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Abstract: We consider distributed localization in a sensor network in R2 from inter-agent
distances. Sensors and anchors exchange data with their neighbors. No centralized data
processing is required. We establish a differential equation for the unknown sensor positions,
and show that the estimated positions of sensors converge to their actual values in finite time
(assuming noise-free measurements). The key assumption is that all sensors are in the convex hull
of three or more anchors. The proposed localization method uses the barycentric coordinates
of each sensor with respect to some of its neighbors (which may not include those anchors),
assuming the sensor falls in the convex hull of these neighbors.
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1. INTRODUCTION

In many multi-agent applications, it is desired to know
the positions of the agents. For example, in bushfire
surveillance or search and rescue operations, to accomplish
the task at hand, it is necessary to know the positions
of the agents sensing the data. A trivial solution to this
problem is to install global positioning systems (GPS) on
each of the agents. However, in large scale sensor networks,
it is too expensive to either equip sensors with GPS or
manually determine the position of sensors. Furthermore,
use of GPS for localization purposes may be infeasible or
limited due to possible loss or corruption of GPS signals,
or when the agents are operating indoors. Thus, it is
important to estimate the positions of the sensing agents,
i.e., localize the agents. Localization is accomplished by
combining inter-agent measurements and knowledge about
the positions of some of the agents in the environment.
Those agents with known positions are generally referred
to as anchors. Many studies in localization assume the
availability of inter-agent distances between a sensor and
its neighbors. We recall the following four key questions
posed in Anderson et al. [2009]. Similar questions can be
posed for other types of inter-agent measurements.
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(i) What is the minimal amount of distance data needed
to be collected to localize a network, at least if the
data is free of noise?

(ii) What is the computational complexity of localiza-
tion?

(iii) Can localization be carried out sequentially, sensor
by sensor, in a distributed fashion, or are central
calculations required?

(iv) What is the effect of noise (i.e., errors in the distance
measurements) in a localization algorithm?

Questions (i) and (ii) have been addressed in the sensor
network localization literature, where it is typically as-
sumed that a small fraction of sensors, called anchors,
have a priori information about their global coordinates.
Exploiting the fact that the positions of these anchor nodes
are known in a global coordinate system and that for
each other sensor node a number of inter-node distances
are known, all the other nodes in the network can be
localized under a condition that will be discussed later
in this section, i.e., global rigidity of the underlying graph
of the network, see Aspnes et al. [2006], Eren et al. [2004].
Further, the network localization problem using inter-
agent distances is, in general, NP-hard, see Aspnes et al.
[2006]. The third question has been discussed in Aspnes
et al. [2006], Fang et al. [2009], Anderson et al. [2009]
where some special network topologies that permit solving
the localization problem in a computationally efficient way
were identified and some sequential algorithms with poly-
nomial complexity were introduced. Such networks can
be termed easily localizable networks. Moreover, in Khan
et al. [2009] a different style of method is proposed to solve
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the localization problem by a distributed iterative linear
algorithm, based on a different kind of structural assump-
tion for the network and using a provably exponentially
convergent iteration for the sensor positions. Regarding
question (iv), in almost all engineering applications, hav-
ing noiseless measurements is not a realistic assumption.
Many computational algorithms have been proposed to
solve the noisy localization problem (assuming graphical
conditions for solvability of the noiseless problem are ful-
filled), e.g., convex optimization based algorithms (Beck
et al. [2008], Carter et al. [2006], Biswas et al. [2006], Ding
et al. [2010]), algorithms using sum of squares relaxation
(Nie [2009], Shames et al. [2009b,a]), graph connectiv-
ity based algorithms (Shang et al. [2003], Lederer et al.
[2009]), methods that use multidimensional scaling (Costa
et al. [2006]), or other approaches described in Moore et al.
[2004], Bruck et al. [2009], Bachrach and Taylor [2005].
Furthermore, the formal analysis of the noisy distance-
based localization problem is studied recently in Anderson
et al. [2010].

The main contribution of this paper is that it proposes
a continuous time algorithm along the lines of the one
in Khan et al. [2009] that solves the localization problem
in finite time. Moreover, the algorithm allows the nodes
to use more distance measurements to their neighbors
(previously, only three distance measurements were used)
and that relaxes the assumption on the number of the
anchors in the network.

The outline of this paper is as follows. In the next section,
we introduce some background that we use in this paper.
In Section 3, we propose a discrete-time algorithm to
address the localization problem. Most of the results in this
section are borrowed from Khan et al. [2009]. In Section
4, we provide a modified continuous-time version of the
algorithm proposed in Section 3 that solves the localization
problem in finite time. We show the applicability of the
solution in Section 5 via simulation results. Concluding
remarks come in the end.

2. BACKGROUND AND PRELIMINARIES

Consider a graph G(V, E) with vertex set V = {i}ni=1 and
edge set E . Furthermore, consider a map P : V 7→ R2,
where P(i) = Pi is the row vector of the coordinates of
the i-th vertex in R2, and each undirected edge {i, j} ∈ E
corresponds to the distance dij = ‖Pi − Pj‖.

The following definitions are standard in graph theory
and have been used in the study of network localization
literature (see Aspnes et al. [2006]).
Definition 1 (Sensor Network). A sensor network FP is
defined by a graph G(V, E) and a map Λ : V → R2 which

takes sensor i in V to its respective position Pi
> ∈ R2.

Definition 2 (Congruent Networks). A network FP and a
network FQ are said to be congruent if there is an isometry
I : R2 → R2 such that I(Pi) = Qi.

Definition 3 (Equivalent Networks). FQ and FP are said
to be equivalent if (i) their underlying graphs are identical,

i.e., GQ = GP = G, and (ii) ‖Pi−Pj‖ = ‖Qi−Qj‖ for all
{i, j} ∈ E.

Definition 4 (Rigidity). A network FP is rigid if there
exists a sufficiently small positive ε such that if FQ is
equivalent to FP and ‖Pi − Qi‖ ≤ ε for all i ∈ V then
FQ is congruent to FP.

Intuitively, a rigid network is one that cannot flex. Note
that there exist rigid networks FP and FQ which are
equivalent but not congruent, see Hendrickson [1992].

Definition 5 (Global Rigidity). A network FP at P =
[P>1 . . . P>n ]> is globally rigid if every network FQ that is
equivalent to FP is also congruent to FP.

Generally, rigidity and global rigidity are generic prop-
erties of networks. This means that the rigidity (global
rigidity) of a generic realization of a graph G depends only
on the graph G and not on the particular realization. The
following result from Eren et al. [2004] relates global rigid-
ity to unique localizability of a network with underlying
graph G.

Theorem 1 (Uniquely Localizable Network). A network
in R2 is uniquely localizable if and only if (i) its underlying
graph is globally rigid, and (ii) there are at least three
noncollinear nodes with known coordinates (anchors).

According to Theorem 1, any localizable network in R2

needs at least three anchors. If the measurements in a
network are noisy, then using more than three anchors
might be useful to reduce the effects of noise. In the
algorithm proposed in this paper, it is assumed that there
are at least three anchors in the network; however, three
anchors are enough to perform the localization task in a
noiseless situation.

Let VA be the set of anchors whose coordinates are known
with respect to a global coordinate system and VS be
the set of nonanchor sensors whose locations are to be
determined. So, we can decompose V as V = VA∪VS where
VA ∩ VS = φ. We assume that all sensors are stationary,
and there are exactly u anchors andm = n−u nonanchors ;
|VA| = u, |VS | = m and |V| = n. The set of n` neighbors of
` ∈ VS with sensing radius r is thus denoted byN`,r, which
is a subset of V. We formally define the set of neighbors
of ` as N`,r = {i ∈ V | ‖Pi − P`‖ ≤ r} , and V` as a
subset of N`,r that is the set of neighbors of ` such that
these neighbors are corner points of the maximal convex
polygon with at least three vertices that covers all the
nodes in N`,r and ` lies strictly inside it. Furthermore,
each node ` knows the graph G`,r(V` ∪ {`}, E`) induced by
itself and V`, together with the distances. We introduce
the following assumption and trivial result on G`,r and the
network corresponding to it.

Assumption 1. The neighborhood graph of sensor `, G`,r,
is complete and ` lies in the convex hull of the neighbor
nodes.

As argued in Khan et al. [2009], with a dense enough ran-
dom network, or perhaps by design for a network in which
sensor positions are roughly but not exactly known, or by
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Fig. 1. The convex polygon Ξ with CCW ordering.

increasing the sensing radius/transmit power sufficiently,
Assumption 1 can be fulfilled. With Assumption 1, we have

Proposition 1. A network satisfying Assumption 1 with
underlying graph G is globally rigid.

Knowing the global coordinates of anchors, Proposition 1
establishes that the class of the networks considered in this
paper can be localized uniquely.

Now we introduce the concept of barycentric coordinates.
Let Ξ be a convex polygon in the plane with vertices
at positions P1, · · · , Pn , n ≥ 3, in a counter-clockwise
(CCW) ordering (Pi = [xi, yi]). An example of such a con-
figuration is depicted in Fig. 1. We call any set of functions
π`i : Ξ 7→ R, ` ∈ VS , i ∈ V` barycentric coordinates if they
satisfy, for all P` ∈ Ξ, the three properties (Floater et al.
[2006]):

π`i ≥ 0 i = 1, · · · , n (1a)
n∑
i=1

π`i = 1 (1b)

P` =

n∑
i=1

π`iPi (1c)

Well known barycentric coordinates for the points inside
a convex polygon are the Wachspress coordinates, where

π`i =

A(Pi−1, Pi, Pi+1)
∏

j 6=i,i−1
A(P`, Pj , Pj+1)

n∑
k=1

A(Pk−1, Pk, Pk+1)
∏

j 6=k,k−1
A(P`, Pj , Pj+1)

(2)

in which A(Pi, Pj , Pk) is the signed area of the triangle
4PiPjPk , i.e.,

A(Pi, Pj , Pk) =
1

2

∣∣∣∣∣ 1 1 1
xi xj xk
yi yj yk

∣∣∣∣∣ (3)

In this paper, we use an alternative method (see Sippl
and Scheraga [1986]) to calculate A(Pi, Pj , Pk) using only
the distances between the points (which is what is readily
available in the scenarios considered in this paper).

A2(Pi, Pj , Pk) =
−1

16
det


0 d2ij d

2
ik 1

d2ji 0 d2jk 1
d2ki d

2
kj 0 1

1 1 1 0

 (4)

Note that distance measurements alone are sufficient for
the computation of Wachspress barycentric coordinates;
the Euclidean positions of the various points are not
required. For the rest of this paper, for brevity, we use the
barycentric coordinates to mean Wachspress barycentric
coordinates.

3. DISCRETE-TIME LOCALIZATION ALGORITHM

In this section, we propose a discrete-time distributed
localization algorithm. First, we calculate the barycentric
coordinates of each sensor ` ∈ VS in terms of the coordi-
nates of the sensors in V`.
It should be noted that the determination of V` and the
calculation of the barycentric coordinates of sensor ` is
done once, and does not use the position estimates, just the
inter-agent distances. After determining the barycentric
coordinates of nonanchor sensors, each sensor ` ∈ VS
iteratively updates its current location estimate at the

k + 1-th iteration, P̂`(k + 1), using a convex combination
of the estimated positions of the nodes in V` at the k-
th iteration. The anchors do not update their estimated
positions, since their locations are known a priori. The
iterations are given by (Khan et al. [2009])

P̂`(k + 1) =

 P̂`(k) ` ∈ VA∑
i∈V`

π`iP̂i(k) ` ∈ VS (5)

Let P̂(k)= [P̂>A(k) P̂>S (k)]> be the matrix obtained from

stacking all the row vectors P̂i(k), i ∈ V such that the first

u rows of P̂(k) are the positions of the anchors (P̂A(k))
and the rest are the estimated positions of the sensors

(P̂S(k)). Then (5) can be written in matrix form

P̂(k + 1) = Υ P̂(k) =

[
Iu 0u×m

Bm×u Am×m

]
P̂(k) (6)

where Iu ∈ Ru×u denotes the identity matrix. Note that
(5) does not update the anchors’ positions because their
positions are known, and Υ in (6) is a stochastic matrix.
Further, despite the origins of Υ = [Υij ], i, j ∈ V in terms
of barycentric coordinates computed using distance data,
it has the structure of the probability transition matrix
of a discrete-time Markov chain (DTMC). The matrix Υ
has associated absorbing states (anchors) and transient
states (nonanchor sensors). It can be shown that if A is
the submatrix associated with the transient states of an
absorbing Markov chain, then

ρ(A) < 1 (7)

where ρ(.) is the spectral radius of a matrix (see Khan
et al. [2009]). The subblock A = [aij ], i, j ∈ VS is the one
step transition matrix of the transient state and therefore

∞∑
n=0

An = (Im −A)−1. (8)

Before showing that the position estimates of each sensor
converge to the actual positions under (6), we present the
following lemmas.

Lemma 1. The underlying Markov chain with the transi-
tion probability matrix given by the iteration matrix Υ is
absorbing and

lim
k→∞

P̂(k) =

[
Iu 0

(Im −A)−1B 0

]
P̂(0). (9)

Proof. See section III of Khan et al. [2009] for the proof.
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Lemma 2. Let Pi be the exact coordinates of node i ∈ VS
and let the matrix W = [wij ], i ∈ VS , j ∈ VA be the m×u
matrix of the barycentric coordinates of the m sensors in
terms of the u anchors in VA, i.e., PS = WPA where
PA and PS are the coordinates of anchors and sensors,
respectively. Then

W = (Im −A)−1B (10)

Proof. The proof is similar to that of Khan et al. [2009].
We need to show that

W = AW + B (11)

Hence, for the il-th element of W, it is sufficient to show
that

wil =
∑
j∈VS

aijwjl + ail (12)

For any arbitrary sensor i ∈ VS we can write its coordi-
nates in terms for the coordinates of j ∈ Vi:

Pi =
∑
j∈VS

aijPj +
∑
l∈VA

ailPl

Then we have

Pi =
∑
j∈VS

aij
∑
l∈VA

wjlPl +
∑
l∈VA

ailPl

=
∑
l∈VA

∑
j∈VS

aijwjl + ail

Pl

The main convergence result follows.

Theorem 2 (Khan et al. [2009]). Under the iteration law

(6) the position estimate of each sensor `, P̂`(k), converges
to the actual value P` as k →∞.

Proof. The proof is the direct consequence of Lemmas 1
and 2.

4. A CONTINUOUS-TIME VERSION

In this section, we aim to write, with some modifications,
the updating equation (6) in a continuous-time framework
and prove that the estimated locations of nonanchor
sensors go to their actual values exponentially fast. Then
we modify the proposed continuous-time equation such
that the estimated locations go to their actual values in
finite time. The proposed finite-time algorithm is inspired
from the formation tracking algorithm proposed by Cao
et al. [2010].
We now consider the continuous-time version of (6). We
need to embed the DTMC in a continuous time Markov
chain (CTMC). What we want is to find Υc = [Υcij ], i, j ∈
V such that

˙̂
P(t) = Υc P̂(t). (13)

and P̂(t) converges to [P>A P>B ]>. For the transient states
we get

Υcij = ΥciΥij ∀i, j, i 6= j, Υcii = −Υci (14)

where Υci =
∑
i 6=j Υcij , and for the absorbing states

(anchors) we get

Υcij = 0 ∀i, j (15)

Therefore, a continuous form of (6) is

˙̂
P(t) = Υc P̂(t) =

[
0 0

B Â

]
P̂(t) (16)

where
Â = A− Im (17)

Lemma 3. Using (16), P̂(t) goes to P exponentially fast.

Proof. Clearly, P̂A(t) = PA. So, we only need to prove

that P̂S(t) goes to PS exponentially fast.

Let P̃S(t) = P̂S(t) − PS . Then, by considering (10),
(16), (17) and the fact that all sensors and anchors are
stationary, we have

˙̃
PS(t) = Â P̃S(t) (18)

Since every eigenvalue of Â has negative real part (see (7)

and (17)), P̃S(t) goes to zero exponentially fast.

Now, we modify the update equation (16) to yield a form

that makes P̂(t) go to P in finite time. For the sake of sim-
plicity, we assume that all sensors are in one-dimensional
space, however, the results are valid for higher dimensions.

Lemma 4. Suppose P̂(t) is updated by

˙̂
P(t) = α

[
0 0

B Â

]
P̂(t) + β sgn

([
0 0

B Â

]
P̂(t)

)
(19)

where α and β are positive constant scalars and sgn is the
sign function (letting the sgn of a vector be the vector of

signs) and let P̃
+

(t) = max
i∈VS

P̃i(t) and P̃
−

(t) = min
i∈VS

P̃i(t).

If P̃
+

(t) > 0 , then
˙̃
P
+

(t) ≤ 0, and
˙̃
P
+

(t) = 0 only occurs

at isolated points. Also if P̃
−

(t) < 0 then
˙̃
P
−

(t) ≥ 0, and
˙̃
P
−

(t) = 0 only occurs at isolated points.

Proof. The proof is inspired form Cao et al. [2010]. Simi-
larly to (18), the update equation (19) can be written as

˙̃
PS(t) = αÂ P̃S(t) + β sgn

(
Â P̃S(t)

)
(20)

and for i ∈ VS , the update equation would be

˙̃
Pi(t) = α

∑
j∈VS

âijP̃j(t) + β sgn

∑
j∈VS

âijP̃j(t)

 (21)

where âij is the element of the ith row and the jth column

of Â. Suppose at time t we have P̃k(t) = P̃
+

(t) for sensor
k. Then for sensor k, (21) can be written as

˙̃
P

+

(t) = α

−P̃+
(t) +

∑
j∈VS ,j 6=k

âkjP̃j(t)


+ β sgn

−P̃+
(t) +

∑
j∈VS ,j 6=k

âkjP̃j(t)

 (22)

If P̃
+

(t) > 0 then
˙̃
P

+

(t) ≤ 0 because 0 ≤
(∑

j∈VS ,j 6=k âkj
)

≤ 1. In particular, if sensor k is in the convex-hull of
nonanchor sensors, then

∑
j∈VS ,j 6=k âkj = 1. In this case
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˙̃
P

+

(t) = 0 if and only if P̃
+

(t) = P̃j(t) ∀j ∈ Vk. On the
other hand, if k is in the convex-hull of at least one anchor
and two or more nonanchor sensors, then

∑
k∈VS ,j 6=k âkj <

1 and
˙̃
P

+

(t) = 0 if and only if P̃
+

(t) = P̃j(t) = 0 ∀j ∈ Vk.

We next show that when P̃
+

(τ) > 0 for some τ > 0,
˙̃
P

+

(t) = 0 only occurs at isolated time instants when

t ≤ τ . In order to obtain a contradiction assume
˙̃
P

+

(t) = 0
for t ∈ [t1, t2] where 0 < t1 < t2 ≤ τ . Then there
is an index k such that Pk(t) = P+(t) for t ∈ [t1, t3]
where t1 < t3 ≤ t2. This includes the possibility that
Pk(t) = Pj(t) = P+(t) for some j ∈ VS and switching
is occurring in t ∈ [t1, t3]. If k is in the convex-hull of
at least one anchor and two or more nonanchor sensors,

then P̃
+

(t) = P̃j(t) = 0 ∀j ∈ Vk, t ∈ [t1, t3] which

is a contradiction because we assumed that P̃
+

(t) > 0.
If k is in the convex-hull of three nonanchor sensors,

then P̃
+

(t) = P̃j(t) ∀j ∈ Vk, t ∈ [t1, t3] and therefore
˙̃
P

+

(t) =
˙̃
Pj(t) = 0. By following a similar analysis for

the neighbors of j which are the two-hop neighbors of k,
we obtain that if at least one of the two-hop neighbors is

a neighbor of an anchor, then P̃
+

(t) = 0, otherwise we
check three-hop neighbors, four-hop neighbors, etc. Since
all of the sensors are in the convex-hull of the anchors and
since the underlying graph of the network is connected, it

follows that P̃i(t) = P̃
+

(t) = 0 ∀i ∈ VS which results in a
contradiction.

Similarly, it can be shown that if P̃
−

(t) < 0 then
˙̃
P
−

(t) ≥

0, and
˙̃
P
−

(t) = 0 only occurs at isolated points.

Theorem 3. Let P̂(t) be updated by (19), then P̂(t)→ P

in finite time. In particular, P̂(t) = P for any t ≥ T where

T = max
i∈VA

{
|P̂i(0)− Pi|

β

}
(23)

Proof. By considering (21), it is clear that if P̃
+

(0) =

P̃
−

(0) = 0 then P̃
+

(t) = P̃
−

(t) = 0 ∀t > 0.

If P̃
+

(0) > 0 and P̃
−

(0) ≥ 0 , then according to Lemma

4, P̃
−

(t) ≥ 0 ∀t > 0 because if for some t > 0, P̃
−

(t) < 0

then
˙̃
P
−

(t) > 0, except at some isolated points where
˙̃
P
−

(t) = 0, and therefore P̃
−

(t) is always nonnegative.

Since P̃
+

(t) ≥ P̃
−

(t), we have P̃
+

(t) ≥ 0. If P̃
+

(t) = 0

then, P̃
−

(t) = 0. Otherwise, if P̃
+

(t) > 0, then
˙̃
P

+

(t) < 0
for all t > 0, except some isolated points. Hence, in the

light of (21), P̃
+

(t) decreases with rate at least equal to β

until it reaches zero. Therefore, P̃
+

(T ) = P̃
−

(T ) = 0 after

T = P̃
+
(0)
β . Similarly, if P̃

−
(0) < 0 and P̃

+
(0) ≤ 0, then,

after T = P̃
−
(0)
β , P̃

+
(T ) = P̃

−
(T ) = 0. By combining these

two cases, it can be concluded that T = max{ P̃
−
(0),P̃

+
(0)

β }

if P̃
+

(0) ≥ 0 and P̃
−

(0) ≤ 0

It should be noted that for t > T , P̃
+

(t) = P̃
−

(t) =

P̃i(t) = 0 ∀i ∈ VS and chattering does not occur. The

reason for that is P̃i(t) can not increase or decrease after
t = T because if for example it increases, then there exists

some t′ > T such that P̃
+

(t′) > 0 and
˙̃
P

+

(t′) > 0. But
this is a contradiction because, according to Lemma 4, if

P̃
+

(t) > 0 ∀t > 0 then
˙̃
P

+

(t) is always non-positive. For
further information about chattering, see Anderson and
Moore [1971].

5. SIMULATION RESULTS

Suppose there are 4 anchors and 5 nonanchor sensors
in 2-dimensional space as shown in Fig. 2 and suppose
that α and β in (19) are 1 and 0.2, respectively. The
estimation error of the positions of nonanchor sensors
using the updating equations of (16) and (19) are shown
in Fig. 3 and Fig. 4(a), respectively. The estimation errors
using (19) in the case that α = .001 and β = 0.2 are
depicted in Fig. 4(b). It can be seen that larger α results in
better transient response. Furthermore, if α is small, then
the second term of (19) is dominant and the time at which
the estimation errors go to zero can be calculated using
(23). Fig. 4(c) shows the estimation errors when α = .001
and β = 0.5. It can be seen by comparing Fig. 4(b)
and Fig. 4(c) that larger β results in faster convergence
time. But if α is very small and β is very large, then

P̃i, i ∈ VS may change from a small negative number
to a large positive number, or vice versa, when the sign of∑

j∈VS âijP̃j(t) in (21) is changed.

The estimation error in the case that noisy inter-agent
distances are used is depicted in Fig. 4(d). The noise is
zero mean Gaussian with a variance equal to .001 unit of
distance squared.
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Fig. 2. Location of sensors in 2-D coordinates. The red points are
anchors (nodes 1-4) and the blue points are nonanchor nodes
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Fig. 3. Estimation error of nonanchors’ locations using the contin-
uous version of the algorithm proposed in Khan et al. [2009]
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(a) α = 1 and β = 0.2
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(b) α = .001 and β = 0.2
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(c) α = .001 and β = 0.5
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(d) α = 1 and β = 0.2 (normal noise,

variance=.001, mean=0)

Fig. 4. Estimation error of nonanchors’ locations using the updating
equation (19).

6. CONCLUSION

A distributed localization algorithm is proposed that guar-
antees finite-time convergence. This algorithm uses inter-
agent distances to estimate the location of sensors with
only local measurements. It is shown in simulations that
larger α and β results in faster convergence speed.
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