
     

Support Vector Machines for Fault Detection in Wind Turbines 
 

Nassim Laouti, Nida Sheibat-Othman, Sami Othman* 


                                    *Université de Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5007, Laboratoire   

d’Automatique et de Génie des Procédés (LAGEP), F-69616 Villeurbanne, France 

 (
*
Tel. 33.4.72.43.18.88; e-mail: othman@lagep.univ-lyon1.fr) 

Abstract:   Support Vector Machines (SVM) are used for fault detection and isolation in a variable speed 

horizontal-axis wind turbine composed of three blades and a full converter. The SVM approach is data 

based and is therefore robust to process knowledge. Moreover, it is based on structural risk minimization 

which enhances generalization and it allows accounting for process non linearity by using flexible 

Kernels. In this work, a radial basis function was used as Kernel. Different parts of the process were 

investigated including actuators, sensors and process faults. With duplicated sensors, we could detect 

sensor faults in blade pitch positions, generator and rotor speeds rapidly. Fixed value fault were detected 

in 2 sample periods and offset faults could be detected for  5.0  with a detection time that depends 

on the offset level. The converter torque fault (an actuator) could be detected within two sample periods. 

Faults in the actuators of the pitch systems could not be detected. Faults in the process concerning 

friction in the drive train could be detected only for very high offset (  dt 50%). 
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1. INTRODUCTION 

Methods used for fault diagnosis can be classified as model 

based or data based. Model based methods require a 

comprehensive model of the system. Success of data based 

methods is conditioned by the significance of historical data 

and the mathematical method used to detect the patterns in 

data. For industrial systems where an important amount of 

data is stored regularly and process model is not available, 

the use of statistical methods is preferred. 

Among statistical methods for fault detection and diagnosis 

appear artificial neural networks (Schlechtingen and Ferreira 

Santos 2011), principal component analysis (Sun et al. 2005) 

and more recently support vector machines (SVM). SVM are 

based on structural risk minimization principle based on the 

statistical learning theory introduced in 1964 by Vapnik and 

Chervonenkis. Only recently, SVM were introduced as 

machine learning algorithms for classifying data from two 

different classes (Boser et al. 1992, Vapnik in 1995). 

Basically, a binary support vector classifier constructs a 

separating hyperplane. The hyperplane should have the 

maximum margin which is the width up to which the 

boundary can be extended on both sides before it hits any 

data point. These contact points are called the support 

vectors. In order to allow classifying non linearly separable 

sets, a nonlinear Kernel function can be used. The main 

differences between SVM and many other statistical methods 

are therefore: first, the structural risk minimization (training 

by traditional classifiers usually minimizes only the empirical 

risk) that improves the ability of generalization even with a 

reduced number of samples and avoids over-fitting in view of 

good parameter tuning; Second, SVM use nonlinear Kernels 

which allows separation of non linearly separable data. 

SVM have been extensively used to solve classification 

problems in many domains ranging from face, object and text 

detection and categorization, information and image retrieval 

and so on. Their use for fault detection started in 1999 and 

was found to improve the detection accuracy. Widodo and 

Yang (2007) presented a review about the use of SVM for 

fault detection. They reported 37 papers in academic journals 

on this subject. Nowadays, the number of journal papers 

using SVM for fault detection has almost doubled. The 

concerned domains are in majority restricted to mechanical 

machinery as for instance roller bearings, gear box, power 

transmission system, induction motors, turbo pump rotor but 

are also extended to other domains such as electro-

mechanical machinery, semi-conductors, refrigeration 

system, sheet metal stamping, air conditioning systems, and 

few chemical processes such as the Tennessee Eastman 

benchmark. 

In this work, SVM are used for fault detection in a wind 

turbine that is used to generate electrical energy from the 

wind energy. A specific kind of turbines was simulated and 

controlled by Odgaard et al. (2009). The proposed 

benchmark is used for fault detection in this work. Even 

though the wind turbine functionality might be similar to 

rotating machinery, it encloses a number of difficulties 

ranging from a high variability in the wind speed, aggression 

by the environment, measurement difficulties besides the fact 

that wind turbines are supposed to run continuously for 

several years. 

With the widespread use of wind turbines as renewable 

energy systems, control and supervision should be included 

in the system design. Fault detection of wind turbines allows 

reducing of maintenance costs. Indeed, online supervision of 
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all parts of the system allows early detection of faults which 

avoids degradation of the material and other side effects. 

Also, online supervision can suggest the best maintenance 

time as a function of the wind speed in order to ensure high 

performance. Fault detection is also interesting for control 

reconfiguration in order to ensure optimal power in case of 

partial fault. Note however that only few works treat this 

subject (Amirat et al. 2009, Hameed et al. 2009). 

In the first part of this work, basic hints about SVM 

classification are given. Thereafter, the wind turbine is 

described and the locations and types of faults are defined. 

Then SVM learning is presented showing the different tuning 

levels. Finally, SVM validation is considered through 

simulation results using a real wind sequence. 

2. SVM Classification 

Consider N training vectors p

ix   characterized by a set 

of p descriptive variables  ipiii xxxx ,,, 21   and by the 

class label  1,1yi  . For nonlinearly separable data x, the 

data can be mapped by some nonlinear function (x) into a 

high-dimensional feature space where linear classification 

becomes possible. Rather than fitting nonlinear curves to the 

data, SVM handle this by using a kernel function 

)x(),x()x,x(K ii   to map the data into a different 

space where a hyperplane can be used to do the separation. 

The optimization problem is given by: 

2 

bw,
w

2

1
  min  

Subject to: 

  Nibxw i ,,1,1)(,y)f(xy iii    (1) 

 

Using the Lagrange function, the optimization problem is 

solved giving the following decision function: 
 





N

1i

iii b)x,x(Ky)x(f  (2) 

With the property: 





N

1i

iii )x(yw  

Where b is the bias term (a scalar) and αi0 are the Lagrange 

multipliers. It is important then to define a threshold for f(x) 

(usually 0) to allow decision making. A slack variable can be 

introduced into eq. 1 to relax the margin constraints and 

allow misclassification of a controlled part of data. 

The Gaussian kernel (a Radial Basis Function) with the 

variance σ is used in this work for data mapping: 
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3. Wind turbine description 

A horizontal axis variable speed turbine composed of three 

blades is considered in this work (Odgaard et al. 2009). The 

system contains a full converter coupled to a generator that 

allows converting the mechanical energy to electrical energy. 

A drive train is used to increase the rotational speed from the 

rotor to the generator. 

The system is equipped with duplicated sensors to measure 

the three pitch positions (
mi,k , k=1, 2, 3, i=1, 2) and the 

speeds of the generator and rotor (
mi,g , 

mi,r , i=1, 2). This 

gives a total of ten sensors all subject to two kinds of faults: 

fixed value and offset (see table 1). Twenty faults are 

therefore to be detected with a detection time (TD) that is less 

than 10 times the sampling time (Ts=0.01s). 

As a function of the wind speed, a control system allows 

controlling the aerodynamics of the turbine to get the optimal 

power. The actuators are the three pitch systems and the 

convertor. They allow respectively pitching the blades and 

setting the generator torque to control the rotational speed of 

the generator and the rotor. These actuators are also subject to 

fault. The converter system that sets the generator torque 

might have an offset that should be detected rapidly 

(TD<5Ts). The three pitching systems might have a change in 

the dynamics that can be due to abrupt change in the 

hydraulic system (5a) or to high air content in the oil at a 

slower rate (5b). In this case, the total number of actuator 

faults is seven. Finally, a system fault might occur in the 

driving train due to friction changes with time that might 

break down the train. The total number of faults to be 

supervised is therefore 28. However, it can be seen that some 

faults are similar. For instance, a fault of the sensor 

measuring blade position 
mi,1  is similar to those in the 

sensors measuring positions of blades 2 and 3 under the same 

conditions. By this way, it can be seen that we have ten 

different kinds of faults to be considered distinctly as 

classified in table 1. The process has other sensors, measuring 

for instance the wind speed, that are not supervised in this 

work. 

The benchmark allows simulating the wind turbine control 

under normal operation (zone II: power optimization and 

zone III: constant power production). Fault detection will be 

studied using the closed-loop simulation in these zones with a 

real measured sequence of wind of 4400s. 

The model of the turbine is given in Odgaard et al. (2009). It 

is nonlinear and the measurements are noisy. Note also the 

switching control structure. 

Let us recall the pitch system and converter models that we 

will explicitly refer to in the fault scenarios. The pitch system 

is hydraulic and can be modelled by a second order transfer 

function: 

2

nn
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  (4) 

Where )s(m,k  and )s(d

k  are the measured and desired 

positions of pitch k=1, 2, 3 and [wn ,  ]=[11.11, 0.6] are the 

model parameters. 
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The converter dynamics can be modeled by a first order 

transfer function: 

1s.

1

)s(

)s(
d

g

m

g







 (5) 

Where m

g  and d

g  are the real and desired generator torques, 

and =0.02s. The real torque being non measured, it is 

calculated from the measured generator speed
mi,g . 

 

4. SVM for fault detection in wind turbines 

Fault detection by SVM is developed in two parts. First of 

all, a set of measurement data with and without fault is used 

to learn models for detection of each fault (using the given 

wind sequence as an input). The obtained models are then 

validated in a new fault scenario. 

4.1  SVM Learning 

The key step in learning a new model for fault detection by 

SVM is the definition of the vector x to be used for 

classification. This vector should contain the most pertinent 

information on the behavior of the system. It should not be 

limited to the measurement output. It can include the inputs, 

the set-points, combination of those or variation of the 

outputs with time. In order to build a useful vector, one 

should carefully observe the process outputs for each fault 

and propose a combination that ensures a sufficiently high 

impact of the considered fault in x. Using some statistical 

analysis such as principal component analysis or partial least 

square can be useful for pretreatment. 

Different vectors were proposed for the different kinds of 

faults, but the Kernel used for learning all the faults is 

Gaussian (with different values of variance). Most of the data 

is filtered (filtered data is noted with a hat, ^) using a first 

order filter with a time constant  in order to reduce the 

sensitivity to process disturbances or measurement noise. 

Detection/isolation of fault sensors of pitch position 

For the 6 sensors measuring the pitch positions (
mi,k , k=1, 

2, 3, i=1, 2), the variance  is regulated at 10. 

Type 1a: 

For faults of type 1a, the following vector is used for 

detection and isolation: 































)t()t(

)t()t(

)t(ˆ)t(ˆ

x

1j2m,kj2m,k

1j1m,kj1m,k

j2m,kj1m,k

 (6) 

Where tj and tj-1 are the time instance j and j-1 respectively 

and ̂
 
is filtered using =0.06s. Note that absolute values are 

used in x. When 0)t()t( 1jmi,kjmi,k  
, this term is 

replaced by a large constant value (5000) in order to enhance 

distinguishability between the fixed value fault and normal 

case (no fault) where these values oscillate between 1×10
-2

 

and 2. 

Type 1b: 

This fault is detected and isolated in two steps. First of all, 

the fault is detected using the following equation: 































)t(ˆ)t(ˆ

)t(ˆ)t(ˆ

)t(ˆ)t(ˆ

x

1j2m,kj2m,k

1j1m,kj1m,k

j2m,kj1m,k

 (7) 

The second and third lines in 7 are important in order to 

exclude faults of type 1a. In a second step, if a fault of type b 

is detected, for isolation between sensors 1 and 2, the 

following vector is used: 




















)t(ˆ)t(ˆ

)t(ˆ)t(ˆ

x

j2m,kjr,k

j1m,kjr,k  (8) 

Where 
r,k  

is the desired value of the pitch angle 
k  and ̂

 

is filtered using =0.08s. 

Detection/isolation of fault sensors of generator and rotor 

speeds 

For sensor faults of the speeds of the generator and rotor (

mig , , 
mir , , i=1, 2), the Gaussian variance is tuned at =15 

in order to increase the ability of detection. Note however 

that very high variance values might lead to false alarms. 

Types 2a and 3a: 

For faults of type a, the following vector is used for detection 

and isolation: 

r,gp,

)t()t(

)t()t(

)t(ˆ)t(ˆ

x

1j2m,pj2m,p

1j1m,pj1m,p

j2m,pj1m,p































 (9) 

ĝ  is obtained using a filter with =0.02s and 
r̂  

using 

=0.6s. 

Types 2b and 3b: 

For the detection of faults of type b (excluding faults of type 

a), the following vector is used: 

r,gp,

)t(ˆ)t(ˆ

)t(ˆ)t(ˆ

)t(ˆ)t(ˆ

x

1j2m,pj2m,p

1j1m,pj1m,p

j2m,pj1m,p































 (10) 

In a second step, isolation between sensors 1 and 2 in case of 

fault of type b is done using the following vector: 

r,gp,

P̂
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Where, Pg
m
 is the measured power of the generator. The 
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measurements are filtered with =0.06s for the estimation of 

faults of 
ĝ and using =0.6s for 

r̂ . 

Detection/isolation of the convertor actuator fault and 

system fault 

For faults (4a and 6), the following vector is used:  

  

























2/)t()t()t(

)t()t(

)t()t(

x

i2m,gj1m,gj

d

g2

j

m

gj

d

g

i2m,gj1m,g

 (12) 

 

Where d

g  is the desired generator speed, calculated from the 

desired generator torque d

g  obtained by the controller (

d

gr /P  , with Pr the desired power). The factor 

6

wind

10

2 10    in the 3
rd

 component of x is used to take 

into account the wind speed and for normalization. Note that 
d

g  is also filtered using a first order filter with a time 

constant =0.02s. The objective of this filter is to take into 

account the dynamic of the control system (time necessary 

for m

g  to attain d

g , (see eq. 5) and not to reject measurement 

noise or disturbances. The variance corresponding to x in 12 

is =10 for fault type 4a and =200 for 6. 

Detection/isolation of the pitch position actuator fault 

For the detection of faults 5a and 5b, the following vector is 

used with =10: 



































)t()t(

)t()t(

)t()t(

)t()t(

x

1j2m,kj2m,k

1j1m,kj1m,k

j2m,kj1m,k

i2m,gj1m,g

  (9) 

 

Once the learning vectors are defined for each fault, different 

fault scenarios are simulated and each sample is attributed 

y=+/-1 (with or without fault) for each kind of faults. About 

six scenarios were considered for each fault with different 

amplitudes. The SVM learning algorithm uses the outputs (x) 

and the corresponding y values to identify i and the support 

vectors (xi) to be used in eq. 2 for decision making. 

Identification depends on the Kernel type and tuning 

parameters:  and the slack variable. Note that the same 

“model” (xi and i) is used for all faults of type 1a, another 

“model” for all faults of type 1b and so on. Ten “models” 

were therefore developed. 

4.2  SVM validation 

Let us consider the following scenario that we simulate using 

the wind sequence given in Odgaard et al. (2009): 

1. Fault type 1a,  31m,1
 (fixed value, stuck) 

occurring between 100s and 200s. 

2. Fault type 1b, 
2m,22m,2 5   (gain factor) on 3200-

3300s. 

3. Fault type 1a,  71,3 m  on 900-1000s. 

4. Fault type 2a, 1

1m,r s.rad2   on 1200-1300s. 

5. Faults type 2b and 3b, 
2m,r2m,r 5.0   and 

1m,g1m,g 5.1   on 1700-1800s. 

6. Fault type 4a, Nm1000gg   on 4200-4300s. 

7. Fault type 6, 
dtdt 22.0   on 300-500s. 

8. Fault type 5a, parameters in pitch actuator 2 (wn,) 

abruptly changed from [11.11, 0.6] to [5.73, 0.45] 

from 3200 and 3300s. 

9. Fault type 5b, parameters in pitch actuator 3 (wn,) 

changed slowly (with a linear function) from [11.11, 

0.6] to [3.42, 0.9] over 30s, remained constant during 

40s, and then decreased again over 30s from 3400 and 

3500s. 

Fixed value faults of the pitch position could be detected in 

the required time (see Table 1) in both controller zones easily 

(faults n° 1 and 3). 

Fig. 1 shows the estimation results of fault of type 1b (gain 

factor) for the same sensor (pitch position). Only faults with 

an offset  2  can be detected during the required 

detection time (<10 Ts). For an offset of 1.5, the detection 

time is about 10 Ts depending on the control phase. If a gain 

factor is applied rather than an offset, oscillations might 

increase if the order of  is high but the detection capacity 

remains equivalent. Of course if  is close to 0, the gain 

factor does not introduce a fault. 

 
Fig. 1. Fault detection and isolation of pitch position (fault 

n°2, type 1b). 

Fig. 2 indicates the occurrence of a fixed value fault in sensor 

1,mr  (the rotor speed). It can be seen that it is achieved 

instantaneously without difficulty. 
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Fig. 2. Fault detection and isolation of the rotor speed (fault 

n°3, type 2a). 

Faults in the rotor speed sensor could be detected rapidly for 

8.02m,r   rad.s
-1

 as shown by Fig. 3 where a gain factor 

error is applied. The objective is however to detect 10% error 

in this sensor, therefore approximately 13.0r   which 

was not possible with the obtained model. Probably, this can 

be achieved by introducing more data in the learning step and 

adapting an adequate filtering method. 

 
Fig. 3. Fault detection and isolation of the rotor speed (faults 

n°5, type 2b). 

Fig. 4 shows the fault detection results of the sensor of the 

generator speed 
1,mg . In case of a gain factor error leading 

to 50g  rad.s
-1

, an important change in the residual 

occurs rapidly. 

Concerning the estimation of the rotator torque speed (an 

actuator), it could be detected as required in terms of fault 

level and rapidity (Fig. 5). Note that x uses the desired torque 

value that is compared to the measured one with 2 sample 

periods delay. This fault could be detected in both of the 

controller zones. 

 
Fig. 4. Fault detection and isolation of the generator speed 

(faults n°5, type 3b). 

 

 
Fig. 5. Fault detection and isolation of the convertor torque 

(fault n°6, type 4a). 

Concerning the actuators of the pitch positions, their faults 

could not be detected by the proposed vector x. Further 

investigation of this vector and parameter tuning should be 

done in order to extract eventual hidden information about 

these actuators among the measurements. 

Finally, Fig. 6 shows fault detection of the system consisting 

of the drive train friction. This error is modelled by changing 

the values of the model parameter 
dtdt   22.0  However, 

the error could be detected only with much higher fault level 
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in this parameter, 
dtdt   95.0 . 

Fig. 6. Fault detection and isolation of the system (fault n°7, 

type 6). 

Table 1. Fault detection results 

N° Fault 
Fault level 

to detect 

Fault 

detected & 

isolated 
n

 

ndes

 

1a) 
FV 

mik ,   Yes 2 

<10 

1b) 

Offset 

(or GF) 

mi,k  

2.1
 
)1(   

Yes 

if   ≥ 0.5  

10 

if 



=1.5 

2a) 
FV 

mi,r   yes
 

2 

2b) 
GF 

mi,r  r1.0   
Yes if 

r2.0   
67 

3a) 
FV 

mi,g   Yes 2 

3b) 
GF 

mi,g  
g1.0   

(10 rad.s
-1

) 

Yes if 

g1.0   2 

4a) 
Offset 

g  
100g   Yes 2 <5 

5a) 
Abrupt 

k  
wn≥ 0.5 

 ≥ 0.25 
No - <8 

5b) 
Slow 

k  
wn≥ 0.25 

 ≥ 0.5 
No

 
- <600 

6) 

Drive 

train, 

r ,

g  

 dt 5% 
Yes if 

 dt 50%
  2835 Free 

FV: Fixed value, GF: Gain factor, n: n° of sample periods 

and n
des

 the desired n° of sample periods for detection (note 

that the sampling period is 0.01s). 

5. CONCLUSIONS 

The wind energy is profitable if the technology of the 

turbines is optimized and online supervised. In view of the 

large number of components in the system, high number of 

frequent but noisy measurements besides the system 

disturbances, a good statistical method should be used for 

fault detection and isolation. The SVM is found to be a good 

method for pattern recognition. A “model” is learned to 

detect all the sensors, actuators and system faults. Defining 

the input vector of the model as well as parameter tuning are 

primordial in order to detect and isolate the faults. A 

compromise between sensitivity to noise and fault detection 

is to be determined. 

Most of the requirements for fault detection were realized. 

Faults of type 1a, 2a, 3a, 4 a, 1b and 3b could be detected 

without further constraints. Faults n° 2b and 6 could be 

detected only with higher error levels than required. Finally, 

faults n° 5a and 5b could not be detected. However, further 

investigation might be necessary in order to improve the 

quality of the estimations mainly by improving the input data 

vector x. 
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