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Abstract:
This paper presents a new method for computing stabilizing fixed structure/order controllers
using Groebner bases and sign-definite decomposition. An application of Routh-Hurwitz
stability condition results in a system of polynomial inequalities that must be satisfied by the
parameters of any stabilizing controller. Using positive slack variables, the system of polynomial
inequalities can be converted to a system of polynomial equations. With the aid of Groebner
bases and elimination theory, an equivalent system of polynomial equations can be obtained
which simplifies the construction of the set of stabilizing controllers using the sing-definite
decomposition. The results of this approach are illustrated by examples provided.

Keywords: Fixed order control, Routh-Hurwitz stability, Groebner bases, elimination theory,
sign-definite decomposition.

1. INTRODUCTION

The problem of synthesizing stabilizing controllers of a
fixed structure arises in many practical applications and
has been open for about five decades. Without any re-
striction on the structure of the controller, the problem
of controller design can be handled through various tech-
niques of modern control theory. However, the constraint
on structure yields non-convex constraints and the corre-
sponding set of stabilizing controller parameters is often
non-convex and at times, is disconnected.
While the attempts on solving this problem have been
numerous, we will restrict here to a subset of these bodies
of work for the want of space and focus on some articles
that deal with the approximation of the set of controllers
of fixed structure or with algebraic techniques dealing
with elimination. The problem of deciding the existence
of a stabilization with a fixed structure/order controller
reduces to the problem of deciding the feasibility of a
system of polynomial inequalities and this can be shown
to be decidable using a plethora of techniques such as
Quantifier Elimination Anderson et al. (1975) or using
Groebner bases Cox et al. (2007). Anai and Hara (2000)
proposed a method based on sign-definite condition and
a special Quantifier Elimination (QE) technique to design
robust controllers of a fixed structure. Recently, Shin and
Lall (2010a,b) have approached the problem of optimal
decentralized controller synthesis using Groebner bases.

? This work was supported by the NSF grant number CMMI-
0927652.

The problem of approximation of sets of stabilizing con-
trollers is important for a practical viewpoint as stabiliza-
tion is an essential part of any control system. Parametric
control design techniques are well suited for this purpose
and earlier work concerning these techniques can be found
in Siljak (1969). Recently, Bhattacharyya et al. (2009) pro-
vided a systematic method for constructing the set of PID
controllers; PID controllers are fixed structure controllers
that are widely employed in industrial applications. This
work exploits the specific structure of PID controllers.
Malik et al. (2008) provided a systematic method for
arbitrarily tight inner and outer approximation of the
set of stabilizing controllers of a fixed order for a single-
input or a single-output system. Henrion (2003) used the
properties of positive polynomials to obtain a convex inner
approximation of the set of stabilizing controllers in the
space of controller parameters. In this paper, we plan
to use Groebner bases and sign-definite decomposition
method for constructing an inner approximation of the set
of stabilizing controllers. The latter method was proposed
by Elizondo-Gonzalez (2000) and followed up by Knap
et al. (2011) for the construction of a set of stabilizing
controllers.
This paper is organized in 4 sections. In section 2, we
explain our method in a general way. The characteris-
tic polynomial of a closed loop linear system has coeffi-
cients that are polynomial functions of control parameters
K = [k1, k2, ..., km]T . Routh-Hurwitz criterion provides
the stability conditions as a set of polynomial inequalities.
Introducing strictly positive slack variables, these inequal-
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ities can be converted to equalities. These slack variables
are dependent on the controller parameters. With the aid
of Groebner bases and elimination theory the controller
parameters can be decoupled and expressed in terms of
the slack variables. Some of the new equations involve
only the slack variables (slack constraints) which represent
the stability region(s) in the space of the slack variables.
Other equations involve both the controller parameters
and the slack variables which provide the mapping func-
tions from the space of the slack variables to the space
of the controller parameters. Since the slack constraints
involve strictly positive variables, the stability region(s)
computations via sign-definite decomposition can be sim-
plified. Section 3 provides some examples to show how this
approach can be applied to a given problem. Finally we
summarize our conclusions in section 4.

2. PROCEDURE

2.1 Routh-Hurwitz criterion and Groebner bases

Consider a unity feedback control system with a known

plant transfer function P (s) =
Np(s)
Dp(s)

and a controller

transfer function C(s) = Nc(s,K)
Dc(s,K) where K = [k1, k2, ..., km]T

is the vector of controller design parameters. The set of
stabilizing controllers will be all vectors K that result the
closed loop characteristic polynomial Hurwitz.
The closed loop characteristic polynomial can be written
as

δ(s,K) = Np(s)Nc(s,K) +Dp(s)Dc(s,K) (1)

or in the general form of

δ(s,K) = an(K)sn + an−1(K)sn−1 + · · ·+ a0(K) (2)

where an(K) 6= 0.
From Routh-Hurwitz stability criterion, the number of
RHP roots of the closed loop characteristic polynomial is
equal to the number of changes in sign of the elements of
the first column of Routh-Hurwitz table. This means that
the set

f0(K) > 0 , f1(K) > 0 , . . . , fn(K) > 0 (3)

where fi’s represent the elements of the first column of
Routh-Hurwitz table, define the boundaries of stability
region(s) in the space of the controller parameters. In
general, this is a set of multivariate polynomial inequalities
in terms of the controller design parameters k1, k2, ..., km
which is hard to solve and in some cases practically
impossible. We convert inequalities (3) to equalities by
introducing strictly positive slack variables s0, s1, ..., sn; so
that

h0(K, s0) = f0(K)− s0 = 0

h1(K, s1) = f1(K)− s1 = 0

...

hn(K, sn) = fn(K)− sn = 0. (4)

In this set of equations, the slack variables are dependent
variables and expressed in terms of the independent vari-
ables which are the controller parameters. The controller
parameters are coupled in the equations (4). Now an ap-
proach that can decouple these parameters which express
them in terms of the slack variables is desirable. Such

a decoupling can be accomplished using Groebner bases
and elimination theory on polynomial rings. We refer the
readers to Cox et al. (2007) for a detailed treatment of
Groebner bases.
If we were to choose a Lexicographic ordering km >
km−1 > km−2 > · · · > k1 > sn > sn−1 > · · · > s1 >
s0, then the variable km is eliminated first, followed by
km−1 and so on. As a result, the resulting reduced set of
polynomial equations will involve one less variable every
time a variable is eliminated as is the case in a Gaussian
elimination, i.e., the system of polynomial equations will
be triangular. Let the system of polynomial equations after
the elimination process be

g0(S) = 0

g1(S) = 0

...

gp(S) = 0 (5)

gp+1(K,S) = 0

gp+2(K,S) = 0

...

gt(K,S) = 0. (6)

We observe that equations (5) may not have the triangular
structure because the number of variables is m + n +
1 (including the slack variables) and is more than the
number of polynomial equations, which are only n + 1
in number. By specifying the Lexicographic ordering in
the above mentioned manner, we want to treat m of the
slack variables to be independent variables (which is given
by equations (5)) and the rest of them (including the
controller parameters) can be determined for any given
value of the m independent variables through the system
of equations in (5) and the triangular system of equations
in (6). It is possible that for the same set of m independent
variables, there may be more than one set of control
parameters.
The equations (5), referred to as the slack constraints, de-
fine an algebraic variety in the space of the slack variables.
Since the slack variables are strictly positive, this variety
is confined to the first orthant of the space of the slack
variables. All the vectors S = [s0, s1, ..., sn]T , (where si >
0, i = 0, 1, ..., n) satisfying the equations (5) represent the
stability region(s) in the space of the slack variables. The
computation of the stability region (via the sign-definite
decomposition) is simpler in the space of the slack variables
than in the space of the controller parameters because the
slack variables take positive values; however, the controller
parameters take positive and negative values. For a specific
vector S = [s0, s1, ..., sn]T satisfying the equations (5), one
can sequentially find k1, k2, ..., km using equations (6).
Therefore the procedure described above can be summa-
rized as

(1) Write the Routh-Hurwitz stability inequalities for the
closed loop characteristic polynomial,

(2) Convert inequalities to equalities by introducing slack
variables,

(3) Find the Groebner bases of the system of polynomials
obtained above (which involve controller parameters
and slack variables) using Lexicographic ordering.
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It should be noted that the necessary condition of the
Routh-Hurwitz stability criterion is that all the coefficients
of the characteristic polynomial be non-zero and all have
the same sign. This can be embedded into the set of
equations (4). This induces more slack variables which will
increase the number of slack constraints in (5), but may
simplify the equations (5) and (6).

2.2 Sign-Definite Decomposition in Determining Positivity
(Negativity) of Polynomials

Elizondo-Gonzalez (2000) followed by Knap et al. (2011)
have proposed a method to determine the robust positivity
(negativity) of a real function f(x) as the real vector
x varies over a box X ∈ Rn by only checking a finite
number of specially constructed points. Let f(x) with
x = (x1, x2, ..., xn) be a real function of x and consider
the problem of determining if f(x) is positive over the box

X = {x : x−i ≤ xi ≤ x
+
i , for all i}.

The function f(x) can be decomposed as

f(x) = f+(x)− f−(x) (7)

where f+(x) ≥ 0, f−(x) ≥ 0 for all x ∈ X . Now assume
that xi’s take only positive values. Defining x+ and x− as

x+ = (x+1 , x
+
2 , ..., x

+
n )

x− = (x−1 , x
−
2 , ..., x

−
n )

such that

f+(x+) = max
x∈X

f+(x)

f−(x+) = max
x∈X

f−(x)

f+(x−) = min
x∈X

f+(x)

f−(x−) = min
x∈X

f−(x). (8)

Therefore

f+(x−) ≤ f+(x) ≤ f+(x+)

f−(x−) ≤ f−(x) ≤ f−(x+). (9)

Now consider the rectangle formed by the following four
points in the (f−, f+) plane

A=
(
f−(x−), f+(x−)

)
B =

(
f−(x−), f+(x+)

)
C =

(
f−(x+), f+(x+)

)
D=

(
f−(x+), f+(x−)

)
(10)

Now it can be shown that for all x ∈ X (see Fig. 1)

f(x)

{
≥ 0, if f+(x−)− f−(x+) ≥ 0
≤ 0, if f+(x+)− f−(x−) ≤ 0.

(11)

This relation can be used recursively to construct the
robustly positive regions. For more details see Elizondo-
Gonzalez (2000) and Knap et al. (2011). We use (11) later
to plot the stability region in the space of the (free) slack
variables.

3. EXAMPLES

3.1 SISO: Second-order Plant and First-order Controller

Now consider a general second-order plant and a general
first-order controller in a unity feedback control system.

Fig. 1. Condition for Positivity of f(x) in the Sign-Definite
Decomposition Method

The corresponding transfer functions for the plant and the
controller are

P (s) =
q1s+ q0

s2 + p1s+ p0

C(s) =
k1s+ k2
s+ k3

(12)

where the plant parameters p0, p1, q0, q1 are known and the
controller parameters K = [k1, k2, k3]T are unknown. The
closed loop characteristic polynomial in this case will be

δ(s,K) = s3 + (q1k1 + p1 + k3)s2

+(p0 + q0k1 + q1k2 + p1k3)s

+(p0k3 + q0k2). (13)

The elements of the first column of the Routh-Hurwitz
array must be strictly positive in order to have a stable
closed-loop system, therefore

f0(K) = q1k1 + p1 + k3 > 0

f1(K) = q0q1k
2
1 + p1k

2
3 + q21k1k2 + (p1q1 + q0)k1k3

+q1k2k3 + (p1q0 + p0q1)k1 + (p1q1 − q0)k2

+p21k3 + p0p1 > 0

f2(K) = p0k3 + q0k2 > 0 (14)

where the term f1(K) represents only the numerator of
the 3rd element in the Routh-Hurwitz array because its
denominator f0(K) is already assumed to be positive. Also
the first element of the array is 1 which is positive and is
not included in (14). Defining slack variables s0 > 0, s1 >
0, s2 > 0, one can generate h0, h1, h2 as

h0(K, s0) = f0(K)− s0 = 0

h1(K, s1) = f1(K)− s1 = 0

h2(K, s2) = f2(K)− s2 = 0. (15)

The Groebner bases of the polynomials in (15) with respect
to Lexicographic ordering k1 > k2 > k3 > s2 > s1 > s0
are

g0(k3,S) =−q20s21 − q21s0s1 + q0q1s0

+(q20p1 − q0p0q1)s1 + q0q1s2

+(p0q
2
1 − q0p1q1 + q20)s1k3

g1(k2, k3,S) = q0k2 + p0k3 − s0
g2(k1, k3,S) = q1k1 + k3 − s1 + p1. (16)
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None of the above Groebner bases are in terms of only the
slack variables, i.e. there is no constraint on choosing slack
variables, therefore the entire first orthant in the space
of s0, s1, s2 is the stability region for this example. One
may set the Groebner bases (16) to zero and solve for the
controller parameters k1, k2, k3;

k3 =
q20s

2
1 + q21s0s1 − q0q1(s0 + s2) + (q0p0q1 − q20p1)s1

(p0q21 − q0p1q1 + q20)s1
(17)

k2 =
−1

q0
(p0k3 − s0) (18)

k1 =
−1

q1
(p1 + k3 − s1). (19)

This example shows a special case of our method where
there is no restriction on choosing slack variables, i.e. the
entire first orthant in the space of the slack variables is the
stability region. This is analogous to the pole placement
problem where the number of controller parameters is the
same as the number of closed loop poles.

3.2 SISO: Third-order Plant and First-order Controller

In this example we show a case where a constraint on slack
variables exists. Consider the following third-order plant
and a general first-order controller as

P (s) =
s2 + s− 1

s3 + 2s2 + s− 1

C(s) =
k1s+ k2
s+ k3

(20)

where the controller parameters K = [k1, k2, k3]T are
unknown. The closed loop characteristic polynomial is

δ(s,K) = s4 + (k3 + 2 + k1)s3

+(k1 + k2 + 1 + 2k3)s2

+(k2 − k1 + k3 − 1)s− k3 − k2. (21)

The Routh-Hurwitz array corresponding to the character-
istic polynomial (21) can be constructed easily. In this
example embedding the positivity of the coefficients of
the characteristic polynomial simplifies the Groebner bases
equations. Although this increases the number of the slack
variables and the slack constraints, the number of the
free slack variables (introduced later) does not change and
therefore the stability region in the space of the free slack
variables can still be plotted in a 3-dimensional space.
Therefore there are 6 inequalities in this case. Defining
strictly positive slack variables s0, s1, ..., s5, one can con-
struct h0, h1, ..., h5 as

h0 = k3 + 2 + k1 − s0 = 0

h1 = 3k1k3 + 4k1 + k1
2 + k2k3 + k2 + k2k1

+4k3 + 3 + 2k3
2 − s1 = 0

h2 = −3− 7k1 + 6k2 + 3k3 + k1k3 − 5k1
2

+8k2k3 + 6k2k1 + 6k3
2 + k2

2 + k2
2k3

+k2
2k1 + 4k2k3

2 − k12k3 + 3k1k3
2

+k2k1
2 + 5k2k3k1 − k13 + 3k3

3 − s2 = 0

h3 = −k3 − k2 − s3 = 0

h4 = k2 − k1 + k3 − 1− s4 = 0

h5 = k1 + k2 + 1 + 2k3 − s5 = 0. (22)

The Groebner bases of the polynomials in (22) with respect
to Lexicographic ordering k1 > k2 > k3 > s2 > s1 > s3 >
s0 > s4 > s5 are

g1 = 1 + s3 − s0 + s5

g2 = −s5s0 + s4 + s1

g3 = s4
2 − s02 − s5s4s0 − s5s02

+s2 + s0
3 (23)

g4 = 2− 2s0 − s4 + s5 + k3

g5 = −3 + 3s0 + s4 − 2s5 + k2

g6 = s0 + s4 − s5 + k1. (24)

The Groebner bases (24) involve the controller parameters
and they are decoupled. Setting (24) to zero, one may
obtain the controller parameters k1, k2, k3 as

k3 = −2 + 2s0 + s4 − s5 (25)

k2 = 3− 3s0 − s4 + 2s5 (26)

k1 = −s0 − s4 + s5. (27)

In this example s0, s4, s5 are the free slack variables. One
may set (23) to zero and solve for s3, s1, s2 respectively as
(recall that the slack variables are strictly positive)

s3 = −1 + s0 − s5 > 0 (28)

s1 = s5s0 − s4 > 0 (29)

s2 = −s42 + s0
2 + s5s4s0 + s5s0

2 − s03 > 0. (30)

Now s1, s2, s3 are the constrained slack variables and
the inequalities (28)-(30) define the stability region in
the first orthant of the space of the free slack variables
s0, s4, s5. Any vector [s0, s4, s5]T satisfying the above in-
equalities will guarantee the positivity of s1, s2, s3 and can
be mapped into the space of the controller parameters by
(25)-(27). As mentioned earlier, one important advantage
of this approach is that the slack variables are positive.
This simplifies the computations involving sign-definite
decomposition because all the variables are positive and
therefore the approximation boxes should be constructed
only in the first orthant of the space of the free slack
variables; however, on the other hand, applying the sign-
definite decomposition directly to the Routh-Hurtwitz in-
equalities requires consideration of all orthants because the
controller parameters can take negative values as well.
For this example we define the following polynomials

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

6660



Fig. 2. The Stability Region in the Space of the Free Slack
Variables for the Control Feedback System (20)

Fig. 3. The Stability Region in the Space of the Controller
Parameters for the Control Feedback System (20)

s+3 = s0

s−3 = 1 + s5

s+1 = s5s0

s−1 = s4

s+2 = s20 + s5s4s0 + s5s
2
0

s−2 = s24 + s30. (31)

Now each pair of (s+i , s
−
i ), i = 1, 2, 3 are treated as

f+(x), f−(x), introduced earlier, and the approximation
boxes are defined as

S = {s : s−i ≤ si ≤ s
+
i , i = 0, 4, 5}.

The stability region defined by (28)-(30) in the space of the
free slack variables is plotted in Fig. 2 via the sign-definite
decomposition method. Each vector S = [s0, s4, s5]T in the
plot of Fig. 2 corresponds to a vector K = [k1, k2, k3]T by
(25)-(27). Fig. 3 shows the stability region in the space of
the controller parameters k1, k2, k3.

3.3 MIMO Feedback Control System

Consider the following characteristic polynomial corre-
sponding to a MIMO feedback system. The controller
parameters are k1, k2.

δ(s,K) = s4 + (k1 − 2 + k2) s3

+ (k1k2 + 2k2 + k1 − 3) s2

+ (4− 5k2 − 4k1 + 5k1k2) s

+4− 6k2 + 6k1k2 − 4k1. (32)

The stability inequalities from the Routh-Hurwitz array
and the coefficients of the characteristic polynomial are

f0 = k1 − 2 + k2 > 0

f1 = k1
2k2 − 4k1k2 + k1k2

2 − 2k2

+2k2
2 + k1

2 − k1 + 2 > 0

f2 = −8 + 22k2 − 65k1k2 + 48k1
2k2 + 46k1k2

2

−10k2
2 − 12k1

2 − 41k1
2k2

2 − k1k23

−5k1
3k2 + 5k1

3k2
2 + 5k1

2k2
3

−4k2
3 + 20k1 > 0

f3 = 4− 6k2 + 6k1k2 − 4k1 > 0

f4 = 4− 5k2 − 4k1 + 5k1k2 > 0

f5 = k1k2 + 2k2 + k1 − 3 > 0. (33)

Defining strictly positive slack variables s0, s1, ..., s5; the
Groebner bases (set to zero) for this example are

g0 = 20 + 120s0 + 20s3 − 56s5 + 180s0
2 + 28s0s3

+s3
2 − 168s5s0 − 12s5s3 + 36s5

2 = 0

g1 = 2 + 6s0 − 3s3 − 2s5 + 4s4 = 0

g2 = −2− 6s0 + 3s3 + 2s5 + 4s1 − 4s5s0 = 0

g3 = 8 + 68s0 − 64s3 − 8s5 + 192s0
2 − 156s0s3

+40s3
2 − 44s5s0 + 60s5s3 + 180s0

3 + 100s3s0
2

+s0s3
2 − 60s0

2s5 − 66s0s3s5 + 72s2 = 0 (34)

g4 = −2 + 8k2 + 10s0 + s3 − 6s5 = 0

g5 = −14− 18s0 − s3 + 6s5 + 8k1 = 0. (35)

Equations (35) can be solved for the controller parameters
k2, k1 in terms of the free slack variables s0, s3, s5. Solution
to the last 3 equations in (34) for s4, s1, s2 respectively
yields (recall that the slack variables are strictly positive)

s4 = −1

2
− 3

2
s0 +

3

4
s3 +

1

2
s5 > 0 (36)

s1 =
1

2
+

3

2
s0 −

3

4
s3 −

1

2
s5 + s5s0 > 0 (37)

s2 = −1

9
− 17

18
s0 +

8

9
s3

+
1

9
s5 −

8

3
s0

2 +
13

6
s0s3 −

5

9
s3

2 +
11

18
s5s0

−5

6
s5s3 −

5

2
s0

3 − 25

18
s3s0

2 − 1

72
s0s3

2

+
5

6
s0

2s5 +
11

12
s0s3s5 > 0. (38)

Equation g0 in (34) involves only the free slack variables
s0, s3, s5; thus is an algebraic variety in the first orthant
of the space of the free slack variables. Inequalities (36)-
(38) and equation g0 in (34) define the stability region
in the space of the free slack variables s0, s3, s5. Fig. 4
shows this stability region plotted using the sign-definite
decomposition. The stability region in the space of the
controller parameters k1, k2 can be plotted using the
equations (35) (see Fig. 5).
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Fig. 4. The Stability Region for the MIMO Example in the
Space of the Free Slack Variables

Fig. 5. The Stability Region for the MIMO Example in the
Space the Controller Parameters

4. CONCLUSIONS

In this paper we proposed a method to construct a
set of stabilizing controllers of fixed structure/order us-
ing strictly positive slack variables. This is accomplished
through a systematic use of elimination theory on the
Routh-Hurwitz stability inequalities which allows for the
computation of controller parameters in a sequential man-
ner. The presence of strictly positive slack variables in
the equations simplifies the computations of the stability
region(s) via the sign-definite decomposition method. Also
by introducing free slack variables and constrained slack
variables, we showed that the stability region(s) can be
plotted in the space of the free slack variables.
Since the Groebner bases change with respect to different
monomial order and different initial polynomials, finding
an approach to obtain one single connected stability region
in the space of the slack variables for the cases where
the stability region is disconnected in the space of the
controller parameters is an open problem.
It is also possible to add performance to the problem. The
performance requirements can be embedded to the initial
set of stability inequalities by additional corresponding
polynomial inequalities. In this case the region obtained
in the space of the slack variables will satisfy both the
stability and the performance of the closed loop system.
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