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Abstract: In this paper, we address the problem of quadrotor stabilization and trajectory
tracking with dynamic changes in the quadrotor’s center of gravity. This problem has great
practical significance in many UAV applications. However, it has received little attention in
literature so far. In this paper, we present an adaptive tracking controller based on output
feedback linearization that compensates for dynamical changes in the center of gravity of the
quadrotor. Effectiveness and robustness of the proposed adaptive control scheme is verified
through simulation results. The proposed controller is an important step towards developing the
next generation of agile autonomous aerial vehicles. This control algorithm enables a quadrotor
to display agile maneuvers while reconfiguring in real time whenever a change in the center of
gravity occurs.
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1. INTRODUCTION

Unmanned aerial vehicles are increasingly being consid-
ered as means of performing complex functions or assisting
humans in carrying out dangerous missions within dy-
namic environments. Other possible applications include
search and rescue, disaster relief operations, environmental
monitoring, wireless surveillance networks, and coopera-
tive manipulation. Creating these types of autonomous
vehicles places severe demands on the design of control
schemes that can adapt to different scenarios and possible
changes of vehicle dynamics.

Quadrotor helicopters have become increasingly popular
as unmanned aerial vehicle (UAV) research platforms.
Many research groups have begun constructing quadro-
tor UAVs as robotics research tools (Bouabdallah et al.
[2005]), (Castillo et al. [2005]), (Hoffmann et al. [2007]),
and developing quadrotors as general-use UAVs (Ascend-
ingTechnologies [2010]) that are becoming more popular
in research labs around the world. These aerial vehicles
are being used in a wide spectrum of indoor (How et al.
[2008]), (Michael et al. [2009]) and outdoor (Huang et al.
[2009]), (He et al. [2008]) applications.

Because of significant application potential in a wide spec-
trum of scenarios, a lot of recent research has been ded-
icated to quadrotor modeling and control. Some classical
papers in the area are (Bouabdallah et al. [2004]), (Hoff-
mann et al. [2007]). However, all of the reviewed literature
assumes a balanced quadrotor model, i.e., the center of
gravity (CoG) is assumed to be static and known. To the
best of the authors’ knowledge, no research that explicitly
considers dynamic changes in CoG of UAVs has yet been
published. A number of applications in other branches of
robotics, for instance in industrial robotics(Kubus et al.

[2007]), successfully exploit CoG displacement compensa-
tion to improve system performance. In other areas it is
used to improve robot performance. For example, in under-
water robotics dynamic balancing of the CoG is employed
in order to achieve better maneuvarbility (Vasilescu et al.
[2010]) or for locomotion of a modular robot over uneven
and unknown terrain (Moll et al. [2006]).

In this paper, we present an adaptive tracking controller
based on output feedback linearization that compensates
for dynamical changes in the CoG of the quadrotor. We
start by presenting systematic tools for mathematical
modeling of nonlinear quadrotor dynamics and kinematics
using first principles. Considering the properties of system
dynamics, the derived mathematical model is represented
with a set of dynamic equations common in robotic ma-
nipulator modeling. Using this model, different control
techniques are implemented and verified in simulation. In
the first stage, a linear PD cascade controller is imple-
mented. This controller fails when dealing with an un-
balanced quadrotor, whose center of gravity is changed.
In order to deal with this problem, we use input-output
feedback linearization to design an adaptive controller to
compensate for dynamic changes of the center of gravity.
Stability of this algorithm is proven utilizing Lyapunov
theory. The proposed controller is an important step to-
wards developing the next generation of agile autonomous
aerial vehicles. This control algorithm enables a quadrotor
to display agile maneuvers while reconfiguring in real time
whenever a change in center of gravity occurs.

The remainder of this paper is organized as follows.
Section II presents the nonlinear model of the small-
scale quadrotor with emphasis on modeling the rigid
body dynamics from Newton-Euler axioms. In Section
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Fig. 1. Hummingbird quadrotor with inertial frames used
in this paper.

III we describe the design of controllers. The controllers
described in this paper are:

i cascade PD controller;
ii nonlinear controller based on input-output feedback

linearization; and
iii adaptive feedback linearization controller.

Section IV provides simulation results. Finally, we draw
conclusions in Section V.

2. QUADROTOR MODELING

This section presents a nonlinear dynamic model of a
quadrotor, as illustrated in Fig. 1. The quadrotor dynamics
are derived from first-principles to describe a six degrees of
freedom (6 DOF) rigid body model, driven by forces and
moments.

2.1 Quadrotor Kinematics

While analyzing the motion of an aerial vehicle through
6 DOF we define two coordinate frames as indicated in
Fig. 1. The moving coordinate frame {A} is fixed to
the quadrotor and is called the aircraft-fixed reference
frame. The origin of the aircraft-fixed frame is chosen to
coincide with the Center of Gravity (CoG) when CoG is
in the principal plane of symmetry. The motion of the
aircraft-fixed frame is described relative to an inertial
reference frame. For small scale UAVs it is assumed that
the accelerations of a point on the surface of the Earth can
be neglected. As a result of this, a ground-fixed reference
frame {G} is considered to be inertial. The position and
orientation of the vehicle are described relative to the
inertial reference frame {G} while the linear and angular
velocities of the vehicle are expressed in the aircraft-fixed
coordinate system {A}. The following variables are used
to describe quadrotor kinematics and dynamics,

η1 = [ x y z ]
T
- position of the origin of {A} measured in

{G},

η2 = [ φ θ ψ ]
T

- angles of roll (φ), pitch (θ) and yaw
(ψ) that parametrize locally the orientation of {A} with
respect to {G},

ν1 = [ u v w ]
T
- linear velocity of the origin of {A} relative

to {G} expressed in {A} (i.e., body-fixed linear velocity),

ν2 = [ p q r ]
T

- angular velocity of {A} relative to {G}
expressed in {A} (i.e., body-fixed angular velocity).

rG = [ xG yG zG ]
T

- distance from the origin of {A} to

the quadrotor’s center of mass.
The transformation matrix between two reference frames
is obtained by matrix multiplication of the three basic
orthogonal rotation matrices that belong to the special
orthogonal group SO(3,R), Arfken [1985]. The aircraft-
fixed linear velocity vector ν1 and the position rate vector
η̇1 are related through a transformation matrix G

AR (η2)
according to

η̇1 =
dη1
dt

= G
AR (η2) ν1. (1)

The aircraft-fixed angular velocity vector ν2 and the Euler
rate vector η̇2 are related through a transformation matrix
Q (η2) according to:

η̇2 = Q (η2) ν2, Q (η2) =







1 sφtθ cφtθ
0 cφ −sφ

0
sφ

cθ

cφ

cθ






, (2)

with Q (η2) being singular for θ = ±π
2
. This singular-

ity does not represent a problem in our design because
our aircraft will not execute aggressive maneuvers as to
achieve the pitch of 90◦. Otherwise, this problem can be
circumvented by many different methods, (e.g., quaternion
representation).
The condensed representation of systems kinematics is

[

η̇1
η̇2

]

=

[

G
AR (η2) 0

0 Q (η2)

] [

ν1
ν2

]

, η̇ = JR (η) ν.

2.2 Quadrotor Dynamics

We now proceed to present the rigid body equations of mo-
tion derived from Euler’s first and second axioms. Consider
the aircraft-fixed coordinate system frame {A} rotating
with angular velocity ω = [ω1 ω2 ω3] about the ground-
fixed coordinate system frame {G}. The quadrotor’s inertia
tensor IA is defined as:

IA =

[

Ixx 0 0
0 Iyy 0
0 0 Izz

]

, IA = ITA > 0,

where Ixx, Iyy and Izz are the moments of inertia about
XA, YA and ZA axes, respectively. Since the principal
axes of {A} are aligned with quadrotor axes, we can write
Ixy = Iyx = Ixz = Izx = Izy = Iyz = 0. In an expanded
form, we can write















































































Fx = m
[

u̇− vr + wq − xG
(

q2 + r2
)

+yG (pq − ṙ) + zG (pr + q̇)]
Fy = m [v̇ − wp+ ur + xG (qp+ ṙ)

−yG
(

p2 + r2
)

+ zG (qr − ṗ)
]

Fz = m [ẇ − uq + vp+ xG (rp− q̇)
+yG (rq − ṗ)− zG

(

q2 + p2
)]

Tφ = Ixxṗ+ (Izz − Iyy) qr
+m [yG (ẇ − uq + vp)− zG (v̇ − wp+ ur)]

Tθ = Iyy q̇ + (Ixx − Izz) rp
+m [zG (u̇− vr + wq)− xG (ẇ − uq + vp)]

Tψ = Izz ṙ + (Iyy − Ixx) pq
+m [xG (v̇ − wp+ ur)− yG (u̇− vr + wq)] ,

Vectorial representation of quadrotor’s 6 DOF nonlinear
dynamic equations of motion can be expressed in a com-
pact form as:

Mν̇ + C (ν) ν +Dν + gG (η) = τ, (3)
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where η = [η1 η2]
T is the vector of position and ori-

entation, ν = [ν1 ν2]
T is vector of linear and angular

velocities and M is the mass and inertia matrix of the
quadrotor given by

M =







m 0 0 0 mzG −myG
0 m 0 −mzG 0 mxG

0 0 m myG −mxG 0

0 −mzG myG Ix 0 0

mzG 0 −mxG 0 Iy 0

−myG mxG 0 0 0 Iz






,

M =MT > 0.

This matrix representation is unique. In contrast, there is a
large number of possible parametrizations for matrix C (ν)
which consist of Coriolis and centripetal terms. Using
results from (Sagatun and Fossen [1991]), we can achieve
a parametrization such that C (ν) is skew-symmetric

C (ν) =









0 0 0
0 0 0
0 0 0

m(yGθ̇+zGψ̇) −m(xGθ̇−ż) −m(xGψ̇+ẏ)
−m(yGφ̇+ż) m(zGψ̇+xGφ̇) −m(yGψ̇−ẋ)
−m(zGφ̇−ẏ) −m(zGθ̇+ẋ) m(xGφ̇+yGθ̇)

m(yGθ̇+zGψ̇) −m(xGθ̇−ż) −m(xGψ̇+ẏ)
−m(yGφ̇+ż) m(zGψ̇+xGφ̇) −m(yGψ̇−ẋ)
−m(zGφ̇−ẏ) −m(zGθ̇+ẋ) m(xGφ̇+yGθ̇)

0 0 0
0 0 0
0 0 0









.

Decomposing the vectors of external forces FE and mo-
ments TE we obtain three distinct vectors Dν, gG (η) and
τ . Air friction is given by Dν, where D is the damping
matrix

D = diag ( cµx, cµy, cµz, cµφ, cµθ, cµψ ) ,

D = DT > 0, Ḋ = 0,

and cµx
, cµy

, cµz
, cµφ, cµθ, cµψ are air friction coefficients.

With gG (η) we denote the vector of gravitational forces
and moments

fG (η2) =
G
AR

−1 (φ, θ)

[

0
0

−mg

]

,

gG (η2) = −

[

fG (η2)
rG × fG (η2)

]

,

where g represents the gravitational constant. Control
inputs are given as vector τ

fτ (η2) =
G
AR

−1 (η2)

[

0
0
U1

]

, τ (η2, U) =







fτ (η2)
U2

U3

U4






,

where U1, U2, U3, U4 represent control forces generated by
four quadrotor rotors (Bouabdallah et al. [2004]).

3. CONTROLLER DESIGN

3.1 Control Design Using Cascade PD Controllers

In this section we present the design of the output feedback
controller using cascade PD control. For the design, we are
using the model presented in Sec. 2, which is linearized
around an equilibrium point and can be represented in
state space form as,

q̇ = A q +B u, y = F q, (4)

where u = [U1 U2 U3 U4]
T is the input vector, y =

[x y z φ θ ψ]T is the output vector, and q =

(a) Cascade PD controller

(b) Adaptive feedback linearization controller

Fig. 2. Controller schemes for PD controller and adaptive
feedback linearization controller.

[η ν]T , q ∈ R
12 is the state space vector. As the design

technique we use the classical pole placement. Controller
scheme is given in Fig. 2(a). The scheme of the controller
consists of six cascaded PD controllers where cascade is
placed over control of the ( pitch ↔ x directional move-
ment ) and ( roll ↔ y directional movement ) due to the
properties of the quadrotor dynamics. The described con-
troller is then used to control the full nonlinear quadrotor
model (3). Stability of the output feedback controller using
cascade PD control is verified through MIMO Bode analy-
sis using Control Systems Toolbox. Controller performance
is verified through simulation results provided in Fig. 3(a).
Linear controllers are sensitive to model uncertainties, and
our simulation results have confirmed that the proposed
controller is not able to deal with changes in CoG of the
quadrotor (Fig. 4). This motivates us to design a nonlinear
controller presented in the following subsection.

3.2 Feedback Linearization

The basic idea of feedback linearization is to transform
nonlinear system dynamics into linear system dynamics
(Isidori [2001]), (Slotine and Li [1991]), (Khalil [2002]).
Conventional control techniques like pole placement and
linear quadratic optimal control theory can then be ap-
plied to the linear system. In robotics, this technique is
commonly referred to as computed torque control (Slotine
and Li [1991]). The control objective is to transform the
vehicle dynamics (3) into a linear system ν̇ = ϑ, where ϑ
can be interpreted as a commanded acceleration vector.
The nonlinearities can be canceled out by simply selecting
the control algorithm as follows

τ = C (ν) ν +Dν + gG (η) +Mϑ, (5)

ν̇ = ϑ,

where the commanded acceleration vector ϑ is chosen
using pole placement technique. Considering the nature
of the dynamical system we are dealing with, we can write
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y = Fη = [z φ θ ψ]
T
,

ẏ = F η̇ = Fν,

ÿ = F η̈ = F ν̇ = FM−1 [−C (ν) ν −Dν − gG (η) + τ ] ,

ÿ = F ν̇ = Fϑ,

where y ∈ R
4 represents system outputs. Due to this prop-

erty, we can proceed with the controller design using the
input-output feedback linearization algorithm presented
in (Isidori [2001]). The model derived in (Sec. 2) can be
represented in state space form

q̇ = f(q) + g(q) u, y = h(q), (6)

where u = [u1 u2 . . . um]T , y = [y1 y2 . . . yl]
T , and

g(q) = [g1(q) . . . gm(q)], h(q) = [h1(q) . . . hl(q)]
T ,

are a n × m matrix, an l-dimensional vector, and n is
the system state space dimension, respectively. Since the
quadrotor model is a nonlinear underactuated system (i.e.,
the number of inputs m is less than the number of outputs
l), in order to deal with this restriction, we exploit the
differential flatness property (Fliess et al. [1994]). The
nonlinear system given in (6) has a relative degree ri at a
point q0 if

LgjL
k
gfhi(q) = 0,

for all 1 ≤ j ≤ 4, k < ri − 1, 1 ≤ i ≤ 4, and for all q in a
neighborhood of qo the 4× 4 matrix

α(q) =







Lg1L
r1−1

f h1(q) . . . Lg4L
r1−1

f h1(q)
...

Lg1L
r4−1

f h4(q) . . . Lg4L
r4−1

f h4(q)






,

is nonsingular at q = qo (Isidori [2001]). If these two
conditions are satisfied, we can write,







yr11
yr22
yr33
yr44






=









Lr1f
Lr2f
Lr3f
Lr4f









α(q).

If α(q) is invertible at qo, then the state feedback is given
by u = α(q)−1[−b(q)+ϑ] and it will result in a closed-loop
system that is linear from input u to output y. Due to the
fact that the quadrotor model considered in this paper
is a complex MIMO nonlinear system, before starting the
design process, we must first check the existence conditions
for feedback linearization (Isidori [2001]). Since the matrix
α(qo) is nonsingular, we can use exact state feedback to
linearize the system and obtain its relative degree. The
relative degree is r = 2+2+2+2 = 8, and the dimension
of the system is n = 12. Hence, four states belong to
zero dynamics. Therefore the system is not fully feedback
linearizable but only partially, and can be decomposed into
a linear and controllable part, and a part which represents
zero dynamics. In order to be able to design a controller
which will stabilize and control this type of a system, we
have to identify which states belong to the zero dynamics
and to prove that they are stable. We approach the notion
of zero dynamics through the idea of zeroing the output
(Isidori [2001]). We define four states of the zero dynamics
as follows

q̇1 = q7, q̇2 = q8,

q̇7 = −
cµx
m
q7, q̇8 = −

cµy
m
q8,

(7)

where q ∈ R
12 is a state vector and

cµx

m
and

cµy

m
are positive

constants.

Theorem 1. The zero dynamics given by (7) is stable.

Proof 1. Since the zero dynamics in this case is a linear
system, the stability analysis is trivial. Considering the
structure of the system (7), we can analyze it as two
separate systems of second order ρ̇ = Aiρ, i = 1, 2, ρ ∈
R

2. Therefore, we can use the well-known theory of second-
order linear systems (Khalil [2002]). Since each of these
systems has one eigenvalue of matrix Ai zero and the other
eigenvalue has a negative real part (i.e., it is stable), the
matrices Ai have a nontrivial null space. Any vector in
the null space of Ai is an equilibrium point for the system,
i.e., the system has an equilibrium subspace rather than an
equilibrium point. From the phase portrait we can see that
all trajectories converge to the equilibrium subspace (q7
axis i.e., q8 axis) since the nonzero eigenvalues are stable.
Therefore, the zero dynamics are stable, and we are able to
design the controller to stabilize and control the nonlinear
quadrotor model. 2

The proposed controller consists of two parts: the first
part is nonlinear which linearizes the system through
feedback linearization; the second part of the controller is
linear and its purpose is to stabilize and control all six
DoF of the quadrotor (i.e., orientation η2 and position
η1) through a cascade structure. The proposed control
algorithm is implemented in Matlab and simulation results
show its efficiency (Fig. 3(b)). One of the main drawbacks
of feedback linearization is that the controller is not able
to deal with model uncertainties. In this paper we use the
change in CoG as the uncertain parameter. The controller
based on feedback linearization derived above fails to
stabilize the unbalanced quadrotor (Fig. 5). This fact has
motivated us to design an adaptive controller presented in
the next subsection.

3.3 Adaptive Control Algorithm

So far, we have only discussed feedback linearization under
the assumption that all model parameters are known.
In this subsection, we derive a parameter adaptation
rule that is utilized together with the previously derived
control algorithm. The derivation of the adaptation rule is
carried out using the algorithm proposed in (Slotine and
Li [1991]). Considering the nonlinear equations of motion
(3), we are taking the control algorithm to be

τ = Ĉ (ν) ν +Dν + ĝG (η) + M̂ϑ, (8)

where the hat denotes estimates of the adaptive parame-
ter. Now, the error dynamics can be denoted as

M [ν̇ − r] =
[

M̂ −M
]

ϑ+
[

Ĉ (ν)− C (ν)
]

ν

+ [ĝG (η)− gG (η)] .

Since quadrotor equations of motion are linear in the
parameter vector γ = rG, we can apply the following
parameterization

Φ (ν, η) γ̃ =
[

M̂ −M
]

ϑ+
[

Ĉ (ν)− C (ν)
]

ν

+ [ĝG (η)− gG (η)] .

In the above expression, γ̃ = γ̂ − γ is the unknown
parameter error vector and Φ (ν, η) is a known matrix
function of measured signals usually referred to as the
regressor matrix. Writing the expression for the tracking
error dynamics in state-space form yields,
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(b) Feedback Linearization

Fig. 3. Effectiveness of proposed control algorithms for
tracking when the quadrotor is balanced.

ė = A e+BΦ (ν, η) γ̃, (9)

where e =
[

η̃ ˙̃η
]T

= [ηref − η η̇ref − η̇]
T
, A matrix

contains outer controller parameters and is proven to be

Hurwitz and B =
[

0 M−1
]T

.

Theorem 2. The tracking error given by (9) is asymptoti-
cally stable and parameter error γ̃ = γ̂ − γ is bounded.

Proof 2. We start by choosing a Lypunov function candi-
date as

V (e, γ̃, t) = eTPe+ γ̃TΓ−1γ̃,

where P = PT > 0 satisfies Lyapunov stability equation
for linear systems and Γ = ΓT > 0. By differentiating
V (e, γ̃, t) with respect to time we get,

V̇ (e, γ̃, t) = eT (ATP + PA)e+ 2eTPBΦ (ν, η) γ̃

− 2γ̃TΓ−1 ˙̃γ,

By choosing the parameter update rule (assuming γ̇ = 0)
as

˙̂γ = −Γ ΦT (ν, η) BT PT e,

we get

V̇ (e, γ̃, t) = eT (ATP + PA)e ≤ −eTQe ≤ 0,

where Q = QT > 0 is the matrix that satisfies Lyapunov
stability equation for linear systems. However, V̇ (e, γ̃, t) is

only negative semidefinite because V̇ (e, γ̃, t) = 0 for e = 0

irrespective of the value of γ̃; that is, V̇ (e, γ̃, t) = 0 along

γ̃ - axis. By showing that V̈ (e, γ̃, t) is bounded we show

that V̇ (e, γ̃, t) is uniformly continuous in time. Now, by
applying Barbalat’s lemma we prove that e asymptotically
converges to zero and γ̃ is bounded.2

The proposed adaptive controller showed in (Fig. 2(b)) is
implemented in Matlab/Simulink and its performance is
shown in (Fig. 6).

4. SIMULATION RESULTS

The controllers derived and presented in Sec. 3 are simu-
lated using Matlab/Simulink. The linear output feedback
controller (Sec. 3.1) is used to control the full nonlinear
quadrotor model given in Sec. 2. The simulations show
that the system tracks a given trajectory with accuracy
when dealing with a balanced nonlinear quadrotor model
(Fig. 3(a)). In the case of an unbalanced quadrotor this
controller fails to stabilize the system (Fig. 4). The non-
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Fig. 4. Failure of the linear output feedback control al-
gorithm to stabilize the quadrotor due to changes in
CoG.
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Fig. 5. Failure of the feedback linearization algorithm to
stabilize the quadrotor due to changes in CoG.
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Fig. 6. Performance of the adaptive feedback linearization
controller used for stabilization of change in CoG.

linear controller based on the input-output feedback lin-
earization (Sec. 3.2) yields an accurate tracking perfor-
mance when dealing with a balanced nonlinear quadrotor
model (Fig. 3(b)). In the case of an unbalanced quadrotor
this controller fails to stabilize the system as well (Fig. 5).
By adding the adaptive part to the nonlinear controller
based on output feedback linearization (Sec. 3.3), we solve
the stabilization and tracking problem. The proposed al-
gorithm succeeds in stabilizing an unbalanced quadro-
tor (Fig. 6). The adaptive feedback linearization shows
good tracking performance when dealing with dynamical
changes in quadrotor CoG (Fig. 7).

5. CONCLUSIONS

In this paper we present a systematic approach to derive a
quadrotor model considering changes in aircraft CoG. We
show the design methodology for three different controllers
and confirm by simulation that the linear PD controller
and feedback linearization controller are not able to cope
with dynamic CoG changes. The adaptive controller, on
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Fig. 8. Robustness of adaptive feedback linearization algorithm used for tracking while compensating for dynamic change
in CoG.
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Fig. 7. Adaptive feedback linearization algorithm used for
tracking while compensating for dynamic change in
CoG.

the other hand, is able to stabilize the system and com-
pensate for dynamical changes in the quadrotor CoG. The
proposed control algorithm is an important step towards
developing the next generation of agile autonomous aerial
vehicles. This adaptive control algorithm enables a quadro-
tor UAV to perform agile maneuvers while reconfiguring
in real-time whenever a change in center of gravity occurs.
Moreover, the control algorithm exhibits robustness (see
Fig. 8) with respect to the external disturbance forces and
moments generated by dynamic changes in the quadrotor
CoG. In future work we will consider a quadrotor carrying
an external suspended load and experimentally verify the
applicability of the proposed adaptive control algorithm.
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