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Abstract: The fuel optimal control of modern vehicles involves the control of several com-
ponents: the automated manual transmission, power split between the engine and secondary
power converter, vehicle velocity, clutch position and motor start-stop. These controls are often
optimized separate from each other, which leads to suboptimal results. In this paper we focus
on the combined optimization of hybrid system use, gearbox and vehicle velocity.
A novel cost function description is used which describes the influence of the automated manual
transmission, the potential of brake energy recovery, and the vehicle velocity with one control
signal, and, therefore, reduces the computational complexity. The cost is modeled using a
piecewise affine continuous function, which has the advantage of the control appearing affine in
the Hamiltonian. Besides the standard optimal control solution for systems with an affine cost
function, non-smooth optimal control theory is involved to obtain a sequence of subarcs that
fulfills the necessary conditions of optimality.
Since the length and cost of each subarc, that fulfills the necessary conditions of optimality, in
travel time and fuel consumption, can analytically be expressed in its initial and end velocity,
the fuel optimal control of a vehicle with energy recovery options is rewritten as a nonlinear
optimization problem.

Keywords: Hybrid vehicles, Vehicles, Optimal control, Maximum principle, Trajectory
planning, Velocity control, Train control, Traffic control, Trajectories.

1. INTRODUCTION

Nowadays, control plays an increasing role in modern
vehicle drive trains, for instance the control of automated
manual transmissions (AMTs), of clutch and engine stop-
start, of power split between different power converters
in hybrid drive trains, often referred to as energy man-
agement strategy (EMS), and of vehicle velocity by the
combined power output of engine and electric machine
with an (adaptive) cruise control ((A)CC).

The different control systems have a common objective,
to minimize the fuel consumption, while satisfying con-
straints on the driveability, comfort, components, and ve-
hicle velocity. Optimization of individual systems gener-
ally leads to suboptimal results. From onboard navigation
systems one can acquire the data, e.g., road curvature,
road grade and velocity limitations, needed to set-up an
optimization problem for the systems described above.

Several contributions regarding velocity trajectory opti-
mization for vehicles (incl. trains) with an AMT and
braking capabilities have been made (Monastyrsky and
Golownykh, 1993; Ko et al., 2004; Hellström et al., 2008;
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Vas̃ak et al., 2009). In Hellström et al. (2010) the velocity
trajectory optimization is solved, accounting for the energy
recovery potential of hybrid vehicles. In the previously
mentioned contributions, the problem is attacked using
Dynamic Programming techniques. These solutions are
computationally heavy. Therefore, here a solution using
the Maximum Principle (MP) is explored, since this is
(possibly) computationally more efficient.

The fuel optimal velocity trajectory of a vehicle is related
to the well known Optimal Control Problem (OCP) ex-
ample of the fuel optimal flight of a rocket. When the cost
function is affine on the control interval (zero trust to max-
imum thrust), the Pontryagin MP, extended with theory
on singular extremals (Bell and Jacobson, 1975; Johnson
and Gibson, 1963; Kelley, 1965; Kopp and Moyer, 1965),
can be applied to solve the problem. The solution consists
of the extremal controls and a singular control arc where
the velocity is constant and the trust is in equilibrium
with the aerodynamic losses, see, e.g., Geering (2007, p. 62)
for details on the solution. In Schwartzkopf and Leipnik
(1977) and Stoicescu (1995) an optimal solutions shape,
for conventional vehicles, is derived using the Pontryagin
MP, however, the non-smoothness, e.g., related to braking,
is not fully addressed.

The Pontryagin MP does not apply to non-smooth systems
as it requires the underlying data to be differentiable.
Several extensions of the MP to the non-smooth case are
known, see, e.g., Clarke (2005) and Vinter (2000) for an
overview. The requirements to the underlying system can
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be relaxed, by considering generalizations of the derivative,
that is, the adjoint multiplier functions are described in
the form of a differential inclusion set rather then explicit
differential equations.

In addition to the drive train of conventional vehicles,
modern vehicles are often equipped with a secondary
power converter and storage device. Since the primary
power converter can in general only produce power, the
secondary power converter enables energy recovery during
braking or down hill driving. The EMS of the hybrid
drive train components deals with the re-use of recovered
energy and is often obtained using optimal control theory,
see, e.g., Sciarretta and Guzzella (2007), for an overview.
The optimal control solution is characterized by adjoint
parameters of which the value depends on the future
velocity and power trajectories. The real-time EMS is often
designed and bench marked using predefined velocity and
power trajectories.

In Van Keulen et al. (2010), it is shown that route
information from a navigation system can be used to
construct a velocity trajectory optimization problem using
a novel non-smooth description of the hybrid drive train
cost function which reduces the computational complexity
since only one control signal is required instead of three
(control of AMT, hybrid system and vehicle velocity).
The solution in Van Keulen et al. (2010) was derived on
physical insight alone.

The main contribution of this paper is the derivation of
the optimal solution for the cost function proposed in Van
Keulen et al. (2010). It is shown that describing the cost
function with piecewise affine (PWA) relations, rather then
a higher order continuous function, results in the analytical
derivation of the optimal solution shape.

This paper is organized as follows. Section 2 discusses
the cost function derivation. In Section 3 the derivation
of a solution shape that fulfills the necessary conditions
for optimality for the velocity trajectory is presented.
Section 4 deals with the structure of the solution shape
and sketches the possibilities of real-time implementation.
Finally, in Section 5 we summarize with conclusions and
give an outlook on future research.

2. COST FUNCTION DERIVATION

Finding a control that simultaneously optimizes the AMT,
EMS and ACC is not trivial due to i) the nonlinear
characteristics of the drive train components, and ii)
the large number of control parameters that hamper
the practical implementation of numerical solutions with,
e.g., Dynamic Programming. To reduce the computational
complexity, it is proposed to simplify the problem, by
approximating the fuel cost of gearshifts, hybrid system
use and vehicle velocity with a scalar function with a scalar
argument.

Using a convex continuous PWA cost function has the
advantage that the control appears linearly in the Hamilto-
nian, which enables the use of non-smooth optimal control
theory developed in Clarke (1983, 2005) and Vinter (2000).
In the remainder of this section, firstly, the approximation
of the engine and AMT, and hereafter the hybrid system,

is discussed and motivated, secondly, a formal system
description is presented.

Similar to the cost function of the fuel optimal flight of
a rocket, it is suggested to approximate the fuel cost of
the engine of a vehicle, at rotational velocity ω, with
an affine relation, sometimes referred to as a Willans
approximation:

Pf = γp,0(ω) + γp,1(ω)Pp (1)

with Pf the fuel power, γp,0 > 0 and γp,1 > 1, and
Pp the demanded engine power. This relation will later
be expanded to form the cost function for the different
optimization problems.

It is also proposed to approximate the control of the AMT
with (infinitely) many gear settings (a continuously vari-
able transmission CVT), so the power converter rotational
velocity can be chosen virtually independent of the vehicle
speed, and to base the gear ratio selection on choosing the
most efficient ω using a predefined level of power reserve
Pv

Pp + Pv ≤ ω max(Tp(ω)) (2)

with Tp(ω) the engine torque. The optimal gear setting is
obtained from

min
ω

∫

Pf (ω)dt. (3)

Using Pv = 0, approximates e-line tracking: the line
connecting the engine optimal operating points (rotational
velocity and torque), for each power request. Fig. 1 depicts
the equivalent fuel consumption Peq, of a medium-duty
truck, as a function of the tractive power Pr and different
levels of power reserve Pv. Here, above 5

8P p the power
reserve is linearly build off to become zero at the engine
maximum output power P p.

Changing (1) to,

Pf = γp,0(Pv) + γp,1(Pv)Pp, (4)

for P p(Pv) < Pp < P p with

P p(Pv) =
−γp,0(Pv)

γp,1(Pv)
, (5)

is a viable way to incorporate the gear selection strategy
in the cost function.

This cost function reflects an approximation of the engine
and AMT use. The simplification of discrete gear shifting
with many gear settings has two main consequences i) the
fuel to power conversion of the engine is too optimistic,
due to the limited number of gears, engine power cannot
always be delivered at the preferred rotational velocity of
the engine, see Saerens et al. (2008), and ii) the time and
cost required to change gear are not accounted for.

The power conversion characteristics of electric machine
and battery combined, are approximated as

Ps = max(γ+
m,1Pm, Pm/γ−

m,1) (6)

or visa versa

Pm = min(γ−

m,1Ps, Ps/γ+
m,1) (7)

with γ+
m,1 > 1 and γ−

m,1 > 1. The power stored in the
battery Ps is a PWA function of the mechanical power of
the electric machine Pm. In this contribution, an electric
machine is used as secondary power converter, a hydraulic,
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Fig. 1. The cost function description. Abbreviation (H)EV
indicates (Hybrid) Electric Vehicle.

pneumatic or mechanical hybrid can be treated similarly,
however.

The tractive power Pr is split over, or provided by, the two
power converters as

Pr = Pp + Pm. (8)

In case of hybrid vehicles, the power split is obtained from

min
Pm

∫

Pf (Pm)dt (9)

such that the initial and final battery charge is the same
(or is a predefined difference). Note that Pf ≥ 0, so the
cost function is convex (γp,1 > 1) and PWA. Eq. (9) can
be formally solved, but it is also possible to obtain the
solution based on physical insight alone.

The optimal strategy is to generate electricity and store it
in the battery if Pr drops below the level where Pf = 0, i.e.,
Pr < P p, this is referred to as brake energy recovery. Given
the losses associated with charging the battery, using the
PWA model description, it is not profitable to charge the
battery at any other occasion. The energy stored in the
battery can then be re-used at any time where Pr > P p.
Because the incremental cost γp,1 and discharge/motor
factor γ+

m,1 are constant, it does not matter when the
battery is actually discharged, as long as the constraint
on the battery end charge is met and the electric machine
is used to provide tractive power.

The optimal power split can be incorporated in the cost
function, to become a function of the tractive power
Pr alone, using brake energy recovery as “negative” fuel
consumption. This is described with an affine relation for
Pr between the maximum regenerative power P q and the
drag power P p, P q ≤ Pr ≤ P p. The amount of fuel
saved by storing energy in the battery and using it later
is obtained from

γp,1

γ+

m,1
γ−

m,1

Pm, with Pm = Pr − P p ≤ 0 for

charging/generating.

The EMS problem is simplified in several ways: the route
dependent influences of load shifting, clutch opening, and
engine stop-start are disregarded, the limited battery
capacity or the temperature dependent electric machine

overload capability is not accounted for, the maximum
tractive power is limited to the maximum engine output
power Pr ≤ P p, and finally, the component description is
simplified compared to Sciarretta and Guzzella (2007).

The application of the service brakes can be incorporated
in the cost function as well. Clearly, applying the service
brakes does not consume fuel or recover energy, and
is, therefore, modeled with a horizontal line in the cost
function for P d < Pr < P q, where P d is the available
brake power.

The above mentioned simplifications result in a non-
smooth cost function, see Fig. 1, with a single control
signal Pr, the mechanical power at the wheels, instead of
three (the output power of engine and electric machine
and gearbox use):

Peq(t) =

max

(

γp,1(Pr(t) − P p),
γp,1(Pr(t) − P p)

γ+
m,1γ

−

m,1

,
γp,1(P q − P p)

γ+
m,1γ

−

m,1

)

(10)

here, Peq(t) is a PWA function representing the equivalent
fuel consumption power.

The minimization of the functional

min
Pr

∫ t1

t0

Peq(Pr)dt, (11)

subject to the nonlinear vehicle dynamics:

v̇(t) = a1
Pr(t)

v(t)
− a2(t, s) − a3v(t) − a4v

2(t), (12)

ṡ(t) = v(t), (13)

is considered. Here, v > 0 is the vehicle velocity, s the
traveled distance, a1 > 0 the reciprocal vehicle mass, a2

a parameter related to rolling resistance and gravitational
force, a3 > 0 a loss parameter proportional to velocity,
a4 > 0 the parameter for (aerodynamic) losses quadratic
to velocity.

The control Pr is bounded:

Pr ∈ [P d, P p], (14)

and the following begin and end states are constrained:

v(t0) = v0, s(t0) = s0, (15)

v(t1) = ve, s(t1) = se, (16)

where ve is the desired final velocity and se is the dis-
tance to be reached. The velocity trajectory optimization
problem can be defined as a fixed-time, fixed-end-point,
non-smooth OCP, in which the fuel cost is described as
a PWA continuous function. It is assumed that the final
time t1 is sufficiently large for the existence of a solution.

3. NECESSARY CONDITIONS FOR OPTIMALITY

In this section, the MP is applied to derive a set of controls
that fulfils the necessary conditions of optimality. This
comprises first the definition of the Hamiltonian, hereafter,
the necessary conditions are stated, which includes higher
order necessary conditions for the singular control subarcs
in situations where the Hamiltonian does not explicitly
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depends on the control, finally, the optimal control subarcs
are derived.

The system dynamics can be adjoined to the fuel cost
function by a set of multiplier functions p(t), leading to
the Hamiltonian:

H =

max

(

γp,1(Pr(t) − P p),
γp,1(Pr(t) − P p)

γ+
m,1γ

−

m,1

,
γp,1(P q − P p)

γ+
m,1γ

−

m,1

)

+ p1(t)

(

a1
Pr(t)

v(t)
− a2(t, s) − a3v(t) − a4v

2(t)

)

+ p2(t)v(t). (17)

Applying the MP (Vinter, 2000, Theorem 6.2.1 on p. 203),
it is stated that if the control is optimal, then there exist
nontrivial continuous multiplier functions:

[

p1(t)
p2(t)

]

6≡

[

0
0

]

(18)

such that the following necessary conditions are satisfied:

• the adjoint inclusion ṗ ∈co∂v,sH, in which ∂v,sH
denotes the generalized subdifferential of H. Since the
dynamics in (12) and (13) are smooth this reduces to
differential equations on the multiplier functions:

ṗ1(t) = −
∂H

∂v

= p1(t)

(

a1
Pr(t)

v2(t)
+ a3 + 2a4v(t)

)

− p2(t),

(19)

ṗ2(t) = −
∂H

∂s
= p1(t)

∂a2(t, s)

∂s
, (20)

• the Hamiltonian has a global minimum with respect
to Pr:

P ∗

r = arg min
Pr

H(v∗, s∗, Pr, p
∗

1, p
∗

2) (21)

where v∗ is the optimal velocity state trajectory,
s∗ the optimal distance trajectory, P ∗

r the optimal
power input trajectory, p∗1, and p∗2 the corresponding
multiplier functions.

Note that, since the problem treated in Section 4 is
a fixed-time fixed-end-point problem, the transversality
conditions are omitted.

For convenience the Hamiltonian is written as an affine
relation of the control parameter:

H = g(v, s, p1, p2) + h(v, p1)Pr. (22)

Minimizing the Hamiltonian yields:

h(t)P ∗

r ≤ h(t)Pr. (23)

Switching function h(t) is of first order with respect to the
control Pr, and described with:

h(t) =























p1(t)
a1

v(t)
+ γp,1 in int [P p, P p],

p1(t)
a1

v(t)
+

γp,1

γ+
m,1γ

−

m,1

in int [P q, P p],

p1(t)
a1

v(t)
in int [P d, P q].

(24)

Here “int” denotes the interior of the region.

A special situation occurs when h becomes identically zero,
h ≡ 0. In that case H does not depend upon Pr explicitly.

Although the control arc satisfies the MP, the optimal
control cannot be found directly by minimizing H, it must
satisfy additional higher order necessary conditions for
optimality (Kelley, 1965; Kopp and Moyer, 1965; Johnson
and Gibson, 1963; Bell and Jacobson, 1975), so singular
control. The necessary conditions are that all of the
derivatives of h, along the optimal trajectory, must vanish
in this time interval as well, i.e., ḣ ≡ 0, ḧ ≡ 0 , h(3) ≡ 0,
and so on.

In case Pr < P q, h ≡ 0 as optimal singular control solution
can not be obtained due to the non-triviality condition (18)
on p1 and p2, so Pr = P d or Pr = P q depending on the
sign of h. For Pr > P q, h ≡ 0 can occur and the higher
order conditions are needed.

For the singular case, the following necessary condition for
optimality is obtained:

h(t) =
a1p1(t)

v(t)
+ σ ≡ 0, (25)

which leads to:

p1(t) ≡
−σv(t)

a1
, (26)

where σ is a piecewise constant:

σ =







γp,1 in int [P p, P p],
γp,1

γ+
m,1γ

−

m,1

in int [P q, P p].
(27)

The condition on the first derivative of h becomes:

ḣ(t) = ṗ1(t)
a1

v(t)
− p1(t)

a1v̇

v2(t)
≡ 0. (28)

Using (12) and (19), a condition on the multiplier p2 can
be derived:

p2(t) = p1(t)

(

a2(t, s)

v
+ 2a3 + 3a4v(t)

)

, (29)

The condition on the second derivative of h becomes:

ḧ(t) = ṗ1(t)a1

(

a2(t, s)

v2(t)
+

2a3

v(t)
+ 3a4

)

+ p1(t)a1v̇

(

−a2(t, s)

2v3(t)
−

2a3

v2(t)

)

+
p1(t)a1ȧ2(t, s)

v2(t)

−
ṗ2(t)a1

v(t)
+

p2(t)a1v̇(t)

v2(t)
≡ 0. (30)

Using (12), (19), (20), and (29) the condition above can
be reduced to:

ḧ(t) = p1(t)a1v̇

(

2a3

v2(t)
+

6a4

v(t)

)

≡ 0.

Therefore, ḧ can only vanish for the singular control v̇ ≡ 0,
so, v∗ is constant and by (12) it then holds that:

P ∗

r (t) ≡
a2(t, s)v

∗ + a3v
∗2 + a4v

∗3

a1
. (31)

From the necessary conditions it can be seen that the
singular control arcs have the following features:

• the velocity v∗ is constant,
• the tractive power P ∗

r is in equilibrium with the
vehicle losses (31), the situation of negative velocity
is neglected,

• the costate variable p∗1 is constant and attains the

value p∗1 = −σv∗

a1
,
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• the costate variable p∗2 attains the value p∗2(t) =

p∗1

(

a2(t,s)
v∗

+ 2a3 + 3a4v
∗

)

,

• if ∂a2(s)
∂s

= 0, p∗2 is constant, so the value for p∗2
obtained by condition (29) holds for all subarcs.

The singular control subarc on the control interval P q <
Pr < P p, in practice, only occurs at a downhill where
the electric machine force and aerodynamic drag force and
rolling resistance are in equilibrium with the gravitational
force.

The optimal control has the following subarcs:

P ∗

r (t) =


































































P p for p1 <
−γp,1v

a1
,

[P p, P p] for p1 ≡
−γp,1v

a1
,

P p for
−γp,1v

a1
< p1 <

−γp,1v

γ+
m,1γ

−

m,1a1

,

[P q, P p] for p1 ≡
−γp,1v

γ+
m,1γ

−

m,1a1

,

P q for
−γp,1v

γ+
m,1γ

−

m,1a1

< p1 < 0,

P d for p1 > 0.

(32)

4. NUMERICAL SOLUTION

To arrive at optimal trajectories P ∗

r (t) and v∗(t), two
problems remain to be solved: i) the structure of the
solution (regularity), i.e., the sequence of nonsingular and
singular subarcs composing the optimal trajectory, and
ii) the junction points between nonsingular and singular
subarcs describing the length of each subarc.

For simplicity the solution structure for constant road
grade is derived. It is shown that the structure of the
solution, in case of constant road grade, can be reduced to
a set of possible solution shapes. The equivalent fuel cost
and travel time can then be analytically expressed in the
velocities at the junction points of the solution structure,
which enables the construction of a nonlinear optimization
problem.

4.1 Structure of the solution

Several observations limit the number of possible solution
shapes. First note that by the continuity of p1(t), only
a switch from one control extremal to the neighboring
extremal, or sometimes a singular solution, is allowed. For
instance during deceleration a switch from P p followed by
P q to P d is possible. However, the sequence P p → P d →
P q is not allowed.

In the remainder we assume a constant road grade and
a singular solution Pr ∈ [P p, P p]. The following possible
solution shapes can be expected:

• a maximum power subarc, a constant velocity, and
another maximum power subarc: P p → Pr ∈

[P p, P p]→ P p,
• a maximum power subarc, a constant velocity, and a

sequence of coasting, energy recuperation and brak-
ing: P p → Pr ∈ [P p, P p] → P p → P q → P d, see
Fig. 2,

• coasting and energy recuperation, a constant velocity,
and a maximum power subarc: P q → P p → Pr ∈

[P p, P p] → P p,
• coasting and energy recuperation, a constant velocity,

and a sequence of coasting, energy recuperation and
braking: P q → P p → Pr ∈ [P p, P p] → P p → P q →
P d,

distance s
ve

lo
ci

ty
v

v0

v1 v2

ve

segment isegment
i − 1

segment
i + 1

v3

s0 se

Fig. 2. Solution shape with a maximum power subarc,
a singular solution in the interval Pr ∈ [P p, P p],
and a sequence of coasting, energy recuperation and
braking.

In the next section it is shown that fuel consumption and
travel time can analytically be expressed as a function of
the velocities at the subarc junction points.

4.2 Junction points

In Van Keulen et al. (2010) it is shown that the length
(time and distance), as well as the fuel cost, of each
nonsingular subarc can be analytically expressed in the
velocities at the junction points between the subarcs with:

∆t|
tb

ta
=

1

a1

3
∑

j=1

zj ln
(

vb−zj

va−zj

)

a2 + 2a3zj + 3a4z2
j

. (33)

Here, va is the initial velocity of the subarc, vb is the final
velocity of the subarc, ta is the initial time, tb is the final
time, and zj is the jth root of the cubic equation:

−a1Pr + a2z + a3z
2 + a4z

3 = 0. (34)

Two possible solutions can occur: three real roots, or one
real root and two imaginary roots, of which one root
provides the maximum velocity that can be attained with
power Pr.

The covered distance ∆s|
sb

sa
is calculated similarly by mul-

tiplying (33) with zj , the jth root of the cubic equation,
see Van Keulen et al. (2010). From the covered distance
with the nonsingular subarcs, follows the distance to be
covered with the singular subarc (constant velocity).

A positive argument is required in the “ln” function in
(33). For the solution shape as presented in Fig. 2 this can
be enforced by a constraint on the length of each subarc
tm,i ≥ 0 with m ∈ [0, 1, 2, 3, e].

The equivalent fuel consumption, and time to complete
the segment becomes a function of the initial and final
velocities of the subarcs: Efi

(νi) and ti(νi), in which Efi
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is the equivalent fuel cost of segment i, ti is the traveling
time for segment i, and νi is a set of velocities describing
the junction points of the solution structure. The size of
νi varies between 3 and 5.

To obtain the fuel cost for all n segments, the segment
fuel cost and traveling time can be simply summed up. So
the minimization of (11) can be rewritten as a nonlinear
optimization:

min
ν

n
∑

i=1

Efi
(νi), (35)

subject to a time constraint:
n
∑

i=1

ti(νi) ≤ t1 − t0, (36)

constraints on the length of each subarc:

−tm,i ≤ 0, (37)

for all n segments and ν velocities at junction points.

Preliminary numerical and experimental results of this
approach for a suboptimal subarc sequence can be found
in Van Keulen et al. (2010).

5. CONCLUSIONS AND OUTLOOK

This research has been concerned with the fuel optimal
control of vehicles with energy recovery options. The main
contribution is the optimal control solution for a novel
cost function description which approximates the control
of gear shift, energy recovery, and vehicle velocity with
an affine piecewise continuous function. This approach
reduces the complexity of the problem considerably as only
one control signal is used instead of three. Describing the
cost function with piecewise affine functions enables an
analytical derivation of optimal control subarcs that fulfil
the necessary conditions of optimality.

It is shown that the control structure, under constant road
grade, can be reduced to only a few possible sequences of
subarcs. Each sequence can be analytically described with
the velocities at the junction points of the subarcs. With
this observation the initial control problem is rewritten as
a nonlinear optimization. This reduces the computational
complexity of the problem compared to direct methods,
since these methods have difficulties to converge to singu-
lar solutions.

The drive train control involves several aspects, which are
not yet included here. Future work will focus on including
engine stop-start, discrete gearshift functionality, battery
state of charge bounds and state constraints (velocity limi-
tation), in the problem formulation. Numerical methods to
solve the nonlinear optimization are to be studied. Further
research is required to deal with the varying size of the set
of velocities describing the solution structure.
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