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Abstract: This paper presents the modelling, control and optimization of a fermentation unit
of the ethanol industry. The presented model considers all the important variables that affect
the ethanol production: temperature, pH and reactor feed rate. The proposed strategy is based
on a two level control system. In the low level, SISO controllers are used to impose the desired
closed loop dynamics of the local variables and to reject local disturbances. In the high level a
MIMO optimal controller is used to maximize the ethanol production. Simulation results with
a industrial scale model are presented to illustrate the advantages of the proposed strategy.

1. INTRODUCTION

Ethanol from sugar cane as a substitute for fossil fuels
has proven to be concrete alternative in the fight against
air pollution. In Brazil, sugarcane industries are interested
in increasing their productivity from the optimization of
their processes. In particular, there is a clear prospect of
improved performance in the fermentation processes.

Ethanol production via fermentation by saccharomices
cerevisiae is a process in which the formation of product is
associated with cell growth. The yeast cells are subjected
to stresses inherent to the process, that are caused by en-
vironmental conditions and physical-chemical factors such
as high temperature, salinity, pH and high concentrations
of ethanol and sugar.

In this process, the inoculum prepared in the bottom of
the reactor receives the must from a flow control, until
it reaches the desired level. The temperature and pH
of the must are maintained around desired values using
a heat exchanger and the addition of acid substances,
respectively.

Several papers have been published analyzing various as-
pects of the fermentation control process. A methodology
for obtaining the optimum process temperature for the
maintenance of cell viability, reducing glycerol production
and increasing efficiency is presented by Atala et al. [2001].
An analysis of how to minimize the processing time to
obtain a desired production in a bioreactor is found in
Cacik et al. [2001]. In Magazoni et al. [2009] an absorption
chiller is used for cooling the fermenters of an alcohol and
sugar producing plant, obtaining an increase of 0.8% in
fermentation efficiency.

To control the reactor feeding, Modak and Lim [1987]
developed an optimization scheme using a nonlinear model
where the feed flow rate is a function of the state variables:
concentrations of cells, substrate, product and reactor
volume. Chen and Hwang [1990] suggested a different
procedure for optimal feeding of substrate, using a on-off

control strategy which provides less wear of the actuators.
In the work of Chaudhuri and Modak [1998], a neural
network model with feedback was presented to determine
the optimal flow rates of substrate. Chiou and Wang [1998]
developed a method for the optimization of feed-bath re-
actors, which avoids the fast convergence to local optimum
points while increasing the probability of finding the global
optimum one. Also, in Wang et al. [2001], the same method
was used to estimate the kinetic parameters of the ethanol
fermentation model and glycerol, using Saccharomyces di-
astaticus LORRE 316 and to determine the best feeding
rate and time to maximize alcohol production.

Recently, dos Santos et al. [2006] presented an on-off
control strategy based on the solution of the initial value
equations, defined by phase, resulting from the application
of the Principle of Pontryagin and a procedure for reducing
the top indexes. The method was also used in Borges
[2008] to estimate and calculate the optimal feed flow. The
experiments were simulated and validated in a bench scale
reactor with interesting results.

Predictive control have also been applied to bath reactor
for other applications outside the ethanol industry [Ro-
drigues and Maciel, 1999, Ashoori et al., 2009]. However,
proposed solutions do not considered all the degrees of free-
dom of the problem. In order to optimize the fermentation
process, all the main variables (feed flow rate, temperature
and pH) should be controller simultaneously if the goal is
to achieve high production with minimal loss of energy and
raw materials. Thus, this work presents the modeling (in
industrial scale) of the ethanol fermentation process and
a control structure with two layers that allows the process
control and production optimization.

The rest of the paper is organized as follows. Section
2 presents the models of equipments and processes that
compose the industrial ethanol fermentation system. The
proposed control strategy is presented in Section 3, while
Section 4 is devoted to illustrate the obtained results with
some simulations. Finally the paper ends with conclusions.
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2. SYSTEM DESCRIPTION

As pointed out, the fermentation system described in this
work is a industrial scale process normally used in real
sugar and ethanol plants in south and central America
such as in Brazil and Guatemala. The studied process

Fig. 1. Bath system

is shown in Fig. 1 where three main sub-systems are
observed: (i) the reactor itself, where the fermentation
occurs; (ii) the heat exchanger used to control the tem-
perature of the process and (iii) the feed system, which
considers both, the flow and pH dynamics.

The fermentation unit operation is as follows. The cane
juice that is mixed with acid substance to maintain the
pH in a desired value feeds the reactor until it reaches
the desired level defined by the operator. The reactor
is a batch unit and during each production period, a
continuous recirculation of the must is performed. The
must passes through a heat exchanger, which uses a
coolant circulation to keep the must inside the reactor
at an ideal temperature. Therefore, to obtain a complete
control of this fermentation process three subsystems
should be modeled: (i) the feed and pH control system, (ii)
the heat exchanger, (iii) the fermentation into the reactor.

2.1 pH dynamic model

Fig. 2. pH process configuration

After extraction of the sugarcane juice, it is required that it
be treated before being sent to the next steps of produc-
tion. Treatment consists of chemical processes that have
the finality of disinfecting and eliminating undesirable
impurities in the broth. After this process the pH must
be controlled. pH control is a very common process in
sugar and alcohol plants. The strong nonlinearity of this
process makes it one of the hardest type of SISO (single
input single output) systems to be controlled. Moreover,

it is also a very important variable in the process, because
large variations in pH can significantly impact the quality
of the product and process efficiency.

For this work, the pH modeling was performed using the
technique of invariant reaction [Gustafsson and Waller,
1983] for the system presented in da Costa Fo et al.
[2010] whose configuration is illustrated in Fig. 2. The pH
adjustment is done by injecting acid solution directly in
the line of the duct where it passes the broth. Point a
in the figure is where the mixing occurs; the pH sensor
is installed in point b. Between points a and b, a pump is
used to obtain the acid-broth mixture (which is considered
perfect in the model). The volume V = 474.71L is the total
volume of all pipelines between points a and b, including
the pump.

For any current i with a known pH and invariant value
Wbi, it is possible to calculate invariant Wai with:

Wai = Wbi ·G(pHi,Ka1,Ka2) + F (pHi),
in which:

G(pHi,Ka1,Ka2) = −
1 + 2 · 10(pHi−pKa2)

1 + 10(pKa1−pHi) + 10(pHi−pKa2)
, (1)

F (pHi) = 10−pHi − 10(pHi−14) and pKai = −Log(Kai). From
the system’s balance for each of the invariant reaction,
considering the numbers of the currents shown in Fig. 2, it
is possible to express the model in state space [da Costa Fo

et al., 2010]:[
ẋ1

ẋ2

]
=

 F1

V
(Wa1 − x1)

F1

V
(Wb1 − x2)

+

 (Wa2 − x1)

V
(Wb2 − x2)

V

u (2)

where u = F2, x1 = Wa3 e x2 = Wb3. The output equation
of the model calculates the pH implicitly. Using real pH
variation data from experiments in one of the industrial
plants [da Costa Fo et al., 2010], the model parameters
were defined as: pKa1 = 6.6869, pKa2 = 8.9950, Wb1 =
5.8250 · 10−4, pH1 = 4.45 and pH2 = 7.00.

2.2 Heat exchanger modelling

The number of parameters and its nonlinear dynamics
make the modelling of a heat exchanger very difficult.
Starting from a nonlinear and continuous model, a state
space representation of the distributed parameter system
is obtained using the “Direct Lumping of the Process”
technique presented in Bonivento et al. [2001]. Basically,
this method subdivides the thermal exchange surface into
∆x sections, that is, the state vector is defined by the
temperature of the sections.

Assuming that the velocity of the fluids across the heat ex-
changer is constant and neglecting the effects of the metal
between the sections, the mass and energy balances can
be calculated applying the Energy Conservation Principle
to every lump (for time t, at point x−∆x), resulting in:

∂

∂t
(McpT ) = ṁcp(Tx−∆x − Tx)− UA∆T (3)

where M = a∆xρ is the lump mass; ṁ = avρ is the
mass flow rate; a is the section of the chamber where the
fluid flows; ρ is the fluid density; cp is the specific heat
capacity; T is the fluid temperature; t is the time; v is the
fluid velocity; ∆T is the temperature difference; ∆x is the
incremental distance; A is the surface of the space included
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in the considered lump and U is the overall heat transfer
coefficient.

The heat exchanger is divided into N lumps so that the
space model of the system refers to a state vector T repre-
senting the temperature of each lump. This vector can be
subdivided into two parts, representing the temperature
of each fluid:

T = [Tr1, Tr2, Tr3, ..., TrN Tf1, Tf2, Tf3, ..., TfN ]T

in which Trj e Tfj are the must and water temperatures
in the point jth, with j = 0, 1, ..., N , respectively. Tr0 e
Tf0 are considered as part of the inputs. Therefore, the
following 2N order system can be obtained:

Mrcpr
dTr,j(t)

dt
= ṁr(t)cpr[Tr,j−1(t)− Tr,j(t)]− UA∆T (t)

Mf cpf
dTf,j(t)

dt
= ṁf (t)cpf [Tf,j−1(t)− Tf,j(t)]− UA∆T (t)

(4)

The parameters of the system are:
N = 100 ar = af = 4.6296 · 10−2m2

vr = 6m/s ρr = ρf = 1000kg/m3

vf = 6 · u(t)m/s cpr = cpf = 4.187kJ/(K · kg)
U = 1kW/(K ·m2) Tf0 = 20oC

∆x = 0.02m A = 1.53 · 10−2m2

The temperature of the water is considered constant and
the length of the thermal exchanger is L = 2m. The
must from the reactor enters in the heat exchanger with a
constant mass flow rate given by ṁr = 106kg/h and the
water mass flow rate is ṁf = 106 · u(t) (kg/h), regulated
by u(t) ∈ [0, 1], which is used as a manipulated variable to
control the temperature of the must into the reactor. In a
real situation, the static gain of the heat exchanger varies
as a function of the input temperatures of the fluids. This
important characteristic is verified in the proposed model.

2.3 Reactor modelling

The mathematical modelling of the alcoholic fermentation
was performed based on mass balance equations with the
correspondents kinetic rates of the cell, substrate and
product as well as global balance of energy for the overall
process. It will be considered a sterile feeding, that is, with
a null biomass concentration. The system is illustrated
in Fig. 1 and a simulator that describes its behavior was
developed by da Costa Fo and Normey-Rico [2010].

Thus, the volume variation during the fermentative pro-
cess is described as:

dV

dt
= F3 (5)

in which F3 (m3/h) is the volumetric flow rate of must at
the entrance of the reactor.

The cell growth rate is defined as follows
dX

dt
= µX − F3

V
X −KdX (6)

where µ (h−1) is the specific growth rate and Kd (h−1)
is the global coefficient of cell death. The factor F3/V
(h−1) is the dilution rate as the feed is added during the
fermentation process.

The substrate consumption S is modelled by the following
equation:

dS

dt
=
F3

V
(Si − S)− µ X

YX/S
−mXX (7)

in which Si = 200kg/m3 is the feed substrate concentra-
tion, YX/S (kg/kg) is the yield factor of the biomass based
on the substrate consumption and mX = 0.2kg/(kg · h) is
the cell maintenance coefficient.

The ethanol formation P is written as:
dP

dt
= YP/XµX +mPX −

F3

V
P (8)

where YP/X (kg/kg) represents the yield factor of the
ethanol based on cell growth and mP = 0.1kg/(kg · h)
is the ethanol production associated with cell growth.

The dead biomass concentration into the reactor Xd is
calculated as:

Xd

dt
= KdX −

F3

V
Xd (9)

where Kd = KdT exp (KdPP ) (see Tab. ??).

Through the energy balance of the system, the variation
in the fermentation temperature Tr0 during the process is
described by:
dTr0

dt
=
F3

V
(Ti−Tr0)+

ṁr(t)

ρ1V
(TrN−Tr0)+

µX

YX/S

∆HS

ρ1cp1
+
mXX∆HS

ρ1cp1

(10)

where ∆HS is the heat released during the fermentation
process whose value is 151kcal per kilogram of substrate
consumed and Ti = 28oC is the feed temperature.

In the model shown, the specific growth rate µ is expressed
as a function of the limiting substrate concentration, of
the inhibitory effects of the substrate, ethanol and cell
concentrations, and as function of the reduction constant
from pH of the reactor Λ(pH). Thus, it has the following
equation:

µ =
µmax

Λ(pH)

S

Ks + S
e−KiS

(
1−

P

Pmax

)n (
1−

X +Xd

Xmax

)m

(11)

where m = 1 and n = 1.5 are constant values, µmax (h−1)
is the maximum specific growth rate, Ks = 4.1kg/m3

is the substrate saturation constant, Ki (m3/kg) is the
substrate inhibition coefficient, Pmax (kg/m3) and Xmax

(kg/m3) are, respectively, the ethanol concentration and
the biomass concentration when cell growth ceases.

Although the dependency between the cellular activity and
pH can not be explained by a mathematical expression,
it is found in the literature an adequate adjustment for
many microorganisms [Nielsen and Villadsen, 1994]. In
this work, Λ(pH) is calculated for pH < 4.5 and pH >
5.3 decrease the cells growth, according to the following
function:

Λ(pH) = k3 ·
(

1 +
k1

10−pH
+

10−pH

k2

)
(12)

in which k1 = 10−5.3, k2 = 10−4.5 e k3 = 0.4633. The
parameters used in equations showed above were described
as function of temperature by Atala et al. [2001]whose
expressions were determined, using the industrial yeast
Saccharomyces cerevisiae and cane molasses as the sub-
strate.

For the pH modelling, it is considered the carbon system
(H2CO3+HNO3) to represent the neutralization phenom-
ena of feeding. Considering the illustration in Fig. 1, the
model equations are:
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dWa4

dt
=
F3

V
· (Wa3 −Wa4) (13a)

dWb4

dt
=
F3

V
· (Wb3 −Wb4) (13b)

3. CONTROL STRATEGY

The proposed control strategy is illustrated in Fig. 3. This
structure, whose objective is to operate the plant to obtain
the maximum of ethanol, is divided in two parts:

• Global Control System: in this top layer, the opti-
mizer computes the optimum pH, temperature (T )
and level (H) in the reactor to maximize the ethanol
production. It works as master controller and defines
the set-point for the slave loops.
• Local Control System: this layer is composed by

three slave loops which work in cascade with the
optimizer. The objective of these local controllers is to
keep the fermentation process in the operating point
(pH, T,H) defined by the upper layer.

Fig. 3. Automation and control system

The complete model composed by the three sub-systems
described in section 2 will be used to simulate the process
behavior in section 4 and to compute the predictions in
the optimal controller. As in industrial practice, simple
low order models are used to tune the local controllers,
and these models are obtained from the behavior of the
complete model near an operation point.

3.1 Local Control System

In the proposed approach PID (Proportional-Integrative-
Derivative) controllers are used in the pH temperature and
level control loops because they are the typical structures
used in industry.

The PID algorithm used here is [da Costa Fo et al., 2009]:

C(s) =
Kc(1 + 1

Tis
+ Tds)

αTds+ 1
, α ∈ [0, 1] (14)

where Kc is the proportional gain, Ti is the integrative
time (in hours), Td is the derivative time (in hours) and α
defines the low pass filter of the derivative action (in the PI
case, Td = α = 0). Also, a set-point filter (F (s) = 1+βs

1+γs )
can be used, when necessary, to obtain smoother set-point
responses. Moreover, the PID algorithm includes a anti-
windup strategy.

To tune the temperature PID controller, a simple first
order plus delay model is used to represent the relationship
between the temperature and the cooling flow in the heat
exchanger. The following values were obtained for a fast
response with a small overshoot:

Kc = −4000, Ti = 0.05, Td = 0.03, α = 0.1.

A simple PI with a reference filter was enough to control
the level in the reactor, that is an integrator system
(Kc = 250, Ti = 1, γ = 0.5, β = 1). This tuning is done in
order to obtain responses without overshoot, as no control
action can decrease the level.

Because of the high gain variability of the pH model (see
the curve in Fig. 4), the PI controller for this loop was
implemented with a scaled gain:

Kc =
1

|K2(u2)|
Ti = 0.003

The proposed PI allows to obtain a closed-loop system

Fig. 4. Static curve pH - acid flow

with smooth response and rise time similar to the open
loop one.

As pointed out the set-points for the Local Control System
are given by the optimization process described in the
following.

3.2 Global Control System

The Global Control System is based on a NMPC (Non-
linear Model Predictive Control) technique, which is im-
plemented to determine the control signal that minimizes
a given cost function at each sampling time, using a pre-
diction horizon and a nonlinear model of the process. The
sampling period, that is called here the processing time
∆Q, is defined by the operator.

The NMPC is designed to maximize the ethanol concen-
tration by solving, at each ∆Q, the following problem in
the decision variables SPH , SPL and SPpH [Logsdon and
Biegler, 1989]:

min J(SPH , SPH , SPpH) = −
∫ t+N

t

P (t)dt

Subject to:

Ṗ (t) = YP/XµX(t) +mPX(t)−
F3

V
P (t)

H(t) ≤ SPH(t) ≤ 14.4
20 ≤ SPT (t) ≤ 40
4 ≤ SPpH(t) ≤ 6

(15)

where t is the current time, N is the prediction horizon (in
hours), P is the ethanol concentration obtained using the
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non-linear model presented in previous sections 1 , SPH is
the level set-point, SPT is the temperature set-point and
SPpH is the pH set-point.

The constraints in the decision variables are defined using
the following ideas: (i) the minimum level should be, at
each step, the current level, because in this batch system
there is no way to decrease it; (ii) the maximum level is
defined by the reactor capacity; (iii) for T and pH, the
limits are given by the secure operation ranges normally
defined in industrial practice.

The tuning parameters of this control strategy are N and
∆Q (∆Q ≤ N). As the process has a fixed end time (in this
application 8 hours) the maximum value of N is 8 hours.
Due to the fermentation process has a slow dynamics it is
expected to obtain better results using bigger values of N .
The effect of ∆Q can be analyzed as follows. A small value
of ∆Q imposes constraints to the practical implementation
of the control system because of the time needed for the
optimization procedure and also because of the dynamics
of the local loops. On the other hand, big values of ∆Q
gives less degree of freedom to the optimization and a
poor performance is expected. Next section presents some
simulations to illustrate these points and to evaluate the
tuning and performance of the proposed control system.

4. SIMULATION AND RESULTS

The process model was developed in Matlabr Mathworks
and the function fmincon is used for the NMPC optimizer.
To illustrate the advantages of the proposed control sys-
tem, some comparative results will be presented. In these
simulations the proposed controller is compared to the one
currently used in conventional ethanol plants, where the
feeding, pH and temperature evolution are pre-defined by
the process operator.

Some criteria were considered in the simulations following
real data from the industrial process: the maximum time of
fermentation process is set to 8h and the maximum level
in the reactor is 14.4m (900m3). The initial conditions
were: V0 = 300m3 (H0 = 4.8m), X0 = 31kg/m3, S0 =
0kg/m3, P0 = 33kg/m3, Xd0 = 0kg/m3, Tr00 = 30oC e
pHr = 5.01. The ethanol concentration obtained without
the optimizer is approximately 73.8066g/L, considering a
volume of 900m3. That is, the fermentation production is
calculated using GP = (VF (L)− V0(L)) · Ce(g/L). In this
case, GP = 44283960g ≈ 44284kg of ethanol per vat.

To analyze the controller tuning several tests were made
with different values ofN and ∆Q. In the Table 1 is showed
some of the obtained results, that confirms the previous
analysis. Note that, as expected, the effect of N is much
important that the effect of ∆Q.

One of these cases (N = 7 and ∆Q = 2) was se-
lected to present detailed simulation results (see Figs.
5, 6 and 7). The obtained final concentration of ethanol
is Ce = 78.8547g/L and the production in the vat is
GP ≈ 47313kg, which should generate an increase in the
production of 6.84% of ethanol per reactor if compared
with the process without the NMPC controller. It is rel-
1 This equation considers, implicitly, the relationship between P and
the level, temperature and pH.

N ∆Q Ce(g/L)

1 0.5 75.3532
1 1 74.4925
2 0.5 76.9376
2 1 76.7099
2 2 76.2838
4 1 78.4707

N ∆Q Ce(g/L)

4 2 78.4193
4 4 77.7028
7 1 78.8394
7 2 78.8547
7 4 78.8528
7 7 78.7567

Table 1. Ethanol concentrations for some val-
ues of N and ∆Q

Fig. 5. Controlled variables of the system

evant to remember that these values are on an industrial
scale, in which an apparently small gain produces signifi-
cant results. For comparison purposes, suffice it to say that
in a plant that has six vats, this corresponds to an increase
in the production of 11450t ethanol per crop.

5. CONCLUSIONS

This paper presented the development of a complete model
and a optimization based controller of ethanol fermenta-
tion process. The proposed strategy is based on a cascade
control structure. Three slave SISO controllers deal with
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Fig. 6. Performances of the system with and without
optimizer

Fig. 7. Performances of the system with and without
optimizer

the principal process variables and disturbances and re-
ceive the optimal set-points from a MIMO master predic-
tive controller which maximizes the ethanol production.

Since the model was developed in industrial scale, the
results obtained in the simulations can satisfactorily rep-
resent a real operation unit. From the comparative re-
sults presented in the simulations it is concluded that
the proposed strategy can be used in practice to improve
the performance of current plant operation strategies. As
the low level layer uses simple PID controllers normally
installed in industry, the implementation of the proposed
strategy can be easily tested in practice executing the
NMPC in a industrial PC connected with the PIDs.
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