulty state.

Feedback linearization methods underpin the control law
developed in this paper. Although robustness to model
uncertainties (Lanzon and Papageorgiou (2009); Griggs
et al. (2009); Lanzon (2009); Dehghani et al. (2009)) is
not explicitly considered in the current work, the authors
believe that this work lays down the nominal conceptual
foundations for subsequent robust fault tolerant control
designs in the presence of actuator failure. The nominal
fault tolerant design is complex in itself because it is
impossible to maintain full control of all the attitude states
and all the translational states when a primary actuator
has failed and the system becomes underactuated. This
paper proposes a solution to this loss of control action by
spinning the vehicle in the yaw direction, thereby sharing
actuators.

The fault tolerant controller is developed following a
double control loop architecture in which an inner and
faster controller has the task to regulate the attitude
angles and the altitude of the vehicle, while an outer and
slower controller has the aim of modifying the desired
values of the attitude angles in order to perform trajectory
following.

The inner control law is developed exploiting the conser-
vation of the angular momentum around the vertical axis
of the quadrotor. When one of the rotor fails, the velocity
of the rotor laying on the same axis of the faulty rotor
is modulated until the value of the angle controlled by
the faulty couple of rotors is zero. In this configuration
the quadrotor is parallel to the ground, spinning around
the vertical axis with a steady state rotational velocity
depending on the rotational drag. Varying simultaneously
the rotational velocity of the two rotors of the healthy
couple it is also possible to set a desired altitude for the
vehicle.
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The outer control law has the task to supply a proper
input to the healthy couple of rotors in order to make the
quadrotor reach a desired position in space. The control
law needs only to modify the desired direction of the total
lift thrust, since the motion in space depends on that
direction. Because the vehicle rotates around its vertical
axis, in order to keep the total lift thrust at a desired
direction it is necessary to vary each motor thrust with
a proper frequency, which must be proportional to the
angular velocity at which the vehicle is rotating.

The paper is organized as follows. In Section II the
nonlinear model of the quadrotor is presented. Section
III contains the mathematical formulation of the control
laws. Section IV is devoted to the presentation of the
simulation results obtained for various fault scenarios
when the proposed solution is applied to the quadrotor.
Conclusions and future works are presented at the end of
the paper.

2. DYNAMICAL MODEL OF THE QUADROTOR

As shown in Fig. 1, the front and rear motors (M1 and
M3) spin in the clockwise direction with angular velocities
ω1 and ω3, while the other two rotors (M2 and M4) spin
in the counter-clockwise direction with angular velocities
ω2 and ω4. The mathematical model developed here is

Fig. 1. The quadrotor scheme used for the development of
the mathematical model.

based on some basic assumptions as given below:

• Design is symmetrical.
• Quadrotor body is rigid.
• Propellers are rigid.
• Free stream air velocity is zero.
• The motors dynamics is relatively fast and can be
neglected.

• The flexibility of the blade is relatively small and can
be neglected.

• Drag is supposed to be linear, thus obeying Stoke’s
law.

Two frames are used to study the system motion: a
frame integral with the earth {R} (O, x, y, z), which
is supposed to be inertial, and a body-fixed frame
{RB} {OB , xB , yB , zB}, where OB is fixed to the center of
mass of the quadrotor. {RB} is related to {R} by a position
vector ξ = [x y z]

T
, describing the position of the center

of gravity in {RB} relative to {R} and by a vector of three

independent angles η = [ϕ θ ψ]
T
, which represent the

orientation of the body-fixed frame {RB} {OB , xB , yB , zB}
with respect to the earth frame {R} (O, x, y, z), using
the so-called yaw, pitch and roll notation. In this way

ξ = [x y z]
T

and η = [ϕ θ ψ]
T

fully describe, respec-
tively, the translational and the rotational movement of
the rotorcraft with respect to the earth frame.

Given a force FB , expressed using the coordinates of the
body frame, the force F expressed in the coordinates of
the earth frame is:

F = RB→EFB (1)

where RB→E is the rotation transformation from vectors
read in the body reference frame to vectors read in the
earth reference frame given by

RB→E
.
=

[
CθCψ CψSθSϕ − CϕSψ CϕCψSθ + SϕSψ
CθSψ SθSϕSψ + CϕCψ CϕSθSψ − CψSϕ
−Sθ CθSϕ CθCϕ

]
(2)

where S(.) and C(.) represent sin (.) and cos (.) respectively

In a similar way, given the angular velocity vector ω =

[p q r]
T
, where p, q and r represent the instantaneous

angular velocities around the xB-axis, yB-axis and zB-axis
respectively, it is related to the rate of change of the yaw,
pitch and roll angles by Fossen (2002):

ω = Wηη̇ (3)

where

Wη
.
=

[
1 0 −Sθ
0 Cϕ SϕCθ
0 −Sϕ CϕCθ

]
. (4)

The dynamics of the quadrotor can be described analyzing
the forces acting on it, which are the weight force, the
thrust forces and the drag terms. The weight force is
applied to the center of gravity and directed along the
negative z-axis in the earth frame. The thrust force f j ,
where j = 1, 2, 3, 4, is applied to the center of the j-th
motor, distant l from the center of mass, and directed
along the positive zB-axis: fj ≥ 0 for j = 1, . . . , 4. The
drag terms obey Stoke’s law: the translational drag is
proportional to the linear velocity and the rotational drag
term is proportional to the angular velocitiy.

An Euler-Lagrange approach is adopted in order to write
the equations which describe the translational motion of
the quadrotor. The kinetic energy of the rotorcraft can be
divided into translational and rotational components Raffo
et al. (2010). The translational component is

Ttrans ,
1

2
mξ̇

T
ξ̇ (5)

where m denotes the whole mass of the rotorcraft. The
rotational component is

Trot ,
1

2
η̇T Jη̇ (6)

in which J represents the inertia matrix in terms of the
generalized coordinates η. Defining the inertia matrix in
the body frame as

I .=

[
Ixx 0 0
0 Iyy 0
0 0 Izz

]
(7)
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which is diagonal due to the symmetry of the quadrotor,
the inertia matrix in terms of the generalized coordinates
can be expressed as

J = WT
η IWη (8)

The only potential energy which needs to be considered is
due to the gravitational field. Therefore, potential energy
is expressed as

U = −mgz (9)

Let q =
[
ξT ηT

]T
= [x, y, z, ϕ, θ, ψ]T ∈ R6 be the

generalized coordinates vector for the aerial vehicle, the
Lagrangian is given by

L (q, q̇) = Ttrans + Trot + U =
1

2
mξ̇

T
ξ̇ +

1

2
η̇T Jη̇ −mgz

(10)

Since the Lagrangian contains no cross-terms in the kinetic
energy combining ξ̇ and η̇, the Euler-Lagrange equation
relative to the translational motion can be written as:

d

dt

∂L
∂ξ̇

− ∂L
∂ξ

= F ξ (11)

where F ξ defines the translational generalized force acting
on the aerial vehicle and relative to the frame {R}.
Labeling as f1, f2, f3 and f4 the upward lifting forces
generated by the propellers, the force in the zB direction
due to the control inputs, expressed into the body frame,
is:

uf = f1 + f2 + f3 + f4 (12)

Substituting (10) in (11) and expanding Fξ leads to

mξ̈ +

[
0
0
mg

]
= RB→E

[
0
0
uf

]
− ktξ̇ (13)

where kt is the translational drag coefficient, assumed to
be equal in all directions for simplicity.

The vector equation that describes the rotational motion
of the quadrotor, referred to the body frame coordinates,
is:

τB = Iω̇ + ω × (Iω) + krω (14)

where kr is the rotational drag coefficient, assumed to be
constant in all directions for simplicity and “×” denotes
the vector cross product.

The torques around the body frame axis are described by:

τB =

[
τp
τq
τr

]
=

[
l(f4 − f2)
l(f3 − f1)

d(f1 − f2 + f3 − f4)

]
(15)

where l is the arm length and d is the ratio between the
drag and the thrust coefficients of the blade.

3. THE FAULT TOLERANT CONTROLLER

In literature, several techniques have been proposed to
control a fault-free quadrotor vehicle: dynamic inver-
sion (Lewis (2009)), nested saturations Castillo et al.
(2005), nonlinear H∞ control, Model Predictive Control
(MPC) Raffo et al. (2010), feedback linearization Voos
(2009) and backstepping Bouabdallah and Siegwart (2007)
are among the most used approaches. These controller
structures are based upon the already mentioned double
loop architecture.

The Fault Tolerant Controller (FTC) is based on the
assumption that one of the four actuators is experiencing
a failure (no longer able to provide an upward lift force),
while the other three actuators are fully working. When
one of the rotor fails two problems which are not present in
the fault-free case arise. First the quadrotor looses the abil-
ity to control independently the three torques necessary to
fully control the attitude of the vehicle. Furthermore this
rotor failure implies the loss of controllability of one vari-
able from roll, pitch, yaw and altitude. It is our claim that,
from a physical point of view, the most important variables
to control are roll, pitch and altitude. The roll and pitch
angles are of vital importance because a small change in
their values may affect the stability of the vehicle. On the
other hand altitude must always be kept above a positive
threshold in order to avoid collision with the ground. The
impossibility to control yaw displacement when a rotor
failure occurs, instead, only implies loosing the heading of
the vehicle. For these reasons the FTC proposed in this
paper is developed sacrificing the controllability of the ψ
state.

In case of fault the control structure can be realized using
the double loop architecture shown in fig. 2. The inner
control loop controls roll, pitch and altitude, while the
outer control loop sets the desired values of the ϕ and
θ angles in order to control position in the xy-plane. Since
roll, pitch and altitude have the highest priority during
flight, the inner controller works much faster than the
outer controller. Finally the quadrotor states must be
accessible in order to develop the controller: the inner
controller needs the states [ϕ, θ, ψ, p, q, r, z], while [x, y] are
also needed by the outer control loop. In this section the

Fig. 2. The control system scheme: the inner control loop
controls the quadrotor altitude and attitude, while
the slower outer controller has the task to control
position.

FTC in case of failure on the actuator 2 is described. Due
to the symmetry of the system a similar controller can be
developed in case of failure on actuators 1, 3 or 4.

In case of failure on M2 the control inputs are chosen as
uf , τq and τr, where the relation[

uf
τq
τr

]
=

[
1 1 1
−l l 0
d d −d

][
f1
f3
f4

]
(16)

is bijective. Choosing the state vector as

x = [ϕ θ ψ p q r x y z ẋ ẏ ż]
T

(17)

and the input vector as

u = [uf τq τr]
T

(18)

then equations (13)-(14) can be written in state-space form
as
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ẋ1 = x4 + x5Sx1Tx2 + x6Cx1Tx2 (19)

ẋ2 = x5Cx1 − x6Sx1 (20)

ẋ3 =
1

Cx2

[x5Sx1 + x6Cx1 ] (21)

ẋ4 =
1

Ixx
[−krx4 − x5x6(Izz − Ixx) +

l

2
(uf −

τr
d
)] (22)

ẋ5 =
1

Ixx
[−krx5 − x4x6(Ixx − Izz) + τq] (23)

ẋ6 =
1

Izz
(−krx6 + τr) (24)

ẋ7 = x10 (25)

ẋ8 = x11 (26)

ẋ9 = x12 (27)

ẋ10 =
Cx1Sx2Cx3 + Sx1Sx3

m
uf −

kt
m
x10 (28)

ẋ11 =
Cx1Sx2Sx3 − Sx1Cx3

m
uf −

kt
m
x11 (29)

ẋ12 =
1

m
[ufCx1Cx2 − ktx12 −mg] (30)

in which Ixx has been chosen equal to Iyy due to the
symmetry of the quadrotor.

3.1 Inner Control Loop

From the equations (19)-(30) it can be seen that the
dynamics of the state variables x1, x2, x4, x5, x6, x9, x12,
which we will call x̄ for notation simplicity, can be written
as

˙̄x = f(x̄) + h(x̄)u (31)

The dynamics of the states x1, x2 and x9 can be similarly
written as[

ẋ1
ẋ2
ẋ9

]
=

[
x4 + x5Sx1Tx2 + x6Cx1Tx2

x5Cx1 − x6Sx1

x12

]
.
= f̂(x̄) (32)

which, in this case, is independent of the input vector u.
This property becomes useful when calculating the second
derivative of [x1 x2 x9]

T :[
ẍ1
ẍ2
ẍ9

]
=
df̂(x̄)

dt
=
∂f̂(x̄)

∂x̄
˙̄x =

∂f̂(x̄)

∂x̄
f(x̄) +

∂f̂(x̄)

∂x̄
h(x̄)u

(33)
Denoting the Jacobian matrix with

J(x̄)
.
=
∂f̂(x̄)

∂x̄
(34)

the previous dynamics can be written as[
ẍ1
ẍ2
ẍ9

]
= J(x̄)f(x̄) + J(x̄)h(x̄)u (35)

It can be proved that matrix J(x̄)h(x̄) is invertible if and
only if

x2 ̸= arctan(
Izzl

2Ixxd
Cx1

) (36)

In most practical scenarios this condition is satisfied. In
our case, with the parameters adopted for the simulation,
the invertibility condition is guaranteed as long as the
pitch and roll angles are limited to 80◦, which is a value
never reached by the quadrotor during non aerobatic flight.

Let xid, ẋid, ẍid be the desired values for xi, ẋi, ẍi and
define the i-th error as

ei
.
= xi − xid (37)

If the control inputs are chosen as[
u∗
f

τ∗q
τ∗r

]
.
= −(J(x̄)h(x̄))−1J((x̄)f(x̄))

−(J(x̄)h(x̄))−1

(
2ξincin

[
ė1
ė2
ė9

]
+ c2in

[
e1
e2
e9

]
−

[
ẍ1d

ẍ2d

ẍ9d

])
,

where ξin and cin are positive constants, then the error
dynamics can be written as[

ë1
ë2
ë9

]
+ 2ξincin

[
ė1
ė2
ė9

]
+ c2in

[
e1
e2
e9

]
=

[
0
0
0

]
(38)

which yields stable second-order dynamics providing ex-
ponential decay of ei for i = 1, 2, 9 (respectively the roll,
pitch and altitude errors).

Furthermore if x1d and x2d are chosen to converge to zero
and x9d to converge to a constant, then x4 and x5 converge
to zero while x6 retains boundedness, i.e.:

x6 → dmgIzz
kr

(39)

From a physical point of view it means that when one
of the rotor fails, the proposed control law can bring the
faulty quadrotor back to hover condition (roll and pitch
stabilization at zero degress, altitude stabilization at any
desired value above the ground), while spinning in the yaw
direction with constant angular velocity.

3.2 Outer Control Loop

The horizontal motion of the quadrotor depends on the
direction that the horizontal component of the thrust
vector, that is to say the vector sum of each rotor thrust,
assumes in the space. Since this direction depends on the
roll and pitch angles, it is possible to develop an outer
control loop whose task is to generate the desired values
for the roll and pitch angles in order to reach a desired
position in the earth fixed frame and with a desired profile
for both the x and y velocities and accelerations (see fig. 2).

In order to make the two controllers work together without
compromising stability, it is necessary that the outer
control loop acts much slower than the inner control loop:
this can be achieved choosing properly the values of cin and
co. The constant cin represents the natural frequency of the
dynamics of the subsystem described by the state variables
x1, x2 and x9. If we similarly define cout the natural
frequency of the dynamics of the subsystem described by
the state variables x7, x8, x10 and x11, it is necessary to
choose cout ≪ cin in order to ensure the overall stability
to the closed-loop system.

Suppose x1 and x2 are small angles: this can be achieved
simply activating the inner controller with x1d and x2d set
close to zero. If x1d and x2d are chosen as[

x1d

x2d

]
= −

m

uf

[
Sx3 −Cx3

Cx3 Sx3

][− kt
m

x10 + 2ξocoe10 + c2oe7 − ẋ10d

− kt
m

x11 + 2ξocoe11 + c2oe8 − ẋ11d

]
,

(40)
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where ξo and co are positive constants, then error dynamics
for the horizontal displacements in closed loop is[

ëx + 2ξocoėx + c2oex
ëy + 2ξocoėy + c2oey

]
=

[
0
0

]
(41)

which is asymptotically stable.

From a physical point of view it means that when one of
the rotor fails, the inner control law stabilizes roll, pitch
and altitude, while the outer control law exploits the near
hover condition to slowly change the pitch and roll angles
in order to move the vehicle to a desired position in space.

4. SIMULATION RESULTS

Several simulations have been run using the Matlab and
Simulink R⃝ softwares in order to validate the theoretical
results.

The simulation system consists of 3 modules:

• the nonlinear system module, which includes all the
differential equations described in section 2;

• the nonlinear controller module, which includes the
equations described in section 3;

• the initialization module, which includes all the pa-
rameters that are necessary to run the simulation.

In the present paper the results of two different simulations
are reported. Both the simulations have been performed
with the controller activated at t = 0 and with the initial
conditions chosen far from the hover equilibrium point.

In the first simulation only the inner controller is working
while the outer control is deactivated. The desired values
for the state variables are all set to 0 exception made for
the altitude, which is chosen to be 10m. The simulation
has been run for 20s which is a sufficient time to reach
hover.

As it can be seen in fig. 3 the attitude angles ϕ and θ go
to zero in less than 15s and with a smooth profile. The
ψ angle does not reach a steady state value, but increases
with a constant rate . The x and y variables reach instead a
steady state value that depends on the initial conditions,
while the altitude z is quickly regulated to the desired
value of 10m. The angular and linear velocities are all
stabilized as it can be seen in fig. 4, with the exception
of r: this behaviour is actually not a surprise since the
controllability of the ψ variable has been sacrificed in
the design phase of the fault tolerant controller. Thus r
converges to a constant and the yaw angle ψ increases
according to a linear law.

In the second simulation both the inner controller and the
outer controller are working. The desired values for the
state variables are all set to 0, exception made for the
altitude, which is set to 10m as long as the quadrotor has
not reached the desired lateral and longitudinal position,
then it is set to a ramp with negative slope until it becomes
zero (landing procedure). The time needed to reach the
desired set points is greater than that needed to grant
attitude stabilization in the previous simulation: this is
caused by the fact that the outer controller tends to force
the attitude angles to differ from zero as long as the
desired position is not reached, while the inner control
tends to force those angles to zero. The simulation has
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Fig. 3. Linear and angular positions, in function of time,
when the stabilizing controller is running while the
outer controller is disabled. The ϕ and θ angles go to
zero and the altitude quickly reaches the desired set
point.
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Fig. 4. Linear and angular velocities, in function of time,
when the stabilizing controller is running while the
outer controller is disabled. All velocities go to zero
while the quadcopter is stabilized, exception made for
r whose controllability has been sacrificed during the
design phase of the fault tolerant controller.

been therefore run for 400s, which is a sufficient time to
reach the origin with stable pitch and yaw angles.

As it can be seen in fig. 5 the attitude angles ϕ and θ
are stabilized, but this time there are oscillations due to
the presence of the outer controller. The ψ angle does not
reach a steady state value, but increases according to a
linear law as before. The linear positions reach instead the
origin, even if the regulation of z is much faster than that of
x and y due to the fact that altitude regulation is operated
by the inner and faster controller. The angular and linear
velocities are all stabilized as it can be seen in fig. 6, with
the exception of r, for the reasons already stated in the
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Fig. 5. Linear and angular positions, in function of time,
when both the controllers are running. The ϕ and
θ angles go to zero and all the positions reach the
desired set points with different time constants.

paragraph in which we described the first simulation, and
ż which becomes negative during the landing procedure.
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Fig. 6. Linear and angular velocities, in function of time,
when both the controllers are running. All velocities
go to zero, exception made for r.

5. CONCLUDING REMARKS

In the present paper the problem of controlling a quadrotor
aerial vehicle when one of the actuators fails is proposed.
First a mathematical model for the quadrotor aerial ve-
hicle is presented, then this model is exploited to build
a fault tolerant controller based on a double control loop
architecture. The control law has finally been tested in two
different simulated scenarios. The derived fault tolerant
controller shows that despite a rotor failure, the quadrotor
can remain flying with only three functional rotors. It can
perform trajectory control in x, y and z perfectly and can
also control roll and pitch angles.
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