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Abstract:
In this paper, we study a class of risk-sensitive mean-field stochastic differential games. Under
regularity assumptions, we use results from standard risk-sensitive differential game theory to
show that the mean-field value of the exponentiated cost functional coincides with the value
function of a Hamilton-Jacobi-Bellman-Fleming (HJBF) equation with an additional quadratic
term. We provide an explicit solution of the mean-field best response when the instantaneous
cost functions are log-quadratic and the state dynamics are affine in the control. An equivalent
mean-field risk-neutral problem is formulated and the corresponding mean-field equilibria are
characterized in terms of backward-forward macroscopic McKean-Vlasov equations, Fokker-
Planck-Kolmogorov equations and HJBF equations.
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1. INTRODUCTION

Most formulations of mean-field models such as anony-
mous sequential population games Jovanovic and Rosen-
thal (1988); Bergin and Bernhardt (1992), mean-field
(MF) stochastic controls Huang et al. (2003, 2007);
Yin et al. (2010), mean-field optimization, mean-field
teams Tembine et al. (2009), mean-field stochastic games
Weintraub et al. (2005); Adlakha et al. (2008); Tembine
et al. (2009); Tembine (2011), mean-field stochastic differ-
ential games Lasry and Lions (2007); Guéant et al. (2010);
Tembine et al. (2010) have been of risk-neutral type where
the cost (or payoff, utility) functions to be minimized (or
to be maximized) are the expected values of the stage-
additive loss functions.

Not all behavior, however, can be captured by risk-neutral
cost functions. One way of capturing risk-seeking or risk-
averse behavior is by exponentiating instantaneous loss
functions before expectation (see Başar (1999); Jacobson
(1973) and the references therein).

The particular risk-sensitive mean-field stochastic differ-
ential game that we consider in this paper involves an
exponential in the long-term cost function. This approach
was first taken by Jacobson (1973), when considering the
risk-sensitive Linear-Quadratic-Gaussian (LQG) problem
with state feedback. Jacobson demonstrated a link be-
tween the exponential cost criterion and deterministic
linear-quadratic differential games. He showed that the
risk-sensitive approach provides a method for varying the
robustness of the controller and noted that in the case
of no risk, or risk-neutral case, the well known LQR
? This work was supported in part by Grant AFOSR MURI FA
9550-10-1-0573.

solution would result (see, for follow-up work on risk-
sensitive stochastic control problems with noisy state mea-
surements, Whittle (1981); Bensoussan and van Schuppen
(1985); Pan and Başar (1996)).

In this paper, we examine the risk-sensitive stochastic
differential game in the context of large population of
players. We first present a mean-field stochastic differential
game model where the players are coupled not only via
their risk-sensitive cost functionals but also via their
states. The main coupling term is the mean-field process
also called occupancy process or population profile process.

Our contribution can be summarized as follows. Using
a particular structure of state dynamics, we derive the
mean-field limit of the individual state dynamics leading
to the non-linear controlled macroscopic McKean-Vlasov
equation; see Kotolenez and Kurtz (2010). Combining this
together with the convergence of the risk-sensitive cost
functional, we arrive at the mean-field optimality principle,
and their compatibility with the density distribution are
obtained using the Fokker-Planck-Kolmogorov forward
equation. The mean-field equilibria are characterized by
coupled backward-forward equations which may not have
a solution in general (a simple example is provided in
section 4.2). Explicit solution of the Hamilton-Jacobi-
Bellman equation is provided for the affine-exponentiated-
Gaussian mean-field problem. Finally, an equivalent risk-
neutral mean-field problem is formulated and the solution
of the mean-field response problem is explicitly given.

The rest of the paper is organized as follows. In Section 2,
we present the model description. We provide an overview
of the mean-field convergence result in Section 3. In Sec-
tion 4, we present the risk-sensitive mean-field stochastic
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differential game formulation and its equivalences. In Sec-
tion 5, we illustrate with a numerical example. Section 6
concludes the paper.

2. THE PROBLEM SETTING

We consider a class of n−person stochastic differential
games, where Player j’s individual states evolve according
to the Itô stochastic differential equations (S):

(S)


dxnj (t) =

1

n

n∑
i=1

ft(x
n
j (t), unj (t), xni (t))dt

+

√
ε

n

n∑
i=1

σt(x
n
j (t), unj (t), xni (t))dBj(t),

xnj (0) = xj,0 ∈ X ⊆ Rk, k ≥ 1, j ∈ {1, . . . , n},
where xnj is the k-dimensional state of player j; unj (t) ∈ Uj ,
is the control of player j at time t with Uj being a subset
of pi-dimensional Euclidean space Rpi ; Bj(t) are mutually
independent standard Brownian motions in Rk; and ε is
a small positive parameter, which will play a role in the
analysis in the later sections.

We have to specify the nature of information that players
are allowed in the choice of their control at each time.
A state-feedback strategy for Player j is a mapping ũj :
R+ × (Rk)n −→ Uj , whereas an individual state-feedback
strategy for Player j is a mapping ūj : R+ × Rk −→ Uj .
Hence the latter involves only the self state of a player,
whereas the former involves the entire nk−dimensional
state vector. The individual strategy sets in either case
have to be chosen in such a way that the resulting
system of stochastic differential equations (S) admits a
unique solution when the players pick their strategies
independently; furthermore, the sets should be invariant
under concatenation of controls and translation of time.
We denote by Ūj the set of such admissible control laws
ūj : [0, T ] × Rk → Uj for Player j; a similar set can be
defined for state-feedback strategies.

Now, normally, when we have a cost function for Player
j which depends also on the state variables of the other
players, either directly, or implicitly through the coupling
of the state dynamics (as in (S)), then any state feedback
Nash equilibrium solution will surely depend not only on
self states but also on the entire state vector, i.e., it will not
be in the set Ūj , j = 1, · · · , n. However, what we are inter-
ested in this paper is the solution in the high-population
regime (i.e., as n → ∞) in which case the dependence
on other players’ states will be through the distribution
of the player states. Hence each player will respond (in
an optimal cost minimizing manner) to the behavior of
the mass population and not to behaviors of individual
players. Validity of this property will be established later
in Section 3 of the paper, but in anticipation of this, we
first introduce the quantity

mn
t =

1

n

n∑
j=1

δxn
j

(t), (1)

as an empirical measure of the collection of states of the
players, where δ is a Dirac measure on the state space. This
then enables us to introduce the long-term cost function of
Player j (to be minimized by him) in terms of only the self

variables (xj and uj) and mn
t , t ≥ 0, where the latter can

be viewed as an exogenous process (not directly influenced
by Player j). This cost function will be of the risk-sensitive
type, and given by, for each t ∈ [0, T ], and each m that
initializes mn

t at t:

Lj(ūj ,m
n
[t,T ]; t, x,m) =

δ logE
(
e

1
δ [g(xT )+

∫ T
t
cs(xs,us,m

n
s ) ds] | xj(t) = x,mn

t = m

)
,

where δ > 0 is the risk-sensitivity index and mn
[t,T ] denotes

the process {mn
s , t ≤ s ≤ T}. This cost function is called

the risk-sensitive cost functional or the exponentiated inte-
gral cost, see Jacobson (1973); Whittle (1981); Bensoussan
and van Schuppen (1985); Başar (1999). We assume the
following standard conditions on ft, gT , ct.

(i) ft, ct are C1 in (t, x, u,m); g is C2 in x; ct, g are non-
negative;

(ii) The entries of the matrix σt are C2 and σtσ
′
t is strictly

positive;
(iii) ft, ∂xft, ct, ∂xct are uniformly bounded; g, ∂xg are

uniformly bounded;
(iv) Uj is closed and bounded;
(v) ūj : [0, T ] × Rk −→ Uj is piecewise continuous in t

and Lipschitz in x.

The stochastic differential game problem with logarithm of
the expected exponentiated integral cost function is called
the risk-sensitive stochastic differential game. Note that if
x and mn are deterministic, then the above cost function
reduces to the standard additive cost function.

With the dynamics (S) in the large population regime
(see later (SM) in the next section) and cost functionals
as introduced, we seek an individual state-feedback non-
cooperative Nash equilibrium {ū∗i , i = 1, · · · , n}, satisfying
the set of inequalities

Lj(ū
∗
j ,m

n
[0,T ]; 0, xj,0,m) ≤ Lj(ūj ,mn

[0,T ]; 0, xj,0,m) (2)

for all uj ∈ Ūj , j = 1, 2, · · · , n, or the strongly time-
consistent individual state-feedback equilibrium,

Lj(ū
∗
j ,m

n
[t,T ]; t, xj ,m) ≤ Lj(ūj ,mn

[t,T ]; t, xj ,m) (3)

for all xj ∈ X , t ∈ [0, T ), uj ∈ Ūj , j = 1, 2, · · · , n.

3. MEAN-FIELD ANALYSIS: AN OVERVIEW

3.1 Mean field representation

The system (S) can be written into a measure representa-
tion by the formula∫

φ(w)

[
n∑
i=1

ω̄iδxi

]
(dw) =

n∑
i=1

ω̄iφ(xi)

where δz, z ∈ X is a Dirac measure on set X , φ is a
measurable bounded function defined on the state space
and ω̄i ∈ R. Then, the system (S) reduces to the system
dxnj =

(∫
w

ft(x
n
j (t), unj (t), w)

[
1

n

n∑
i=1

δxn
i

(t)

]
(dw)

)
dt+

√
ε

(∫
w

σt(x
n
j (t), unj (t), w)

[
1

n

n∑
i=1

δxn
i

(t)

]
(dw)

)
dBj(t),

xnj (0) = xj,0 ∈ Rk, k ≥ 1, j ∈ {1, . . . , n},
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which, by (1), is equivalent to

(SM)


dxnj (t) =

(∫
w

ft(x
n
j (t), unj (t), w)mn

t (dw)

)
dt

+
√
ε

(∫
w

σt(x
n
j (t), unj (t), w)mn

t (dw)

)
dBj(t),

xnj (0) = xj,0 ∈ Rk, k ≥ 1, j ∈ {1, . . . , n}.
As we will see in the next sections, the system (SM) can
be seen as a controlled interacting particles representation
of a macroscopic Mckean-Vlasov equation where mn

t rep-
resents the discrete density of the population. Next, we
focus on the convergence of the population profile process
mn.

3.2 Mean field convergence

The above system has the structure satisfying the asymp-
totic indistinguishability conditions of Tanabe (2006) un-
der suitable controls. This is equivalent to the existence of
a random measure µ such that the system is µ−chaotic,
i.e.

lim
n

∫ L∏
l=1

φl(x
n
jl

)µn(dxn) =

L∏
l=1

(∫
φldµ

)
for any fixed natural number L ≥ 2 and a collection
of measurable bounded functions {φl}1≤l≤L. Following
the indistinguishability property, one has that the law
of xnj = (xnj (t), t ≥ 0) is Emn. The same result is
obtained by proving the weak convergence of the indi-
vidual state dynamics to a macroscopic McKean-Vlasov
equation. Then, for an initial i.i.d. condition and under the
controls u∗, the solution of the state dynamics generates
an indistinguishable sequence and the weakly convergence
of the population profile process mn to µ is equivalent to
the µ−chaoticity.

These processes depend implicitly on the strategies used
by the players. Note that the control ū∗ may depend on
time t, the value of the individual state xj(t) and the mean-
field process mt. The weak convergence of the process mn

implies the weak convergence of its marginal mn
t and one

can characterize the distribution of mt by the Fokker-
Planck-Kolmogorov (FPK) equation:

∂tmt +D1
x

(
mt

∫
w
ft(x, u

∗(t), w)mt(dw)
)

=
ε

2
D2
xx

(
mt

(∫
w

σ′t(x, u
∗(t), w)mt(dw)

)
·(∫

w

σt(x, u
∗(t), w)mt(dw)

))
. (4)

Here ft(.) ∈ Rk which we denote by (fk′,t(.))1≤k′≤k. Let

σt[x, u
∗(t),mt] =

∫
w

σt(x, u
∗(t), w)mt(dw),

Γt(.) := σt(.)σ
′
t(.) is a square matrix with dimension k×k.

The term D1
x(.) denotes

k∑
k′=1

∂

∂xk′

(
mt

∫
w

fk′,t(x, u
∗(t), w)mt(dw)

)
,

and the last term on D2
xx(.) is

k∑
k′′=1

k∑
k′=1

∂2

∂xk′∂xk′′
(mtΓk′k′′,t(.)) .

In the one-dimensional case, the terms D1, D2 reduce
to the divergence div and the Laplacian operator ∆,
respectively.

It is important to notice that the existence of a unique rest
point (distribution) in FPK does not automatically imply
that the mean-field converges to the rest point when t goes
to infinity. This is because the rest point may not be stable.

In statistical mechanics, convergence to an independent
and identically distributed system is called chaoticity,
and the fact that chaoticity at the initial time implies
chaoticity at further times is called propagation of chaos.
In general the chaoticity property may not holds. We need
to mention a particular case where the rest point m∗ is
related to the δm∗− chaoticity. If the mean-field dynamics
has a unique global attractor m∗ then the propagation
of chaos property holds for the measure δm∗ . Beyond this
particular case, one may have multiple rest points but also
the double limit limn limtm

n
t may differ from limt limnm

n
t

leading a non-commutative diagram. Thus, a deep study
of the dynamical system is required if one wants to analyze
a performance metric for a stationary regime.

4. RISK-SENSITIVE BEST RESPONSE TO
MEAN-FIELD

In this section, we present the risk-sensitive mean-field
results. We first provide an overview of the optimality cri-
terion for a given mean-field trajectory mn = (mn(s), s ≥
0). A mean-field best-response strategy of a generic player
j is a measurable mapping ū∗j satisfying: ∀ ūj ∈ Ūj ,

Lnj (ū∗j ,m
n
[0,T ], 0, xj,0,m) ≤ Lnj (ūj ,m

n
[0,T ], 0, xj,0,m).

Let vnj (t, xj ,m) = infuj L
n
j (uj ,m

n
[0,T ], t, xj ,m). The next

proposition establishes the Hamilton-Jacobi-Bellman
-Fleming (HJBF) equation of the risk-sensitive cost func-
tion satisfied by a regular optimal value function of a
generic player. The main difference from the standard
HJBF is the presence of the term ε

2δ ‖ σt∂xjv
n
j ‖2 .

Proposition 1. Suppose that the trajectory of mn
t is given.

If vnj is twice continuously differentiable, then vnj is solu-
tion of the HJBF equation

∂tv
n
j + inf

uj

{
∂xjv

n
j .ft +

ε

2
tr(σtσ

′
t∂

2
xjxjv

n
j )

+
ε

2δ
‖ σt∂xjvnj ‖2 +ct

}
= 0, (5)

vnj (T, xj) = g(xj)

Moreover, any strategy satisfying

unj (t) ∈ arg min
uj

{
∂xjv

n
j .ft +

ε

2
tr(σtσ

′
t∂

2
xjxjv

n
j )

+
ε

2δ
‖ σt∂xjvnj ‖2 +ct

}
constitutes a best response strategy to the mean-field mn.

The next proposition provides an explicit solution to
the affine-quadratic-exponentiated cost-Gaussian mean-
field game

Proposition 2. Suppose σ(t, x) = σt := σ(t) and

ft(xj , uj ,m) = f̄(t, xj ,m) +B(t, xj ,m)uj ,

ct(xj , uj ,m) = c̄(t, xj ,m)+ ‖ uj ‖2,
then the optimal control of Player j is un,∗j = − 1

2B∂xjv
n
j .

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

3224



Proposition 3. (Explicit optimal cost, Başar (1999)).
Consider the risk-sensitive mean-field stochastic game de-
scribed in Section 2 with f̄ = Atx, ct = x′Qtx, Qt ≥
0, g(x) = x′QTx,QT ≥ 0, with continuous matrix (in
time). Then, the solution (whenever it exists) is given by

vnj (t, xj) = x′ztx + ε
∫ T
t

tr(zsσsσ
′
s) ds. where zs is the

nonnegative definite solution of the generalized Riccati
differential equation

żt+A
′
tzt+ztAt+Qt−zt

(
BtB

′
t −

1

γ2
σtσ
′
t

)
zt = 0, zT = QT ,

where γ = ( δ2ε )
1/2 and the optimal response strategy is

u∗j (t) = −B′tztx. (6)

Using Proposition 3, one has the following result for any
given trajectory (mn

t )t≥0.

Proposition 4. If ct is in the form ct = x′(Qt − Λt(m
n
t ))x,

i.e., a function ofmn
t , then the generalized Riccati equation

becomes

ż∗t+A′tz
∗
t+z∗tAt+Qt−Λt(m

n)−z∗t
(
BtB

′
t −

1

γ2
σtσ
′
t

)
z∗t = 0.

and vnj (t, xj) = x′z∗t x+ ε
∫ T
t

tr(z∗sσsσ
′
s) ds.

4.1 Risk-sensitive McKean-Vlasov equation

Since the control used by the players influence the mean-
field limit via the state dynamics, we need to characterize
the evolution of the mean-field limit as a function of the
controls. The law of mt is the solution of the Fokker-
Planck-Kolmogorov equation given by (4) and the indi-
vidual state dynamics follows the so-called macroscopic
McKean-Vlasov equation

dx̄j(t) =

(∫
w

ft(x̄j(t), u
∗
j (t), w)mt(dw)

)
dt

+
√
ε

(∫
w

σt(x̄j(t), u
∗
j (t), w)mt(dw)

)
dBj(t).

In order to obtain an error bound we introduce the
following notions: Given two measures µ, ν the Monge-
Kontorovich metric (also called Wasserstein metric) be-
tween µ and ν is

W1(µ, ν) = inf
X∼µ,Y∼ν

E|X − Y |.

In other words, let E(µ, ν) be the set of probability
measures P on XR×XR such that the image of P under the
projection on the first factor (resp. on the second factor)
is µ (resp. ν). Then,

W1(µ, ν) = inf
P∈E(µ,ν)

∫ ∫
|z − z′|P(dz, dz′)

This is known as a distance (it can be checked that the
separation, the triangular inequality and positivity prop-
erties are satisfied) and it metricizes the weak topology of
XR.

Then, the following holds: For any t, if the control law
u∗j (t) is used then there exists ỹt > 0 such that

E
(
‖ xnj (t)− x̃j(t) ‖

)
≤ ỹt√

n
.

Moreover, for any T < ∞, there exists CT > 0 such that
W1

(
L((xnj (t))t∈[0,T ]),L((x̃j(t))t∈[0,T ])

)
≤ CT√

n
.

The last inequality says that the error bound is at most of
O( 1√

n
) for any fixed compact interval.

Convergence of the risk-sensitive mean-field cost: Using
the fact that Mn converges weakly to m under suitable
controls (unj (s), s ≥ 0) −→ (us, s ≥ 0) when n
goes to infinity, one can derive a weak convergence of
the risk-sensitive cost function as stated in the following
Proposition.

Proposition 5. (Cost at the limit). The risk-sensitive cost
functional Lnj (ūnj ,m

n[t, T ], t, x,m) converges to
Lj(ūj ,m[t,T ], 0, x,m) given by

δ logE

(
e

1
δ
[g(xj(T ))+

∫ T
t

cs(xj(s),uj(s),ms) ds]
∣∣∣ xj(t) = x,mt = m

)
.

The proof follows from the weak convergence of mn and
the regularity of the functions c and g. Using this lemma,
we are able to construct the mean-field optimal con-
trol at the limit. Given {ms}s∈[t,T ], we aim to minimize
Lj(ūj ,m[t,T ], 0, x,m) subject to the state-dynamics con-
straints.

4.2 Risk-sensitive FPK-McV equations

The mean-field optimality criterion leads to HJBF back-
ward equation combined with FPK equation and macro-
scopic McKean-Vlasov version of the limiting individual
dynamics, i.e.,

dxj(t) =

(∫
w

ft(xj(t), u
∗
j (t), w)mt(dw)

)
dt

+
√
ε

(∫
w

σt(xj(t), u
∗
j (t), w)mt(dw)

)
dBj(t),

xj(0) = xj,0 = x

∂tvj + inf
uj

{
∂xxvj .ft +

ε

2
tr(σtσ

′
t∂

2
xxvj)

+
ε

2δ
‖ σt∂xvj ‖2 +ct

}
= 0,

xj := x; vj(T, x) = g(x)

∂tmt +D1
x

(
mt

∫
w

ft(x, u
∗, w)mt(dw)

)
=
ε

2
D2
xx

(
mt

(∫
w

σ′t(x, u
∗, w)mt(dw)

)
·(∫

w

σt(x, u
∗, w)mt(dw)

))
m0(.) fixed.

Then, the question of existence of a solution to the above
system arises. This is a backward-forward system. Very
little is known about the existence of a solution of such
a system. In general a solution may not exist. Next we
provide a non-solvability example.

4.3 The backward-forward boundary problem may not have
a solution

There are many examples of systems of backward-forward
equations which do not admit solutions. Here is a very
simple one: v̇ = m, ṁ = −v,m(0) = m0; vT = −mT .

It is obvious that the coefficients of this pair of backward-
forward differential equations are all uniformly Lipschitz.
However, we claim that depending on T , this may not
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be solvable for m0 6= 0. We can easily show that for
T = kπ + 3π/4 (k, a nonnegative integer), the above two-
point boundary value problem does not admit a solution
for any m0 6= 0 and it admits infinitely many solutions for
m0 = 0.

Following the same ideas, one can show that the system
of SDEs dv = mdt + σdBt, dm = −vdt + νdBt, with
the initial conditions: m(0) = m0 6= 0; vT = −mT , and
T = 7π/4 has no solution.

4.4 Risk-sensitive mean-field equilibria

Theorem 6. Consider a risk-sensitive mean-field stochastic
differential game as formulated above. Assume that the
σt(.) = σ(t) and there exists a unique pair (u∗,m∗) such
that

(i) The coupled backward-forward PDEs

∂tv
∗ + inf

uj

{
∂xv
∗.f∗t +

ε

2
tr(σtσ

′
t∂

2
xxv
∗)

+
ε

2δ
‖ σt∂xv ‖2 +c∗t

}
= 0,

v(T, x) = g(x),m∗0(x) fixed

∂tm
∗
t +D1

x

(
m∗t

∫
w

f∗t (x, u∗, w)m∗t (dw)

)
=
ε

2
D2
xx

(
m∗t

(∫
w

σ′tm
∗
t (dw)

)(∫
w

σtm
∗
t (dw)

))
admit a pair a bounded nonnegative solutions v∗,m∗;

(ii) u∗t (x) minimizes ∂xft + ct.

Under these conditions, the pair (u∗,m∗) is a mean-field
equilibrium and Lj(t, u

∗,m∗) = v∗.

If ct = x′(Qt−Λt(m
n
t ))x, then any convergent subsequence

of optimal control law u
α(n)
j leads to a best strategy of m.

Moreover, for any ε′ > 0 there exists nε′ such that for all
n ≥ nε′ , u

∗ is an ε−Nash equilibrium of the differential
game with size n.

This result can be extended to multiple classes of players.

Sensitivity of the perturbation ε: We scale the parameters
δ, ε and γ such that δ = 2εγ2. The PDE given from
Proposition 1 becomes

∂tv + infu {∂xv.f∗t

+
ε

2
tr(σtσ

′
t∂

2
xxv) +

1

4γ2
‖ σt∂xv ‖2 +ct

}
= 0,

v(T, x) = g(x).

When the parameter ε goes to zero one gets a deterministic
PDE. This situation captures the large deviation limit:

∂tv + inf
u

{
∂xv.f

∗
t +

1

4γ2
‖ σt∂xv ‖2 +c∗t

}
= 0,

v(T, x) = g(x).

4.5 Equivalent stochastic mean-field problem

In this subsection, we formulate an equivalent (n +
1)−player game in which the state dynamics of the n
players are given by

(SM)


dxnj (t) =

(∫
w

ft(x
n
j (t), unj (t), w)mn

t (dw)

)
dt

+σtζt +
√
εσtdBj(t),

xnj (0) = xj,0 ∈ Rk, k ≥ 1, j ∈ {1, . . . , n},
where ζt is the control parameter of the“fictitious” (n +
1)−th player. We define the risk-neutral cost function of

the n players as L̃nj (ūj , ζ̄, x
n
j ,m

n; t, x,m)

= E

(
g(xnj,T ) +

∫ T

t

cs(x
n
j (s), unj (s),mn

s ) ds

−γ2

∫ T

t

‖ ζs ‖2 ds

∣∣∣∣xj(t) = x,mn
t = x

)
Every player j ∈ {1, 2, . . . , n} minimizes Lj by taking
the worst over the feedback strategy ζ̄ of player n + 1
which is piecewise continuous in t and Lipschitz in xj .

Let ṽnj = inf ūj supζ̄ L̃
n
j (ūj , ζ̄, x

n
j ,m

n, t, xj ,m0). We refer
to this as robust mean-field game.

Proposition 7. Under the regularity assumptions (i-v), ṽnj
satisfies the Hamilton-Jacobi-Isaacs (HJI) equation

inf
u

sup
ζ

{
∂tṽ

n
j + ∂xj ṽ

n
j (ft + σtζt) + ct − γ2 ‖ ζt ‖2

+
ε

2
tr(∂2

xjxj ṽ
n
j σtσ

′
t)
}

= 0, ṽnj (T, xj) = g(xj).

The proof of Proposition 7 can be obtained by using
results from Başar (1999). Since the dependence on u
and ζ above are separable, the Isaacs condition holds i.e.,
inf sup = sup inf and, hence the function ṽnj is solution of
the partial differential equation:

−∂tṽnj = ∂xj ṽ
n
j .ft + ct +

1

4γ2
‖ σ′t∂xj ṽnj ‖2

+
ε

2
tr(∂2

xjxj ṽ
n
j σtσ

′
t) (7)

Hence, the two PDEs: (7) and the one given in Lemma 1
are identical. Moreover, the optimal cost and the opti-
mal control law of the two problems are the same. The
robust mean-field LQG game satisfies the properties of
Theorem 6. Hence, the following result follows:

Proposition 8. Consider the risk-sensitive mean-field stoch-
astic game with the logarithm of expectation of the
exponentiated-integral cost functional. Then, the risk-
sensitive mean-field stochastic game is equivalent to a risk-
neutral mean-field game with cost functional L̃nj (resp. L̃j
at the limit).

5. NUMERICAL ILLUSTRATION

In this section, we illustrate the risk-sensitive mean-field
game with a numerical example. We let Player j’s state
evolution be described by a decoupled stochastic differen-
tial equation (SE)

dxnj = ujdt+
√
εσdBj(t) (8)

The risk-sensitive cost functional is given by

Lj(ūj ,m
n; t, xj ,m) = δ logE

{
exp

[
1
δ

(
Qj(x

n
j )2

+

∫ T

0

(qj − E(mn
t ))(xnj )2(t) + ū2

j (t)dt

)]}
, (9)
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Fig. 1. The evolution of dis-
tribution m∗

t (x), 0 ≤ t ≤
5,−19 ≤ x ≤ 21.

Fig. 2. Mean value E(m∗
t ) as a

function of time, 0 ≤ t ≤ 5.

Fig. 3. Variance of the distri-
bution m∗

t as a function of
time, 0 ≤ t ≤ 5.

Fig. 4. zt as a function of time,
0 ≤ t ≤ T .

where δ,Qj , qj are positive parameters. The optimal strat-
egy of Player j has the form of

ū∗j (t) = −ztx, (10)

where zt is a solution to the Riccati equation

żt + qj − E(mn)− z2
t (1− σ2

j /γ
2) = 0, (11)

with boundary condition zT = Qj . An explicit solution is
given by

zt = −
√
qj−M√
L

tan
[√

L
√
qj −M(t− T )+

arctan

( √
LQ√

qj −M

)]
, 0 ≤ t ≤ T, (12)

where L := 1 − σ2
j /γ

2 and M := E(mn). The FPK-McV
equation reduces to

∂tm
∗
t + ∂xm

∗
t ztx =

ε

2
σ2
j∂

2
xxm

∗
t . (13)

We set the parameters as follows: for all j, qj = 1.2, Qj =
0.1, δ = 100, 000, σ = 2.0, T = 5 and ε = 5.0. Let m∗0(x)
be a normal distribution N (1, 1) and for every 0 ≤ t ≤ T ,
m∗t vanishes at the infinities. In Figure 1, we show the
evolution of the distribution m∗t and in Figures 2 and 3,
we show the mean and the variance of the distribution
which affects the optimal strategies in (10). The optimal
linear feedback zt is illustrated in Figure 4. We can observe
that the mean value E(m∗t ) monotonically decreases from
1.0 and hence the unit cost on state is monotonically
increasing. As the state cost increases, the control effort
becomes relatively cheaper and therefore we can observe
an increment in the magnitude of zt. However, when the
mean value goes beyond 1.08, we observe that the control
effort reduces to avoid undershooting in the state.

6. CONCLUDING REMARKS

We have studied risk-sensitive mean-field stochastic differ-
ential games with state dynamics given by an Itô stochastic
differential equation and exponentiated cost function. An
interesting direction that we leave for future work is the
extension of some of these results to the time average risk-
sensitive cost functional criterion.
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Guéant, O., Lasry, J.M., and Lions, P.L. (2010). Mean field
games and applications. Springer: Paris-Princeton Lectures on
Mathematical Finance, Eds. René Carmona, Nizar Touzi.
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