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Abstract: Inner loop power control is a crucial part of the operation of 3G mobile communi-
cation systems. This is necessary to deal with the, so called, ‘near-far’ problem and to combat
the effects of time variations in the channel gain. In practice, power control is dealt with in
a decentralized fashion, i.e., using one SISO control loop for each user. However, significant
multivariable coupling occurs due to the fact that each user is a source of interference to every
other user. This means that the actual performance is significantly degraded relative to the
idealized SISO case. In this paper, we describe a novel nonlinear decoupling algorithm for
the uplink of the WCDMA 3G cellular system which effectively compensates for the MIMO
interactions. We also develop a simplified linearized form of the algorithm. We explore the
relative merits of the scheme for typical mobile communication scenarios incorporating grant
changes, fading and quantization. Our simulations show that, in all cases, the decoupling
strategies lead to significant performance gains relative to the use of decentralized strategies
in common use.

1. INTRODUCTION

Power control is necessary for the successful operation
of third generation (3G) communication systems. In par-
ticular, power control is needed to compensate for time
variations in the channel gains (known as fading) and to
address the ‘near-far’ effect, whereby a user who is close
to a base station overpowers one who is further away.
The power control algorithms in 3G systems are generally
SIR (signal-to-interference-ratio) based (i.e., they control
the SIR for each user). The resulting control problem is
inherently multivariable, since each user is a source of
interference to every other user.

The problem of power control for wireless networks has
been studied in some detail in the communication and
control literature. A detailed survey of results in this
field is provided in Koskie and Gajic [2006], whilst an
overview may be found in Rintamäki [2002]. The problem
is analyzed in a control theory framework in Gunnarsson
and Gustafsson [2003], and an overview of the limitations
of power control in wideband code division multiple access
(WCDMA) 3G systems is given in Gunnarsson [2001].

Centralized algorithms, such as the one described in Zan-
der [1992a], calculate the required powers (or control
actions) for all of the users. These algorithms typically
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assume full knowledge of the link gains at all controller
nodes. Hence they are not usually implemented due to the
high signalling overhead required. In practice, distributed
algorithms (e.g.,Zander [1992b] and Foschini and Miljanic
[1993]) are often used. These require only local measure-
ments (i.e., the SIR at each receiver) to adjust the power
of each user in a decentralized manner.

Modern 3G systems, including WCDMA systems, typi-
cally employ SISO control loops to compensate for time
variations in the channel gains and interference levels. On
the uplink of 3G systems, a cascade scheme, consisting
of a fast inner loop and a slow outer loop, is often used.
The role of the inner power control loop is to maintain
the signal-to-interference ratio (SIR) for each user at an
approximately constant (target) level. The target SIR is
adjusted by the slow outer loop to maintain a constant
block error rate.

The design of SISO inner power control loops has been
studied in a number of papers including Gunnarsson
et al. [2001], Rintamäki et al. [2004] and Agüero et al.
[2009]. In the present paper, we propose a novel nonlinear
decoupling scheme for inner loop power control on the
uplink of WCDMA systems. The scheme compensates
for the multivariable coupling which is inherent to SIR
control. Whilst the scheme is a centralized scheme, we note
that only local SIR measurements (i.e., at the base station)
are required. We also develop a simplified linearized form
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Fig. 1. SISO inner power control loop.

of the algorithm. The effect of grant changes, quantization,
and fading will be considered.

The layout of the remainder of the paper is as follows:
In Section 2, a detailed description of the system is
given. Then, in Section 3, we describe the SISO controller
which is used to demonstrate the decoupled schemes. The
nonlinear and linear schemes are derived in Sections 4 and
5, respectively. The effects of channel gain variations and
quantization are briefly discussed in Section 6. Conclusions
are given in Section 7.

2. SYSTEM DESCRIPTION

As mentioned in the introduction, WCDMA (3G) systems
typically employ SISO power control loops. A simplified
block diagram of the (uplink) inner power control loop
for a single mobile user is shown in Fig. 1. In this figure,
all of the quantities are expressed in logarithmic scale
(dB). Note that, here and in the sequel, quantities may
be expressed in either linear or logarithmic scales. A bar¯
is used to denote a linear quantity.

The control loop operates as follows: The mobile station
continuously transmits a signal on the dedicated physical
control channel (DPCCH) in the uplink using a transmis-
sion power of p′(k). The transmission power is controlled
by the base station, which sends power commands (in the
form of power increments in dB) to the user at each time
k.

In Fig. 1, p′(k) is the transmitted power at time k and p(k)
is the received signal power. The disturbances g(k) and
I(k) are the time varying channel (fading) gain and the
interference power, respectively. We note that the channel
gain and interference become additive disturbances in the
logarithmic scale. The output S(k) is the measured SIR at
the receiver, and the input S∗ is the target SIR (assumed
to be constant). The error e(k) = S∗−S(k) is fed into the
controller K(q−1) to calculate the power increment u(k).
The mobile station is modelled as an integrator and a time
delay d. This corresponds to the loop delay and is assumed
to be constant and known. The sampling period used in
WCDMA systems is 667 µs.

The DPCCH signal is transmitted from the mobile station
to the base station for the purpose of power control. The
user also transmits data simultaneously using a power of
γ̄(k)p̄′(k). In the case of enhanced uplink (EUL) traffic
[Dahlman et al., 2007], the scaling factor γ̄(k) is referred
to as the power grant. EUL consists of control and data
components which are sent on different WCDMA channels,
namely, the enhanced dedicated physical control channel
(E-DPCCH) and the enhanced dedicated physical data

channel (E-DPDCH), respectively. These signals occupy
the same frequency band but are separated by codes
that are not perfectly orthogonal in the uplink. It is
assumed that the DPCCH and EUL signals experience
similar channel conditions, and hence that the received
power and SIR for the EUL signal are given by γ̄(k)p̄(k)
and γ̄(k)S̄(k), respectively. This implies that the grant
determines the nominal SIR of the EUL signal, and hence,
the grant is closely related to the achievable data rate.
The power grants are scheduled by the base station, which
attempts to co-ordinate data transmissions from the users
whilst keeping the total interference at an acceptable level.
A more detailed explanation of the operation of the uplink
can be found in Chapter 10 of Dahlman et al. [2007].

We now discuss the multivariable interactions which arise
when there is more than one user. Let n be the total
number of users, and let quantities related to the ith user
be denoted by a subscript i. The SIR for user i is given by

S̄i(k) =
p̄i(k)

Īi(k)
, (1)

where

Īi(k) =

n
∑

j=1,
j 6=i

(1+ γ̄j(k))p̄j(k)+ ᾱ(1+ γ̄i(k))p̄i(k)+ N̄0. (2)

In this expression, (1 + γ̄j(k))p̄j(k) is the interference due
to user j, ᾱ(1 + γ̄i(k))p̄i(k) is the ‘self-interference’ (also
known as ‘auto-interference’), and N̄0 consists of thermal
noise and other sources of interference (including inter-cell
interference). In this paper, we assume that N̄0 is constant.
The self-interference term in (2) is used to account for
the fact that only a fraction of the received power is
‘useful’ [Godlewski and Nuaymi, 1999]. The rest acts as
interference. From equations (1) and (2), it is clear that
the SIRs for the users are coupled in a nonlinear manner.

Note that we assume that the target SIR S∗ is feasible. By
this we mean that there exist p̄∗i > 0 such that p̄i = p̄∗i
satisfies

Si = S∗

for all i ([Gunnarsson and Gustafsson, 2003]). The cou-
pling between the users implies that if the power grant for
one user is changed, then the target power levels p∗i for all
of the users will change.

We initially ignore quantization. However, in practice,
this has a profound effect on the performance of the
inner power control loop. We will show later in the paper
that quantization effects can be mitigated by the use of
adaptive quantization schemes. Indeed, with these schemes
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the achieved performance with and without quantization
are comparable.

3. SISO CONTROLLER DESIGN

In this section, we describe a SISO controller K(q−1) for
inner loop power control. The controller will be used to
demonstrate the decoupling algorithms presented later in
the paper, and is given by

K(q−1) =
1

1 + q−1 + ... + q−d+1
. (3)

The transfer function above has been considered previ-
ously [Gunnarsson et al., 2001, Agüero et al., 2009], and
can be derived in variety of ways. For example, it can be
shown that, if g(k) − I(k) is modelled as a random walk,
then K(q−1) is the minimum variance controller. This is
stated formally in the following theorem:

Theorem 1. Consider the closed loop system in Fig. 1.
Suppose that g(k) − I(k) can be modelled as

q−1

1 − q−1
w(k),

where w(k) is a white noise sequence. Then the controller
given by (3) minimizes the variance of S(k) due to g(k)−
I(k).

Proof. The result follows from [Agüero et al., 2009, Theo-
rem 1]. 2

Alternatively, the controller can be viewed as a time delay
compensator. This is the approach taken in Gunnarsson
et al. [2001].

Further insight can be gained by considering the case of a
single user with ᾱ = 0 and g(k) = 0. In this case, I(k) is
independent of p(k) and the closed loop transfer function
from I(k) to p(k) is given by q−d. It follows that

p(k) = S∗ + I(k − d)

and

S(k) = S∗ + I(k − d) − I(k).

This implies that if I(k) is a step disturbance, then the
SIR will return to its target value after d samples.

We now consider the case of two users with Īi(k) given
by (2). Fig. 2 shows the simulated responses with S̄∗ =
1/64, g(k) = 0, ᾱ = 0.3, d = 2 and N̄0 = 3 × 10−11 mW.
Each user is controlled using a SISO loop of the form
shown in Fig. 1 with K(q−1) given by (3). For this
simulation, γ̄1(k) = 8 and γ̄2(k) is changed from 70 to
100 at k = 15 (t = 10 ms). The dashed lines indicate the
equilibrium (target) power levels which correspond to the
specified power grants.

From Fig. 2, it can be seen that the SIR and power
responses converge relatively slowly to their equilibrium
values after the change in the power grant for user 2. This
is due to the coupling between the power control loops and
the effect of self-interference.

4. NONLINEAR DECOUPLING SCHEME

We propose a decoupling scheme which is based on the
nonlinear function which relates the SIRs of the users to
their received powers.
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Fig. 2. Closed loop responses for two users with no decou-
pling.

In the discussion that follows, boldface is used to denote
the vector equivalent of the corresponding scalar quantity.
Hence p = [p1 p2 ... pn]T , Ī = [Ī1 Ī2 ... Īn]T , etc.

We first observe that S is given by fγ(p), where fγ is the
nonlinear vector function defined by the following sequence
of equations:

p̄i = 10
0.1pi

, (4)

Ī = Ap̄ + b, (5)

Ii = 10 log10 Īi, (6)

fγ(p) = p − I. (7)

In equation (5), the matrix A and vector b can be found
by rewriting (2) in vector form. For the case of two users,
we obtain

A =

[

ᾱ(1 + γ̄1) (1 + γ̄2)
(1 + γ̄1) ᾱ(1 + γ̄2)

]

and b =

[

N̄0

N̄0

]

.

With the above definitions, we see that the MIMO system
from u to S can be modelled as shown in Fig. 3. In this
figure, D is the n × n identity matrix.

g(k)

+ S(k)u(k) p(k)q−d

1 − q−1
D fγ(p)

+

Fig. 3. MIMO model of the system from u to S.

We assume that fγ represents a ‘true’ model of the coupling
between the users. In practice, only an approximate model,
in which some of the true parameters are replaced by
estimates, will be available. In particular, we note that
the quantity N̄0 needs to be estimated. This is because
N̄0 is defined at the antenna connector. However, it is
measured in the digital receiver after passing cabling and
front-end electronics. This introduces scale factor errors
of the order of 1 dB. The estimation of N̄0 is non-trivial
during operation since neighbor cell interference affects
the uplink power. Techniques for such estimation are, for
example, described in Wigren [2010]. We let f̂γ be the
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Fig. 4. Nonlinear decoupling scheme.

estimated coupling model, and let b̂ denote the estimate
for b.

We have shown that the coupling between the users is fully
described by a nonlinear function. This suggests that we
use the inverse of the (estimated) function for decoupling.
Let S̄D be the diagonal matrix given by

S̄D = diag(S̄) =









S̄1 0 ... 0
0 S̄2 ... 0
...

...
. . .

...
0 0 ... S̄n









.

It can be easily verified that f̂−1
γ is defined by the following

sequence of equations:

S̄i = 10
0.1Si

, (8)

ˆ̄p =
(

D − S̄DA
)−1

S̄Db̂, (9)

p̂i = 10 log10
ˆ̄pi (10)

f̂−1
γ (S) = p̂. (11)

We assume that the matrix inverse in Equation (9) exists.

Fig. 4 shows a nonlinear decoupling scheme which utilizes
f̂−1
γ . In this scheme, S(k) is passed through f̂−1

γ to generate
an estimate of the power vector p̂(k). In the ideal case

(in which fγ = f̂γ), the resulting open loop system from
u(k) to p̂(k) is perfectly decoupled. Since the output of
the new open loop system is p̂(k), we also convert S∗ to
an equivalent target for p̂. This is achieved by passing S∗

through f̂−1
γ to generate p̂∗(k). The error between p̂∗(k)

and p̂(k) is fed back through a diagonal controller to
calculate u(k).

It may be observed that, for the scheme shown in Fig. 4,
e(k) = 0 implies that S(k) = S∗. This is due to the
fact that p̂(k) and p̂∗(k) are generated using the same
nonlinear function. However, it should also be noted that
if p̂(k) is replaced by an alternative estimate of the power
vector, then the observation made above may no longer
hold.

Fig. 5 shows the nominal (ideal) closed loop responses
for the case of two users. The parameters used for the
simulation are the same as those used in Section 3. It can
be seen that the responses resemble the response for a
single user described in Section 3. In particular, the system
settles to its new equilibrium point exactly d samples
(d = 2 in this case) after the power grant change. This
is due to the fact that, in the ideal case, p̂(k) = p(k)

is independent of the choice of the grants γ̄i(k). Hence,
changing a power grant is equivalent to changing p̂∗(k).
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Fig. 5. Closed loop responses for two users with nonlinear
decoupling.

5. LINEAR DECOUPLING SCHEME

In this section, we develop a simplified linear version of the
nonlinear decoupling scheme from the previous section.

By taking a first order Taylor approximation, we can
obtain the following linearized model of the coupling:

S ≈ S∗ + M̂γ(p − p̂∗),

where M̂γ = [mij ] and

mij =
∂f̂i

∂pj

∣

∣

∣

∣

∣

p̂∗

.

In the above expression, f̂i is the ith component the
estimated coupling model f̂γ , and p̂∗ is the target power
vector (defined previously).

By differentiating f̂γ and evaluating the resulting expres-
sion at p̂∗, it can be shown that

M̂γ = D − S̄DP−1
D APD,

where PD = diag(ˆ̄p∗).

For the case of two users, M̂γ is given by
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M̂γ =











1 − ᾱ(1 + γ̄1)S̄
∗ −(1 + γ̄2)S̄

∗
ˆ̄p∗2
ˆ̄p∗1

−(1 + γ̄1)S̄
∗

ˆ̄p∗1
ˆ̄p∗2

1 − ᾱ(1 + γ̄2)S̄
∗











.

Since e = S − S∗, the matrix M̂γ describes the coupling

between the individual SIR errors. It follows that M̂−1
γ

can be used to decouple the errors. The resulting scheme
is shown in Fig. 6.

Simulated responses for the linear decoupling scheme with
two users are shown in Fig. 7. It can be seen that the
responses are almost as good as those shown in Fig. 5 for
the nonlinear scheme.
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Fig. 7. Closed loop responses for two users with linear
decoupling.

6. EFFECT OF GAIN VARIATIONS AND
QUANTIZATION

For the main part of this paper, we have ignored the effect
of channel gain variations and quantization. In this section,
we briefly discuss the effect of channel gain variations
and quantization on the performance of the proposed
decoupling schemes.

In order to illustrate the effect of channel gain variations,
we repeat the simulations corresponding to Fig. 2 (no
decoupling) and Fig. 7 (linear decoupling) with gi(k) given
by simulated Rayleigh fading. A two-step-ahead predictor
is used to compensate for the channel variations. Figs. 8

and 9 show the results of the simulations. The channel
gains g1(k) and g2(k) which are used in the simulations are
shown in Fig. 10. It can be seen that the decoupled scheme
still performs well, and the simulated power responses
appear to be slightly better than those for the coupled
case.
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Fig. 8. Closed loop responses with time-varying channel
gains and no decoupling.
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Fig. 9. Closed loop responses with time-varying channel
gains and linear decoupling.

Quantization of the control signal is also a significant
problem for inner loop power control. In practice, the
control signal is often transmitted using only one bit. If
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a standard one-bit quantizer is used, then most of the
improvement due to decoupling will be lost. However, if
adaptive quantization is used, then most of the benefits
of decoupling may be retained. We demonstrate this using
an adaptive quantizer which is similar, but not identical,
to those described in Al Mamun et al. [2009] and Khan
and Jain [2009]. The simulated responses with linear
decoupling are shown in Fig. 11. Comparing the responses
to those in Figs. 2 and 7, we see that the quantized
responses are slightly worse than the responses with linear
decoupling, but significantly better than those without any
decoupling.
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Fig. 10. Channel gain variations used for the simulation
results in Figs. 8 and 9.
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Fig. 11. Closed loop responses with an adaptive one-bit
quantizer and linear decoupling.

7. CONCLUSION

This paper has discussed both nonlinear and linear decou-
pling schemes for inner loop power control on the uplink
of 3G communications systems. Simulations have verified
that the proposed schemes lead to significant improve-
ments in transient performance relative to the decentral-
ized scheme in common use.
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J. C. Agüero, G. C. Goodwin, K. Lau, M. Wang, E. I. Silva,
and T. Wigren. Three-degree of freedom adaptive power
control for CDMA cellular systems. In Proc. of the IEEE
Global Communications Conference (Globecom 2009),
Hawaii, USA, 2009.

A. Al Mamun, S. Islam, F. Yesmin, M. Akter, and S. A.
Jahan. Novel adaptive step power control algorithm for
3G WCDMA cellular system. In Proc. of the 12th In-
ternational Conference on Computers and Information
Technology (ICCIT ’09), pages 526–530, 2009.

E. Dahlman, S. Parkvall, J. Sköld, and P. Beming. 3G
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